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Abstract 

The fast economic development around the globe and high standards of living imposes an ever 

increasing demand for energy. As a prime consumer of world‟s material and energy resources 

building and construction industry has a great potential in developing new efficient and 

environmentally friendly materials to reduce energy consumptions in buildings. Thermal energy 

storage systems (TES) with Phase change materials (PCM) offer attractive means of improving the 

thermal mass and the thermal comfort within a building. PCMs are latent heat thermal storage 

(LHTS) materials with high energy storage density compared to conventional sensible heat storage 

materials. Concrete incorporating PCM improves the thermal mass of the building which reduces the 

space conditioning energy consumption and extreme temperature fluctuations within the building. 

The heat capacity and high density of concrete coupled with latent heat storage of PCM provides a 

novel energy saving concepts for sustainable built environment. Microencapsulation is a latest and 

advanced technology for incorporation of PCM in to concrete which creates finely dispersed PCMs 

with high surface area for greater amount of heat transfer. This paper reviews available literature on 

Phase change materials in concrete, its application and numerical modelling of composite concrete. 

However most of the existing TES systems have been explored with wallboards and plaster materials 

and comparatively a few researches have been done on TES systems using cementitious materials. 

Thus, there is a need for comprehensive experimental and analytical investigations on PCM 

applications with cementitious materials as the most widely used construction materials in buildings.  
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1. Introduction 

Building and construction industry is a prime consumer of world‟s material and energy resources 

which accounts nearly for 40% of usage. Nevertheless limited conventional fossil energy sources 

produce harmful emissions which are accountable for environmental pollution.  In an effort to 

conserve energy, thermal energy storage systems (TES) can be regarded as a convenient solution. 

Thermal energy storage is capable of storing energy for later usage with either sensible heat storage 

materials or latent heat storage materials. Current TES materials employed in the building industry 



includes sensible heat storage materials like steel, masonry and water, where thermal energy is stored 

by raising the temperature of the material. Although sensible storage has been used for centuries as a 

passive thermal storage, latent storage materials provides more effective storage of heat with 

comparatively very small amount of material. Latent heat storage materials are referred to as phase 

change materials (PCMs) preferably with solid liquid phase change. Integration of PCM in to building 

fabric can increase the thermal storage capacity of the building envelope. PCMs are capable of storing 

energy at constant or nearly constant temperature which is referred as the phase transition temperature 

of the PCM.  Cementitious materials as the most widely used construction materials in buildings has a 

great potential in developing high performance thermal storage material. Numerical modelling of 

composite material with PCM is very important for optimal material selection and optimal designing 

of the systems. Simulation of thermal energy storage in concrete characterizes the heat transfer 

behaviour and thermal properties of this composite material. 

2. Thermal Energy Storage 

Thermal energy storage (TES) system can store thermal energy for a later usage. The stored energy 

can assist in effective utilization of energy where there are mismatches in energy supply and demand 

and differential pricings are applied for peak and off-peak energy usage (Zhu, Ma & Wang 2009). 

Physical processes for heat storage include sensible heat storage and latent heat storage. Sensible heat 

storage is the most common method of heat storage includes stone, brick or water as the storage 

media. In latent heat storage, when the phase transition occurs from solid to liquid or liquid to gas or 

vice-versa, thermal energy is stored as latent heat of a storage material. Latent heat storage is highly 

attractive due to high energy density per unit mass and its ability to store heat at almost constant 

temperature. (Pasupathy, Velraj & Seeniraj 2008) Solid-liquid systems are the most studied and 

commonly commercially available and referred to as latent heat storage material or Phase change 

Material (PCM).  

 

Figure 1: Heat storage as latent heat for the case of solid-liquid phase change (Mehling & Cabeza 

2008) 



The PCMs which are frequently used for the heat storage purposes have their phase conversion from 

solid to liquid or from liquid to solid state. PCM may be continually changed between its phases to 

utilize its latent heat, the heat which is absorbed during the phase change process. PCMs must exhibit 

certain desirable thermodynamic, kinetic and chemical properties for their application as latent heat 

storage materials.(Buddhi & Tyagi 2007) 

Table 1: Selection criteria for latent heat storage materials.(Pasupathy, Velraj & Seeniraj 2008) 

Thermodynamic Properties Suitable phase transition temperature 

High latent heat of fusion per unit volume 

High specific heat, high density and high thermal conductivity 

Small volume changes on phase transition 

Chemical Properties Chemical stability 

Complete reversible freeze/melt cycle 

Long term reproducibility 

Non-toxic, non-flammable and non-corrosiveness 

Economic Properties Low cost 

Large scale availability 

 

There are a large number of PCMs available within the required temperature range. Mainly PCMs can 

be categorized in to three classes, organic, inorganic and eutectics. Organic materials include paraffin 

and non-paraffins. They show good physical and chemical stability, good thermal behaviour, low 

super-cooling, good compatibility with construction materials. However paraffin is flammable and has 

low thermal conductivity and volume changes. Inorganic materials include salt hydrates and metallics. 

These have a high latent heat per unit mass, non-flammable and comparatively low in cost. 

Drawbacks of inorganic PCMS include phase segregation and super cooling which affects its latent 

heat properties. A eutectic is a combination of two or more components where each material melts 

and freezes congruently. This can be a mixture of Organic–Organic, Organic–Inorganic and 

Inorganic–Inorganic materials.  

 

Currently organic PCMs has become quite attractive  due to their advantages over inorganic materials 

(Khudhair & Farid 2004). Organic PCMs have little super cooling and phase segregation and they are 

compatible with various building materials. Thermodynamic properties govern the selection of a PCM 

for a particular application. Suitable phase transition temperature or melting temperature and the 

melting enthalpy are the main criteria. As both aforementioned properties depend on the molecular 

effects, PCMs within one material class behave similarly.  



 
Figure 2: Different classes of known PCMs(Mehling & Cabeza 2008) 

Compared with conventional sensible storage materials, PCMs provide high energy storage densities 

at a constant temperature. These unique properties of PCM provoke their application into temperature 

control and as a thermal storage with high storage density. One of the main areas of application is to 

enhance energy efficiency and thermal comfort in buildings. Building materials incorporated with 

PCMs can store significant amount of thermal energy in building envelope with less structural mass 

compared with sensible heat storage (Tyagi et al. 2011). PCMs can be used to stabilize the indoor 

temperature in a building by reducing the temperature fluctuations due to external weather conditions. 

3. PCM containment 

Incorporation of PCM in construction materials should be selected properly to mitigate the problems 

associated with the application of these materials. Some of the considerations in incorporation 

methods of PCM includes volume changes during melting and freezing, slow heat transfer rate, 

problems of leakage and adverse effects on the physical properties of the matrix. The simplest method 

consists of impregnation of the concrete block with PCM in a constant volume liquid PCM (Lee et al. 

2000). This is a flexible method which can be applied to different PCM transition temperatures. 

Concrete blocks can be impregnated as a part of continuous process of manufacturing. It may have 

drawbacks of interacting with building structure and change the material matrix, possible leakage over 

the life time etc. (Schossig et al. 2005) 

Encapsulation of a solid liquid PCM during its phase transition is crucial in most cases to hold the 

liquid phase of the PCM and to reduce the reactivity of PCM with the outer environment (Hawlader, 

Uddin & Khin 2003). Means of encapsulation can be classified depending on their size; 

macroencapsulation and microencapsulation. 



3.1 Macroencapsulation 

PCMs are enclosed in a macroscopic containment like pouches, bags, bottles, pipes and similar 

structures made of plastic or metal. Macroencapsulation hold the PCM in liquid state and prevent it 

from contact with the outer environment. Some disadvantages of macroencapsulation include poor 

heat transfer, potential leakage and flammability. The macro encapsulation of PCM need to be 

protected against destruction during usage of the building and failed due to poor heat conductivity 

during solidification process. It requires much work to be done at the site to integrate with the 

building fabric. 

3.2 Microencapsulation 

In Microencapsulation, micronized materials (both liquids and solids) are packaged in the form of 

capsules, which range in size from less than 1 µm to more than 300 µm. The outer shell of the capsule 

can be made by using  natural and synthetic polymers which provides a hard shell (Hawlader, Uddin 

& Khin 2003). The advantages of microencapsulation include reduction of the reactivity with the 

outside environment and improvement in heat transfer to the surrounding due to high surface to 

volume ratio of the microcapsules. Due to the hard shell, the core material can withstand frequent 

volume changes during phase change. The cycling stability of the PCM has also improved as the 

phase separation is only limited to the microscopic distances. 

 

Figure 3: Description of Microcapsule (Tyagi et al. 2011) 

When encapsulating PCM, several factors need to be considered. The material of the container must 

be compatible with the PCM and the wall material has to be sufficiently thick to assure necessary 

diffusion tightness. High resistance to mechanical and thermal stresses is a prerequisite of a 

microencapsulated PCM which is intended to use with construction materials. To become a PCM with 

good cycle stability over numerous phase transition cycles, it needs to be remained encapsulated 

within impermeable microcapsule for the whole product life. 

Commercial products of microencapsulation use paraffin. Micronal is an example commercial product 

produced by BASF. 

 



 

 

 

 

 

 

 

Figure4:Scanning Electron microscopic image of many capsules and an opened microcapsule 

(BASF)  

4. Cementitious materials with Phase change Materials 

Concrete is extensively used as a building material for residential and commercial buildings around 

the world. Thus the PCM technology has a great potential in developing an energy efficient concrete 

product for thermal comfort in buildings. Due to the high thermal mass of concrete, thermal energy 

can be stored during the day and be released at night, reducing the demand for cooling and heating. 

Addition of PCMs in to concrete can further enhance the thermal storage capabilities of concrete. 

In early stage of development of thermal energy storage concrete, impregnation is used as the method 

of incorporation. Hawes et al. (1990) has studied latent heat storage of concrete with different types of 

PCMs in different types of concrete blocks. Incorporation of PCM in to concrete blocks was carried 

out through an immersion process in a liquid PCM bath. The experiments covered the process 

variations including concrete alkalinity, temperature, PCM temperature, immersion time and number 

of immersions. Silica fume and fly ash is used as pozzolanas to reduce the alkalinity of concrete and 

to improve the compatibility with alkaline sensitive PCMs.  

Another potential application method of PCM in to concrete have been highlighted in the recent 

research done by Zhang et al. (2004) and Bentz and Turpin (2007) Light weight aggregates with high 

porosity is used as the matrix materials to achieve adequate storage of PCM. In the constructed 

concrete, these porous aggregates are surrounded by dense cement based materials which avoid the 

leakage and pollution of PCM. Bentz and Turpin (2007)investigated on thermal storage mortar with 

light weight expanded shale aggregates with paraffin and polyethylene glycols as PCMs. It is stated 

that embedding PCM in more thermal conductive light weight aggregates improves the heat transfer 

between PCM and concrete. A secondary application of PCM has also explored in this research, the 

reductions in peak temperature during first few days of hydration. During hydration PCM absorbs the 

energy and reduces the temperature rise. 

New methods of PCM containment in hollow-core building blocks were studied by Salyer et al. 

(1995) which included; 1) PCM contained in pellets of cross linked high density polyethylene 

(HDPE); 2) PCM absorbed into high surface area of Silica in the form of “Dry powder”; 3) Imbibing 



of liquid PCM in to porous materials. One significant technical discovery from this research was 

finding of new PCM composite that could be made by melt mixing of PCM/High Density 

Polyethylene (HDPE)/ Ethylene-vinyl acetate (EVA) and ABS silica in defined proportions. 

PCM/hydrophobic silica dry powder can be incorporated into the wet mix of cement/solite to provide 

an effective thermal storage. However a higher ratio of cement needs to be used to mitigate the 

reduction of compressive strength of the composite with the progressive increase of the PCM. 

4.1 Cementitious materials with Microencapsulated PCM  

In most of aforementioned researches main consideration has given to method of containment of PCM 

in developing thermal storage composite materials. Studies suggest that main problems with PCM 

incorporation are leakage and evaporation of PCM and contact with the outer environment which can 

deteriorate the matrix material properties. Microencapsulation is a latest and advanced technology for 

incorporation of PCMs into building materials. Prospective PCMs that can be applied in the buildings 

should have their phase transition temperature in the range of human comfort temperature. This 

method of application creates finely dispersed PCMs with high surface area for greater amount of heat 

transfer and prevents any interaction between PCM and the concrete constituents. 

The results from a study of two actual size concrete tests building using microencapsulated PCM were 

presented by Cabeza et al.(2007) . A commercial product, Micronal® PCM from BASF has been used 

for the experiment. A lower inner temperature up to 3C was achieved with PCM. Improved thermal 

inertia was also observed which shows prospects for energy savings in buildings. Moreover it is stated 

that solidification and melting of PCMs in every cycle and night cooling is important to achieve full 

performance of the PCM storage. 

 

Figure 5: South wall temperatures with and without PCM (Cabeza et al. 2007) 

The opportunities presented by the microencapsulation of PCM in gypsum plaster was investigated by 

Schossig et al. (2005) As the capsules are very small, destruction of capsules are highly unlikely. The 

fine distribution of the PCM particles in the matrix provides larger surface area for heat transfer, so 

the heat transfer rate during melting and freezing cycle is enhanced significantly. It has showed that 

microencapsulation of PCM results in easy application, improved heat transfer and good compatibility 



with conventional construction material. The PCM walls facilitate low fluctuations in the indoor air 

temperature. 

 

 

 

 

 

 

 

Figure 6: SEM image of PCM micro-capsules in gypsum plaster. The PCM micro-capsules with an 

average diameter of 8 mm are homogeneously dispersed between the gypsum crystals (Schossig et 

al. 2005) 

A series of experiments using different percentages of PCM in self-compacting concrete mixes was 

studied by Hunger et al. (2009) Microencapsulated PCM was directly mixed with concrete and the 

influence on the material properties were investigated.  

 

Figure 7: Temperature development of four self-compacting mixes in the kernel of the molds in a 

semi-adiabatic environment during the first 3.5 days after casting (Hunger et al. 2009). 

Thermal properties of hardened self compacting concrete with PCM show reduction in thermal 

conductivity and increased heat capacity with the increase of PCM content. The increase of thermal 

mass due to addition of PCM improved the thermal performance of concrete. Results showed an 

energy savings of 12% can be achieved with 5% PCM in the mix (Hunger et al. 2009). The reduced 

thermal conductivity and increased thermal mass of the concrete acts favourably in practical 

applications. It improves the thermal performance of concrete and to facilitate energy savings in space 

conditioning. Although the increase in PCM dosage lead to lower compressive strengths in the 



composites, 3% PCM content in the concrete accompany compressive strength of 35N/mm2 which is 

adequate for most constructional purposes (Hunger et al. 2009). 

 

 

 

 

 

 

 

 

Figure 8: Thermal mass of the PCM mixes versus temperature (Hunger et al. 2009) 

 

Figure 9: Development of the compressive strength of smart concrete with PCM and plain 

concrete. (Mihashi et al. 2002) 

Mihashi et al. (2002) in their experimental studies showed that though the early stage compressive 

strength is low due to reduced hydration peaks, later stage compressive strength is higher than normal 

concrete. One suggestion to improve early stage compressive strength by Salyer and Sircar (1997) 

was to increase percentage of cement in the formulation. However increasing cement content has its 

own negative impacts on environment with relates to consumption of energy and CO2 emissions and 

may not be considered as an effective solution. 



5. Analytical Investigations of PCM 

The characterization of material properties of building materials with PCMs and the analysis of the 

thermal performance of these materials in a building is important in designing thermal storage 

systems with PCMs. A reliable numerical model to simulate material properties can facilitate optimal 

design without having time consuming full scale experiments. Heat transfer in PCM during phase 

change is quite complex due to the nature of nonlinearity(Lamberg, Lehtiniemi & Henell 2004). 

Analytical solutions which have developed to solve phase change problems deals with simple 

geometry and boundary conditions. Stefan Problem is a one of the most used analytical solution for 

one dimensional solid-liquid phase transition (Ogoh & Groulx 2010). 

Phase change problems are generally solved with finite difference or finite element methods. The 

most common numerical methods in solving non linear behavior include Enthalpy method and Heat 

Capacity method. The Enthalpy method utilizes total energy required during the phase change which 

includes both sensible and latent heat by using the enthalpy of the material. Effective heat capacity is 

linearly proportional to the latent heat and the specific heat of the material.  

Lamberg et al. (2004) has analyzed finite element analysis of paraffin with FEMLAB using both 

enthalpy method and heat capacity method. The most accurate result was obtained from the Effective 

Heat Capacity method used in a narrow temperature range. Zhang et al. (2007) carried out numerical 

studies on thermal behavior of hypothetical solid-solid PCM using FEMLAB. The effect of varying 

percentages of PCM and the material thickness has investigated with finite element modelling. 

Simulations indicated that fluctuations of indoor room temperature can be reduced with using PCM in 

cement compound. Higher the PCM amount and higher the compound thickness, there is an increase 

in the amplitude of temperature fluctuations reduction. However the increase in thickness offers 

increased thermal resistance during discharge of the stored heat, thus optimum value of thickness is 

preferred.  

The improvement in thermal behavior in a building due to integration of PCM depends on number of 

factors. This includes the amount and properties of PCM, climate conditions, design of the building. 

Therefore a complete simulation of thermal effect in a building with PCMs is necessary to evaluate 

the benefits. Ibanez et al. (2005)developed a simple model with TRNSYS to simulate the thermal 

behaviour of building including elements with PCMs. TRNSYS15 was used in modelling using the 

active layers for radioactive heating and cooling of the Type 56 „Multi-Zone Building‟. The material 

properties were first characterised by the experiments and then the thermal behaviour of these 

materials in the building was analysed. The simulation showed reduction in temperature fluctuations 

with PCM and results can be evaluated by altering phase change temperature, heat capacity of PCM 

and its place of application within the building.  

 



6. Conclusions 

Latent heat storage materials with solid liquid phase change or Phase Change Materials (PCMs) 

provide a promising solution in developing efficient thermal storage systems for buildings. The 

thermal mass of the building structures can be increased with the incorporation of PCMs into building 

materials. It will enhance the occupants comfort and reduce the consumption of energy for space 

conditioning.  

However most of the existing TES systems have been explored with wallboards and plaster materials 

and comparatively a few researches have been done on TES systems using cementitious materials. 

Due to the high thermal mass of concrete, thermal energy can be stored during the day and be released 

at night, reducing the demand for cooling and heating. Addition of PCMs in to concrete can further 

enhance the thermal storage capabilities of concrete. Thus, there is a necessity for comprehensive 

experimental investigations on microencapsulated PCM applications with cementitious materials as 

the most widely used construction materials in buildings. Moreover it should be noted that these 

experiments must address some concerns with PCM integration with concrete which includes 

reduction in early stage compressive strength and compatibility of PCMs due to alkalinity. With 

relates to numerical modelling of PCM integrated concrete, current finite element models has based 

on number of assumptions and there is no currently available model on microencapsulated PCM in 

concrete. Thus comprehensive experimental studies and numerical modelling is recommended for 

understanding the behavior of microencapsulated PCM in concrete. 
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