LB/DON/ 51/33

621.18:536-73

78483

EXERGY (SECOND LAW) ANALYSIS OF STEAM BOILERS IN SRI LANKA

By

M^M R Pathmasiri

This Thesis was submitted to the Department of Mechanical Engineering of the University of Moratuwa in partial fulfillment of the requirements for the Degree of Master of Engineering in Energy Technology

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk L. M.S. CTTY C. C. SANTA C. V.

Ł

Department of Mechanical Engineering Faculty of Engineering University of Moratuwa Sri Lanka July 2002

DECLARATION

I hereby declare that this submission is my own work and that, to the best of my knowledge and behalf, it contains no material previously published or written by another person nor material, which to substantial extent, has been accepted for the award of any other acedemic qualification of a university or other institute of higher learning except where acknowledgment is made in the text.

> University of Moratuwa, Sri Lanka, ic Theses & Dissertations ymrt.ac.lk

> > i

UOM Verified Signature

M M R Pathmasiri July 2002

4

λ

Abstract

In this study, exergy analysis was carried out for boilers. A sample of 100 Nos. of boilers was selected and input and output streams for each boiler were studied. Exergy and energy balance for each boiler was evaluated and theoretical analysis was carried out using these results.

Variation of exergy efficiency with flue gas temperature and excess air, variation of exergy efficiency with energy efficiency, variation of CO_2 emission with exergy efficiency, variation of cost of steam with exergy efficiency and variation of exergy destruction with excess air and flue gas temperature were presented. The theoretical background for these variations were discussed.

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

3

×

X

Table of Contents

Declaration	i
Abstract	ii
Table of Contents	iii
List of Tables	vii
List of Figures	viii
Acknowledgement	x

CHAPTER 01

•

RES	RESEARCH PROBLEM BEING ANALYZED 1		
1.1	Background of exergy	1	
1.2	CO ₂ emission and green house effect	3	
1.3	Energy based pricing and exergy based pricing	6	
1.4	Exergy based taxing for emission	7	
1.5	Sri Lankan situation of exergy analysis	8	
PTER	02 University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk		

CHAPTER 02

LITER	ATURE SURVEY ON EXERGY
2.1	Major researches conducted and papers published

.

9 9

CHAPTER 03

THEORITICAL ANALYSIS		16	
3.1	Refere	ence state or reference environment	16
		3.1.1. Restricted dead state	17
		3.1.2 Absolute dead state	17
3.2	Funde	emental concept	18
	3.2.1	Clausius inaquality	18
	3.2.2	Entropy	18

iii

	3.2.3	Exergy anergy and energy	19
	3.2.4	Irreversibility	19
	3.2.5	First law of thermodynamics	20
	3.2.6	Second law of thermodynamics	20
3.3	Comp	onents of exergy	20
	3.3.1	Exergy transfer with work interaction	21
	3.3.2	Exergy transfer with heat interaction	21
	3.3.3	Exergy transfer associated with material stream	22
3.4	Exerg	y in fuels	24
3.5	Exerg	y balance for total system	25
	3.5.1	Exergy balance for closed system	25
	3.5.2	Exergy balance for control volume	25
3.6	Exerg	etic efficiency	26
3.7	Cost o	of steam	26
3.8	Radia	tion and convection losses in cylindrical and flat surfaces	27

CHAPTER 04

-

R,

3

1

2	University of Moratuwa, Sri Lanka.
3)	Electronic Theses & Dissertations
3	www.lib.mrt.ac.lk

METHODOLOGY			29
4.1	Data c	collection	29
	4.1.1	Different industries	30
	4.1.2	Different loads	30
	4.1.3	Configuration of boilers	31
	4.1.4	Different types of burners	32
	4.1.5	Fuel consumption	35
4.2	4.2 Sampling size		36
4.3	1.3 Instrument used		36
	4.3.1	Flue gas analyzer	36
	4.3.2	Other instruments used	37
4.4	Metho	od of analysis	39
4.5 Case study analysis – boiler system		40	

4.5.1	Data and measurements	40
4.5.2	Composition analysis of fuel	41
4.5.3	Calculation	42

CHAPTER 05

9

1

ANAI	LYSIS OF RESULTS	56
5.1	Exergy loss through blowdown	57
5.2	Exergy loss through surface emission	59
5.3	Exergy loss in flue gas	60
5.4	Exergy destruction	66
5.5	Exergetic efficiency	69
5.6	Variation of exergetic efficiency with energy efficiency	72
5.7	Cost of steam vs exergetic efficiency	73
	5.7.1 Type of fuel	74 1.500
	5.7.2 Cost of electricity	74
	5.7.3 Cost of water treatement	75
5.8	CO ₂ emission vs exergetic efficiency	77
5.9	CO ₂ emission vs energy efficiency	78
5.10	CO ₂ emission vs percentage exergy loss in flue gas	79

CHAPTER 06

IMPROVEMENT POTENTIAL OF EXERGETIC EFFICIENCY		81		
	6.1	Improvement of exergetic efficiency by reducing the existin		
		losses	s in boilers	81
	6.2	Impro	vement of exergetic efficiency by implementing better	
		energy	efficient systems	83
		6.2.1	Co-generation	83
		6.2.2	Thermal power plants	83
		6.2.3	Thermal cascading	83

v

.

y

.

£

CONCLUSION	86
Reference	90
Appendix A - Data and Measurements	93
Appendix B - Results	127
Appendix C - Enthalpies and entropies of ideal gases	133

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

vi

.

LIST OF TABLES

- 2.1 Composition of the specified reference environment
- 2.2 Performance evaluation of the gas turbine cogeneration plant
- 3.1 Values of B and D for some common surfaces
- 4.1 Average flue gas measurement
- 4.2 Water quality data
- 4.3 Surface temperatures of boiler
- 4.4 Stack composition in dry basis
- 4.5 Mole fraction of stack composition
- 4.6 Exergy inputs to the boiler
- 4.7 Exergy output from the boiler
- 4.8 Exergy and enrgy balance of the boiler
- 4.9 Exergy balance of boiler
- 4.10 Energy balance of the boiler sections
- www.lib.mrt.ac.lk
- 5.1 Recommended parameters in feed water and boiler water
- 6.1 Variation of temperature in different processes.

LIST OF FIGURES

The green house effect

1.1

- 1.2 Variation of global mean temperature 3.1 Control mass, dead state and exergy 4.1 Rotary cup burner 4.2 Pressure jet atomizer 4.3 Twin fluid atomizer 4.4 Flue gas analyzer 4.5 Exergy input and exergy output stream of boiler 4.6 Sankey diagram for exerg balance of the boiler 4.7 Sankey diagram for energy balance of the boiler 5.1 Variation of percentage exergy loss in blow down 5.2 Variation of exergy loss with TDS of blowdown water 5.3 Variation of percentage exergy loss through surface emission 5.4 Variation of percentage exergy loss in fluegas with fluegas temperature at different excess air levels 5.5 Variation of percentage exergy loss in fluegas Variation of exergy and energy loss in fluegas with excess air at 5.6 constant fluegas temperature 5.7 Variation of exergy and energy loss in fluegas with fluegas temperature at excess air 0 - 20%5.8 Variation of energy and exergy loss in flue gas with fluegas temperature at excess air 20% - 40%5.9 Variation of percentage exergy loss with percentage energy loss in fluegas 5.10 Variation of exergy loss with energy loss in fluegas
- 5.11 Variation of exergy destruction with exergy loss in fluegas
- 5.12 Variation of exergy destruction with fluegas temperature at different excess air level

viii

- 5.13 Variation of percentage exergy destruction and percentage exergy loss in fluegas
- 5.14 Variation of percentage exergy destruction + percentage exergy loss in flue gas with fluegas temperature at different excess air levels
- 5.15 Variation of percentage exergy destruction in boilers
- 5.16 Variation of exergetic efficiency with fluegas temperature at different excess air level
- 5.17 Variation of exergy in combustion air with combustion air preheating temperature
- 5.18 Variation of exergetic efficiency with energy efficiency of boilers
- 5.19 Variation of steam cost with exergetic efficiency
- 5.20 Variation of CO₂ emission with exergetic efficiency
- 5.21 Variation of CO₂ emission with energy efficiency
- 5.22 Variation of CO₂ emission with percentage exergy loss in fluegas at different excess air levels
- 6.1 Average exergy losses and exergy improvement potential in different streams of boilers
- 6.2 Exergetic improvement potential in oil fired boilers
- 6.3 Heat provided at different levels for different processes
- 6.4 Optimum cascading of thermal energy in industries

Acknowledgement

This thesis was supervised by Dr R A Attalage senior lecturer of the Department of Mechanical Engineering who gave comprehensive support to manage and conduct the project work and due to this reason the thesis was completed on time. Therefore first of all I must thank Dr R A Attalage for giving his excellent coordination and supervision.

Dr Thusitha Sugathapala and Dr K K C K Perera also gave their fullest support at the analysis stage and I would like to thank them too.

I would like to thank Eng, D D A Namal, Head/ Energy and Environmental Management Centre of the NERD Centre for giving support in collecting data and information in various stages of the project.

Finally I would like to appreciate everybody who helped me in carrying out the project work and bringing out this effort a success.

CHAPTER 1

RESEARCH PROBLEM BEING ANALYZED

The most commonly used indicator for the efficiency of energy conversion process is the ratio of the output of useful energy to the total energy input. This ratio is called first law efficiency. It is based on a quantitative accounting of energy, which reflects recognition of the first law of thermodynamics and the law of conservation of energy. It is well known that the second law of thermodynamics defines the availability of energy more restrictively than the first law. Principally, first law is silent on the effectiveness with which availability is concerned. Analysis in terms of the second law of thermodynamics more closely describes the effectiveness with which systems or processes use available energy.

ŀ.

This chapter describes the background of the second law analysis or the exergy analysis, CO_2 emission, global warming and how it relates with second law efficiency in steam boiler, exergy based pricing and exergy based taxing for emission, Sri Lankan situation on exergy, and specific objectives of this thesis.

1.1 Background of Exergy

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

The word "exergy" comes from the Greek words meaning 'form' and 'work' of a thermal system. At the beginning there was no clear nomenclature for exergy analysis and the terms availability, available energy, essergy, utilizable energy, work potential, available work, convertible energy, etc. were used in different countries to refer the term exergy. To improve this situation a workshop on "Teaching Thermodynamic" was held at the University of Cambridge in September 1984. As a result of this three successive drafts of proposed nomenclature have been produced and the final draft was introduced based on that.

The concept of exergy is developed based on the second law of thermodynamics and in practice relies heavily on the use of thermodynamic property entropy. However, while many people express difficulty in grasping the physical signification of entropy, which tends to increase to a maximum in any isolated system, exergy is easier to conceptualize. For example, let us take a container of fuel inside an isolated room. The room is fully insulated. Suppose the fuel burns completely so that finally there is

a slightly warm mixture of combustion products and air. According to the first law of thermodynamics the energy at the initial state and the energy at the final state are equal. But the initial fuel-air mixture would be intrinsically more useful than the final warm mixture. For instance the fuel might be used in some device to generate electricity or produce superheated steam, whereas the use to which the slightly warm combustion products can be put would be far more limited in scope. Hence it is observed that the initial potential of energy is very much higher than the final potential. This shows that the initial work potential has been largely destroyed during the process and available energy is existing within the system as generated entropy. Technically we say that the initial energy potential has been largely destroyed due to generation of entropy within the system and generation of entropy leads to system irreversibilities.

The above energy or availability is called exergy and destruction of potential of energy is called exergy destruction.

The basic concepts of exergy analysis can be traced back to the writings of Lord Kelvin and William Thomson in 1852 [19]. In that year Kelvin wrote about 'Sources available to man for the production of mechanical effect' and about the 'Dissipation' and 'Restoration' of mechanical energy. He also presented his monumental work 'On the dynamic theory of heat' to the Royal Society of Edinburgh in the same year. It is sufficient to point out that Kelvin in 1852 had remarkable insights into the area now known as exergy analysis.

George Stephenson invented the world's first steam engine in 1825 and it was run between Berminham and Manchaster. The Sri Lankan railway was established in 1850 and the first trial was made between Colombo and Ambepussa. In 1854 Clausius wrote a very famous paper and introduced the concept of entropy to the world. This shows that the thermodynamics applications date back as far as the theories do.

Exergy analysis has shown to be an efficient tool for process understanding and optimization. During process development, product quality, production capacity, investment costs and operating costs have always been of great importance. However the cost of fossil fuels and the awareness of the environmental impact of the

consumption of the non-renewable fossil fuels have increased. Therefore the need for energy efficient processes become more important. In order to achieve savings in primary energy consumption, the potential for improvement of a process needs to be researched.

Usually a process analysis is based on energy and mass balance. However this type of process analysis only shows the energy flows of the process and does not give insight on how the quality of the energy degrades through the process by dissipation. Exergy is a measure for the quality of energy. Decreasing the exergy losses of a process shows a tendency to a lower primary fuel consumption, reducing the operating cost and increasing the process efficiency.

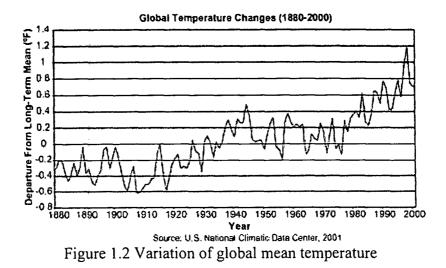
Exergy analysis makes it possible to universally compare different processes and alternative process routes on thermodynamic basis.

1.2 CO₂ Emission and Greenhouse Effect

Energy always radiates to the earth from the sun and the earth reradiates energy back the into space. The radiation and reradiation effect, are always balanced and no energy accumulation occurs on the earth surface on a long-term basis. The atmospheric gases such as carbon dioxide, water vapor and other minor gases trap some of this reradiating energy and the temperature of the space increases and tends to temporally stabilizing point. This phenomenon is called "Greenhouse effect".

The Greenhouse Effect		
Solar radiation is reflected by the earth and the atmosphere atmosphere Most radiation is absorbed by the earth's surface	Some of the infrared radiation passes through the atmosphere, and some is absorbed and re-emitted in all directions by greenhouse gas molecules. The effect of this is to warm the earth's surface and the lower atmosphere.	
and warms it	nom the cardin sufficient	
Figure 1.1 The	green house effect	

Energy trapping in the space due to naturally existing atmospheric gases is named natural greenhouse effect and without this effect temperatures would be much lower than they are now, and lives as known today not be possible. Instead thanks to this natural greenhouse effect the earth's average temperature is maintained at around 60^{0} F [40].


Some greenhouse gases occur naturally in the atmosphere while others result from human activities. Naturally occurring greenhouse gases include water vapour, carbon dioxide, methane, nitrous oxides and ozone. Hydrofluorocarbons (HFCs), Perfluorocarbons (PFCs) and Sulfurhexafluoride (SF₆) come as a result of human activities.

Generally it is believed that the combustion of fossil fuels and other human activities are the primary reason for the increased concentration of carbon dioxide. Plant respiration and the decomposition of organic matter release more than 10 times the CO₂ released by human activities [40]. But this CO₂ releases have generally been in balance during centuries leading up to the industrial revolution with carbon dioxide absorbed by terrestrial vegetation and oceans.

Methane is emitted during the production and transport of coal, natural gas and oil and also result from the decomposition of organic wastes in municipal solid waste, landfills and the raising of livestock. Nitrous oxide is emitted during agricultural and industrial activities, as well as during combustion of solid waste and fossil fuels.

However, since the beginning of industrial revolution atmospheric concentrations of carbon dioxide have more than doubled and nitrous oxide concentrations have risen by about 15% [40]. These increases have enhanced the heat trapping capability of the earth's atmosphere. Fossil fuels burned are responsible for about 98% of carbon dioxide emissions, 24% of methane emissions and about 18% of nitrous oxide emissions [40].

Mainly global temperature increases due to the greenhouse effect and rising global temperature is expected to rise sea level and change precipitation and other local climate conditions, changing regional climate that could alter forests, crop yields and water supplies. It could also threaten human health and harmful to birds, fish and many other ecosystems. Observations collected over the last century suggest that the average land surface temperature has risen 0.45 - 0.6 $^{\circ}C$ [40].

Sea level has risen worldwide approximately 15 - 20 cm (6 – 8 inches) in the last century [24]. Approximately 2 – 5 cm of rise has resulted from the melting of mountain glaciers and the rest comes from the expansion of ocean water that resulted from Warmer Ocean temperature [40]. Precipitation has increased by about 1% over the world's continents in the last century [40]. High latitude areas are tending to see more significant increases in rainfall while precipitation has actually declined in many tropical areas.

Carbon dioxide (CO₂) is the key greenhouse gas responsible for global warming. Mainly CO₂ comes from burning fossil fuels and about 1440 MT [41] of furnace oil is burnt daily in steam boilers in Sri Lanka and the resultant emission is around 4500 MT per day.

By improving the energy efficiency it can reduce the amount of fuel burning can be reduced resulting in low emission levels.

As exergy is the maximum work potential that can be extracted from a system and exergy efficiency is the ratio between the real exergy output and exergy input, improving the exergy efficiency makes the potential of the source to be used better. Exergy efficiency of a package type steam boiler is around 27% and it implies that there is drastic exergy destruction within the boiler system.

1.3 Energy based Pricing and Exergy based Pricing

The development and application of exergoeconomics have started since 1950s and provided theoretical basis for designing efficient and cost effective energy systems. Large number of optimization methods related to exergoeconomics emerged in the 1980s [19].

Calculation of steam cost is done in normal conventional way by dividing the total cost input by the unit output and thereby the unit cost is obtained. There is no significant error within this calculation and the accounting is also easy. These calculations are based on energy efficiency and if the calculations get involved with exergy-based efficiency the picture is different. The exergy efficiency lies in a very low range than the energy efficiency in a steam boiler and it implies that there is massive amount of exergy destruction leading to less work potential. Thus the exergy-based calculations give the real picture about the energy usage and exergy based pricing gives real cost of usable energy.

Energy efficiency gives an idea about the amount of energy transfer from one state to another and exergy efficiency implies the amount of work potential that can be obtained in each state. The energy efficiency of a package type boiler is in the range of 80% to 85% [31] based on the HHV of the fuel and it can be improved maximum up to around 87% [31] by reducing the losses. The improvements are limited and people never think beyond this.

Exergy efficiency of a boiler is around 27% and comparing the situation in boiler there is huge tendency to improve the exergetic efficiency than the energy efficiency by implementing better energy utilizing systems such as cogeneration, energy

cascading, fuel cells, etc. The specific cost based on exergetic efficiency implies the real picture of each thermodynamic system. Without knowing the exergy-based details it is impossible to improve the work potential and also it has not received main attention. Thus exergy-based pricing is very essential to get an idea of the behavior of the process and to implement further improvements as this reflects a more realistic picture and thus a more rational way of costing.

1.4 Exergy based Taxing for Emissions

Burning of fossil fuels give emissions to the environment. Mainly furnace oil is burnt in boilers in Sri Lanka and heat, unburnt carbon and pollutant gases such as CO_2 , CO, SO_2 , NO & NO₂ are the major emissions.

As we discussed earlier exergetic efficiency of boilers lies in very low levels indicating a large loss of maximum possible work of the source that could have otherwise been obtained. If the efficiency gets increased the fuel consumption gets reduced and the specific emission also gets reduced. Emissions pollute the environment and environmental pollution causes serious damages to human beings and to ecological system. It is impossible to estimate this damages in rupees but however there must be an accounting system for environmental damages.

At present there is a tax system for CO_2 emissions and also regulations for some common pollutants in few countries in the world. But rather than going to tax for direct pollutants it is very important to introduce exergy-based tax or entropy-based tax system. The objective is to reduce the emission by increasing the exergy utilization. The specific emission had to be evaluated reference to the exergy efficiency and the tax can be implemented based on the above figure.

Through these tax methods people will be encouraged to implement higher exergetic efficiency systems and it will result in reduced specific emissions.

1.5 Sri Lankan Situation of Exergy Analysis

Exergy-based analysis is a new concept to Sri Lanka and now it is being introduced to the university syllabus. Around the world, exergy analysis has been used for system optimization and the final results are more realistic than the system design based on first law of thermodynamics. First law of thermodynamics is widely used in analyzing of thermal systems but it does not provide enough information to support a comprehensive system. It measures only the quantities of work and energy and ignores the quality of energy used. It can tell how much energy is needed to perform a particular task, but not how well that energy is used. It can only support bulk allocation arguments. But exergy analysis goes beyond this and provides insights needed to apply energy resources to use, which produce less entropy per unit of useful heat or work.

As an underdeveloped country, we also have to use this type of efficient tools in design stages to minimize energy waste and to achieve development conditions.

Even though energy efficiency is a critical factor to Sri Lanka, one should go beyond energy efficiency, and thus high exergetic efficiency systems are needed for the country. In other words one could obtain a higher work potential from less quentity of energy. Therefore exergy analysis will be a valuable tool for our energy sector for future development.

CHAPTER 2 LITERATURE SURVEY ON EXERGY

Although the basic concepts of the second law analysis have been formulated in the second half of the 18th century, most of the developments of practical applications in this area have been implemented within the last fifty years and are still continuing. Few numbers of books were published during this period and about thousand numbers of researches were conducted and research papers were published. The summary of the most research works conducted during the past can be taken from the Internet. This chapter presents the summary and important data of few papers presented in the past years in international journals.

2.1 Major Researches Conducted and Papers Published

Nomenclature for exergy analysis onic Theses & Dissertations

T J Kotas, Y R Mayhew, and R C Raichura published this paper on March 1994 at department of engineering, Queen Mary and Westfield College University of London.

The first nomenclature of second law of thermodynamics published by the Rant in 1952. But it was not a complete one for exergy analysis and thus different names were used in different countries. Therefore a workshop on ' Teaching Thermodynamics' was held at Cambridge, England, in September 1984, to prepare a complete nomenclature. As a result of this, a complete draft was prepared and the proposals have been circulated in the UK, USA, Canada and other countries. The final results are presented in this paper. In addition to that it presents the concept of exergy including reference states, concepts of chemical exergy, exergy balance or the Gouy-Stodola relation, loss of exergy and exergetic efficiency, etc.

Exergy analysis - a different perspective on energy

- Part I The concept of exergy
- Part II Rational efficiency and some examples of exergy analysis

A paper was presented on February 1990 by J A McGovern at department of mechanical and manufacturing engineering, Trinity college, University of Dublin, Ireland.

Part I of the paper describes the concept of exergy analysis. Mainly it covers the theory of exergy transfers associated with various systems. It discusses the

- > Preliminary definitions related to the words in exergy analysis
- > The concept behind work and useful work
- > Theory of exergy and exergy functions including chemical exergy
- > Exergy analysis in closed systems
- > Exergy analysis in open systems, etc.

In Part II of the paper a universal rational efficiency is described and a number of worked examples are presented to illustrate the application of exergy analysis. Those are,

- a. Exergy analysis of a hot water boiler
- b. Exergy analysis of an air to water heat pump
- c. Exergy analysis of a hot air generator for a building

The paper presents some collective data for analysis of chemical exergy.

	mont
Table. 2.1 Composition of the specified reference environ	писти
	MALOITC.

Substance	Mole fraction	Mass fraction
N ₂	0.7567	0.7401
O ₂	0.2035	0.2275
H ₂ O _{vap}	0.0303	0.0190
CO ₂	0.0003	0.0005
Others	0.0092	0.0129

Thermodynamic analysis of a gas turbine cogeneration plant - a case study

This analysis was done by P S Utgikar an P J Prasada Rao at mechanical engineering department S V regional college of engineering and thchnology, Surat, India, in May 1994.

This was a complete exergy and energy analysis report of a gas turbine cogeneration plant. The capacity of gas turbine was 20 MW and it was run with cogeneration topping cycle. The plant is operating in India and fuelled by heavy oil. The plant performance has been evaluated on the basis of fuel utilization efficiency, power to heat ratio and second law efficiency.

Analysis shows that exergy losses in the combustion chamber of the gas turbine and the heat recovery steam generator with Sankey diagram and Grassmann diagram. The paper presents performance evaluation of the plant with cogeneration system and the results are as follows.

Parameter	Full load	Half load
Fuel utilization efficiency	82.6	79.37
Second law efficiency	0.33	0.16
Power – heat ratio	0.33	0.16
Fuel saving ratio	0.35	0.25
Pay back period (Years)	-	

Table 2.2 Performance evaluation of the gas turbine cogeneration plant

Energy and exergy balance in a gas turbine combustor

This paper was presented by A Datta and K Som at department of power plant engineering, Javapur University, Calcutta, India, in August 1998.

The paper consists of energy and exergy balance in the process of spray combustion in a model tubular gas turbine combustor. A theoretical model of exergy analysis, based on availability transfer and flow availability has been developed to predict the second law efficiency of the combustion process in the gas turbine combustor. The above papers were published in the journal of power and energy during the past years. Mathematical modeling of the gas turbine combustor is presented at the beginning of the paper. The important part is the results and discussion. The paper presents

 Variation of combustion efficiency and second law efficiency with air fuel ratio based on inlet air temperature 600 K and spray angle 80⁰

- Variation of combustion efficiency and second law efficiency with inlet air temperature based on air fuel ratio 60 and spray angle 80⁰
- Variation of combustion efficiency and second law efficiency with fuel spray cone angle based on air fuel ratio 60 and inlet air temperature 600 K

Exergy analysis of solar – assisted heat pump system

The paper was prepared by Murat Tunc, Mithat Uysal and Akif Özmen and published in applied energy journal, Applied Science Publishers Ltd., England, in 1988.

Mathematical modeling based on exergy analysis of a solar assisted heat pump is given in the first part of the paper and variation of exergetic efficiency with collector area is illustrated in the results. Eleven numbers of different systems have been examined and the results are compared.

Exergy analysis of waste emission

The paper was presented by Marc A Rosen and Ibrahim Dencer of department of mechanical engineering, Ryerson Polytechnic University, 350, Victoria Street, Toronto Ont, Canada, and published in international journal of energy research in 1999.

The paper consists of the relations between several measures of environmental impact and exergy analysis is done by comparing current methods used to assess the environmental impact potential of waste emission and the exergy associated with those emissions. A case study on air pollution limits established by the government of Ontario is presented to highlight the information revealed using exergy. Environmental pollution cost from fossil fuel combustion is also presented with the case study.

A new exergoeconomic approach for analysis and optimization of energy systems This paper was presented by B Hua, Q L Chen and P Wang, at chemical engineering research institute, South China University of Technology, in October 1996.

The paper consists of a new exergyoeconomic approach to optimize energy systems. It describes the

- > Exergoeconomic model of a binary subsystem
- > Exergoeconomic analysis and optimization
- Application to optimization of the CGAM problem and results and discussion of the same.

Standard chemical exergy of some elements and compounds on the planet earth

The thesis was prepared by David R Morris and Jan Szargut at department of chemical engineering University of New Brunswick, Fredericton N B Canada.

This is a very valuable document for exergy analysis. The paper presents chemical exergies of 49 elements and some inorganic and organic compounds of those elements. The value for 9 elements are based on the atmosphere as the reference substance, for 27 elements, the values for 27 elements are based on the hydrosphere as the reference substance, the values for 13 elements are based on the lithosphere as the reference substance. Values of the standard chemical exergy of some inorganic compounds in the ideal aqueous solution of unit molarity are also presented.

Exergy – A useful concept

This paper was prepared by Göranwall in Ghalmers University of Technology – Göterborg, Sweden.

The thesis treats the exergy concept and its applications to technical and social systems. This gives the exergy calculation methods, which are based on fundamental theory, and it shows their usefulness in different applications. The paper presents in terms of the conversion of energy and material resources in the Swedish society in 1980. Exergy losses in transformation of material resources and in conversion of various forms of energy into heat are described in detail. A simple method of calculating the exergy of different substances is presented and energy and exergy prices of several common energy forms are compared. Three case studies are included in the paper. One is pulp and paper mill, second one is steel mill and the final case study is Swedish house heating system.

Exergy loss – A basis for exergy taxing

This paper was presented by Gerad Hirs at University of Twente, the Netherlands.

This paper introduces a very special taxing method named Entropy Added Tax (EAT). This is analogous to Value Added Tax (VAT) or Goods and Service Tax (GST). Mainly the paper gives the concept and advantages and disadvantages of EAT.

Entropy Generation Minimization: Ther Method of Thermodynamic Optimization of Finite-Size Systems and Finite-Time Processes

This book was edited by Adrian Bejan, Frank A. Kulacki

This book presents the field of Entropy Generation Minimization (EGM), the method of thermodynamic optimization of real devices. The EGM method also referred to as " thermodynamic optimization," " thermodynamic design," and " finite time thermodynamics" are thoroughly discussed, and the methods applications to real devices are clearly illustrated. This book places EGM's growth in perspective by reviewing both sides of the field engineering and physics. Special emphasis is given to chronology and to the relationship between the more recent work and the pioneering work that outlined the method and the field.

Few publications in international journals and in the Internet are presented above and apart from this there are more research publications and papers in the world. At present more researches are going on in the University of Twente in the Netherlands and in Chalmers University of Technology in Goteborg Sweden. The details of the above are available in the following web sites.

1. www.thw.utwente.nl and 2. www. exergy.se.

The concept of exergy is not new, but within about past fifty years people have used this theory for analyzing and optimizing systems to achieve maximum productivity and efficiency. Systems here refers to both technical and social systems. Exergetic efficiency of many systems are very high in countries like Japan and South Korea and we are in far away and also we have not tried to reach these levels.

Though the exergy concept has been used very vastly in the world there is no single research or publication in our country yet. Unfortunately there are many energy managers who do not know even the word exergy. But we have installed, installing and also we are planning industrial zones, export processing zones, large-scale production plants (eg. steel industries, glass industries, etc.) and various types of power plants. This subject is being introduced into university syllabus and we hope there will be warm-up in the near future.

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

CHAPTER 3

THEORETICAL ANALYSIS

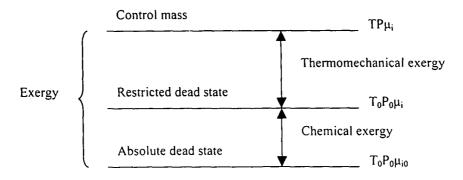
Exergy analysis is based on the second law of thermodynamics according to which complete transformation of heat into work is not possible. Exergy is the maximum work that can be obtained from a given form of energy with reference to the environmental parameters as the dead states. One of the main uses of this concept is in the exergy balance that may be looked upon as an amount of the degradation of energy. The concept of exergy is not new but for a long time it was nearly forgotten but now it is being used in the energy sector due to increasing interest in efficient energy techniques deriving from the problems related to energy use in the society.

This chapter discusses mainly the theories behind the exergy analysis. At the beginning it gives the fundamental concepts behind exergy and then the components of exergy are explained. The formulas for the exergy in fuel, chemical and physical exergy, exergy balance for closed and open systems and exergetic effciency are discussed in the end of the chapter.

3.1 Reference States or Reference Environment

Exergy is not a property of the system but of the system and environment. The environment is the limit to which thermodynamics systems tend towards equilibrium in spontaneous processes. When a system reaches the state of equilibrium with the environment it can no longer produce work that is it does not have exergy.

The reference environment is considered to be so large, that its parameters are not affected by interaction with the system under consideration. It may be used, as the Reference State in the analysis. Depending on the situation the Reference State may be either dead state or restricted dead state as describe bellow.


3.1.1 Restricted dead state

The system in thermal and mechanical equilibrium with the surroundings or environment is said to be restricted dead state. In this state the system is not permitted to mix or enter into chemical reaction with the surroundings and the maximum amount of work obtained is called "Thermomechanical exergy" [24].

The environmental state is defined by the actual pressure and temperature and denoted by P_0 and T_0 . In general, 1 atm and 298.15 K is taken as the restricted dead state and it is always free from internal irreversibilities [24].

3.1.2 Absolute dead state

Absolute dead state is achieved when the system is in thermal, mechanical and chemical equilibrium with the surrounding or environment. Thus the concentration difference between the system at restricted dead state and the surroundings at absolute dead state could be used to produce a certain quantity of work called the "Chemical availability or Chemical exergy" [24]. At this stage there can be no spontaneous change within the control mass or within the environment.

(Subscript i denotes difference chemical species) Fig 3.1 Control mass, dead states and exergy

3.2 Fundamental Concepts

As we discussed earlier the term exergy is defined, as the maximum work potential of a material or form of energy in relation to its environment. This concept is based on the thermodynamic property called entropy and the second law of thermodynamics. Combining the first law and the second law of thermodynamics, Exergy balance is developed.

In the late 1800s Clausius investigated the equilibrium condition for an isolated system. He knew that the total energy of the system was a constant and he wanted to determine whether or not there would be a change of state in the isolated system. He had shown that a change of state might occur but could not formulate a method by which the change could be predicted. If the system is in equilibrium then no change would occur. It could be especially helpful if there was a system property that would denote whether or not the system was in equilibrium.

3.2.1 Clausius inequality

When a system passes through a complete cycle a perpetual motion machine is

University of Moratuwa, Sri Lanka

$$\oint \frac{\delta Q}{T} \le 0$$

possible unless

where δQ represents the energy received in a heat interaction in a part of the system boundary during a portion of the cycle and *T* is the corresponding absolute temperature at that part of the boundary [7]. The integral is to be performed over all parts of the boundary and the entire cycle. The equality sign applies only for internally reversible operations and the inequality sign, in the presence of irreversibilities.

3.2.2 Entropy

Entropy is introduced by showing that for a control mass $\int \frac{\delta Q}{T}$ has the same value between two states when the integral is evaluated for any internally reversible process between the states. This means that the value of the integral represents the difference in some property. This property is called entropy, entropy is denoted by 'S' [7].

3.2.3 Exergy, anergy and energy

As discussed earlier exergy is the maximum work that can be extracted from a given form of energy reference to the environment. The maximum implies that there is some energy that cannot be extracted. Any form of energy can be categorized into two areas, the first part being made up of the convertible forms and the other the unconvertible remainder. The name exergy is for the part consisting of convertible forms and the name anergy for the unconvertible part. All forms of mechanical energy i.e. kinetic and potential energy and mechanical work and also electrical energy consists of pure exergy because they are in principle totally convertible to any other energy form. In contrast internal energy and heat involve both exergy and anergy and the internal energy of the environment consists solely anergy. The higher the proportion of exergy in any form of energy, the more valuable it is from the technical and economical point of view.

3.2.4 Irreversibility

Anergy takes place in any form of heat or internal energy due to system entropy reference to the environment. When the energy is transferring from the form of high temperature to low temperature, the quantity of energy remains constant but the anergy gets increased at low temperature than its initial high temperature state. On the other hand the exergy gets reduced or destroyed. This destruction takes place due to system irreversibilities and irreversibilities are developed due to creation of entropy within the system boundary. At the reference environment or dead state the exergy gets completely destroyed and the system will consist solely anergy or entropy.

The irreversibilities or creation of entropy within the system destroys the exergy and this is caused by

- Temperature difference while transferring heat
- ✤ Free expansion of a system
- Difference of Gibbs energy of the components and the products during a chemical reaction.

3.2.5 1st Law of thermodynamics

Now we realize the concept of exergy and the irreversibility. Technical people and energy managers always think about energy conservation. Do we need to conserve energy, what does the 1st law of thermodynamics say? It says that energy cannot be destroyed and only possibility is to convert it into any other forms. That means energy conversion is possible from form to form or energy transfer is possible from state to state. But according to the 2nd law of thermodynamics the available energy gets destroyed while energy is transferring from state to state. Now we realize that the energy conservation is not needed but exergy conservation is essential.

According to the above definitions the 1st law of thermodynamics can be illustrated as follows.

1st Law : The sum of exergy and energy remains constant during each process[1].

3.2.6 2nd Law of thermodynamics rsity of Moratuwa, Sri Lanka. Electronic Theses & Dissertations

If a process were reversible the exergy would remain constant, if it is irreversible some exergy is converted to anergy, anergy cannot be converted to exergy [1].

3.3 Components of Exergy

Energy is available in different forms and it can be transferred to any other forms in many ways. For example energy is available as work, kinetic energy, potential energy, electricity, heat energy, chemical energy or material stream. In form to form the exergy analysis is different. Exergy can be associated in different forms within single system but the amount of exergy is calculated using different formulas and finally it can be added together to evaluate the total exergy.

3.3.1 Exergy transfer with work interaction

Four types of exergy are associated for work interaction and those are

- Mechanical work
- Kinetic exergy
- Potential exergy and
- Electricity

The exergy transfer with work interaction is associated with work transfer rate or shaft power. Because exergy is defined as the maximum work potential, it is equivalent to exergy in every respect.

(a) Exergy associated with potential energy

The potential energy of a body with respect to an arbitrary level in the earth's gravitational field is fully convertible to useful work.

(b) <u>Exergy associated with kinetic energy for the second </u>

Macroscopic kinetic energy is fully convertible to work only if it's exact distribution in space can be described and quantified.

ww.lib.mrt.ac.lk

(c) Exergy associated with electrical energy

Electrical energy is totally convertible to any other energy form and it consists of pure exergy.

3.3.2 Exergy transfer with heat interaction

Let a control mass initially at the dead state be heated or cooled at constant volume in an interaction with some other system. The heat transfer experienced by the control mass is Q. The subscript zero is denoted the initial state and f denotes the final state. An increase in exergy is realized by heating to increase the temperature from T_0 to T_f or by cooling to decrease the temperature from T_0 to T_f . The exergy associated with the final state equals the maximum work extractable from the combined system of control mass and environment as the mass is returned to the dead state. Then the exergy transfer rate can be calculated by the following formula.

$$\mathbf{E} = \int_{-\infty}^{0} \left(1 - \frac{T_0}{T_f}\right) \mathbf{Q} \cdot d\mathbf{A}$$

Where A is the heat transfer area [1].

3.3.3 Exergy transfer associated with material stream

Kinetic exergy and potential exergy are not much appearing in thermodynamics analysis. So it is neglected in general and major contribution comes from heat energy appeared in different forms. There are two types of heat energy associated in thermodynamics systems and those are

- Heat energy associated in control mass (eg. surface of boiler, steam distribution pipes, hot water tanks, etc.)
- Heat energy associated in material stream (eg. flue gas flow, steam flow, hot air, etc.)

Exergy in material stream is divided into two as follows.

- Physical exergy
- Chemical exergy

(a) <u>Physical exergy</u>

Physical exergy is the work obtainable by taking the substance through reversible processes from its initial state temperature T and pressure P to the state determined by the temperature T_0 and the pressure P_0 of the environment. Physical exergy components can be calculated from the following formula.

$$E_{ph} = (H - H_0) - T_0(S - S_0)$$

Where H is denoted by enthalpy and S is the entropy [27]. The physical exergy can be split into temperature and pressure components and also the pressure component is called the mechanical component. So physical exergy is named thermomechanical exergy.

(b) <u>Chemical exergy</u>

Exergy of a system denotes the maximum work that can be obtained when the system is allowed to come into equilibrium with the surroundings. The state of the surroundings is often called the dead state. Two types of dead states come into play. The system in thermal and mechanical equilibrium or physical equilibrium with the surroundings is said to be in "restricted dead state". In this state the system is not permitted to mix or enter into chemical reaction with the surroundings and the maximum amount of work obtained is called physical exergy or thermomechanical exergy as we discussed above.

The second one called the absolute dead state is achieved when the system is in thermal, mechanical and chemical equilibrium with the surroundings. Thus the concentration difference between the system at restricted dead state and the surroundings at absolute dead state could be used to produce a certain quantity of work called "chemical exergy".

It is important to note that chemical exergy plays a dominant role in exergy analysis in processes involving mixtures of chemical substances or chemical reactions and should not be ignored.

For the calculation of chemical exergy of the reference gases which form together the reference atmosphere, the work for getting the components at the standard pressure from the partial pressure of the Reference State has to be determined. This is done by the following formula.

$$E_{ch} = RT_0 \ln \left(\frac{P_0}{P_{00}} \right)$$

Where $-P_{00}$ is the partial pressure of the components in the Reference State[27].

The above equation can be expressed as

$$E_{ch} = RT_0 y_i \ln(y_i/y_i^e)$$
 [28]

Where

 y_i and y_i^e represent the mole fraction of component i in the mixture and in the environment

3.4 Exergy in Fuels

Consider a chemical reaction of a hydrocarbon fuel of $C_{\alpha}H_{r}$

$$C_{\alpha}H_{\beta} + (\alpha + \beta/4)O_2 \longrightarrow \alpha CO_2 + \beta/2H_2O$$

The component of physical exergy can be obtained from the following formula [27].

$$E_{ph} = \left\{ h_f + \left(\alpha + \frac{\beta}{4}\right) h_{O_2} - \alpha h_{CO_1} - \frac{\beta}{2} h_{H_2O} \right\} (T_0 P_0) - T_0 \left\{ S_F + \left(\alpha + \frac{\beta}{4}\right) S_{O_2} - \alpha S_{CO_1} - \frac{\beta}{2} S_{H_2O} \right\} at(T_0 P_0)$$

The component of chemical exergy can be obtain [27]

$$E_{ch} = R T_0 \ln \left\{ \frac{(y_{O_2})^{\alpha + \frac{\beta}{4}}}{(y_{CO_2})^{\alpha} (y_{H_2O})^{\frac{\beta}{2}}} \right\}$$

Where

 S_{O_2} , S_{CO_2} , $S_{H_{2O_1}}$, S_f , Denotes the entropy of O₂, CO₂, H₂O and fuel respectively h_{O_2} , h_{CO_2} , $h_{H_{2O_1}}$, h_f , Denotes the enthalpy of O₂, CO₂, H₂O and fuel respectively y_{O_2} , y_{CO_2} , $y_{H_{2O}}$, Denotes the mole fraction of O₂, CO₂, and H₂O in the environment respectively

Then the total exergy represent [27]

$$E_{fuel} = E_{ph} + E_{ch}$$

The following component of the physical exergy formula represent the higher heating value of the fuel [27]

$$HHV = \left\{ h_f + \left(\alpha + \frac{\beta}{4}\right) h_{O_2} - \alpha h_{CO_2} - \frac{\beta}{2} h_{H_2O} \right\} \text{ at } \left(T_0, P_0 \right)$$

24

Therefore the exergy formula can be represented as follows [27].

$$E_{fuel} = HHV - T_0 \left\{ S_F + \left(\alpha + \frac{\beta}{4} \right) S_{O_1} - \alpha S_{CO_1} - \frac{\beta}{2} S_{H_1O} \right\} at(T_0 P_0) + RT_0 \ln \left\{ \frac{\left(y_{O_1} \right)^{\alpha + \frac{\beta}{4}}}{\left(y_{CO_2} \right)^{\alpha} \left(y_{H_1O} \right)^{\frac{\beta}{2}}} \right\}$$

Or using standard chemical exergy it can be represent as follows [27].

$$E_{fuel} = HHV - T_0 \left\{ S_F + \left(\alpha + \frac{\beta}{4} \right) S_{O_2} - \alpha S_{CO_2} - \frac{\beta}{2} S_{H_2O} \right\} at \left(T_0 P_0 \right) + \left\{ \alpha E_{CO_2}^{ch} + \frac{\beta}{2} E_{H_2O}^{ch} - \left(\alpha + \frac{\beta}{4} \right) E_{O_2}^{ch} \right\}$$

3.5 Exergy Balance for Total System

It can be defined two types of systems in thermodynamic analysis. Those are

- Closed systems
- Control volumes

3.5.1 Exergy balance for closed system

$$E_{2} - E_{1} = \int_{1}^{2} \left(1 - \frac{T_{0}}{T_{B}}\right) \delta Q - \{W - P_{0}(V_{2} - V_{1})\} - T_{0}\sigma$$
Where $\int_{1}^{2} \left(1 - \frac{T_{0}}{T_{B}}\right) \delta Q$ - Exergy transfer accompanying heat $W - P_{0}(V_{2} - V_{1}) - T_{0}\sigma$
To σ - Irreversibility due to internally entropy generation [27]

3.5.2 Exergy balance for control volume

$$E_{2} - E_{1} = \int_{1}^{2} \left(1 - \frac{T_{0}}{T_{B}}\right) \delta Q - \{W - P_{0}(V_{2} - V_{1})\} + \sum m_{i}a_{ji} - \sum m_{e}a_{je} - T_{0}\sigma$$

Where $\sum m_e a_{fe}$ - Total input exergy

$$\sum m_i a_{ji}$$
 - Total output exergy [27]

3.3 Exergetic Efficiency

Engineers frequently use efficiencies to judge the performance of devices and processes. Many of these expressions are based on first law of thermodynamics or

energy efficiencies. Also useful are measures of performance that take into account limitations imposed by the second law of thermodynamics. Efficiency based on second law analysis is named second law efficiency or exergetic efficiency. The exergetic efficiency is a very useful measure for the thermodynamic quality of a technical process. This efficiency can be defined in different ways and the most useful definition is as follows [22].

$$\psi = \left(\frac{\text{Exergy out in products}}{\text{Exergy inpput to the system}}\right)$$

3.4 Cost of Steam

Cost of steam is calculated based on the prices of input materials, operation & maintenance costs and the steam production. If the boiler efficiency is around 80% - 85%, it can be obtained about 12.5 kg to 13.5 kg of steam burning one kg of furnace oil when it is operated at 10 barg. As we discussed earlier energy is vastly degraded or destroyed within the boiler due to temperature difference between the combustion mixture and the steam. Therefore the cost of steam based on rational efficiency is much higher than its cost based on energy efficiency. Exergy is the theoretically usable energy and comparing with energy analysis exergy based costing is very essential to get the actual picture of any thermal system.

The exergy-based unit cost of steam can be calculated by using the following formula [27].

$$C_{s} = \frac{C_{f} \{m_{f}a_{f}\} + C_{w}m_{w}a_{w} + C_{e}a_{e}}{m_{s}a_{s}}$$

Where

m_fa_f - Exergy of fuel input

 $m_s a_s$ - Exergy output through steam

a_e - Exergy of electricity input

m_wa_w - Exergy input through feed water

 C_w - Cost of feed water C_e - Cost of electricity C_f - Cost of fuel C_s - Cost of steam

3.5 Radiation and Convection Losses in Cylindrical and Flat Surfaces

There are few empirical formulas for calculation of convective heat transfer of a heat body and the following formulas [42] are used for this analysis. Radiation heat transfer is taken from the Stefan Boltzman formula.

$$Q = UA(T_s - T_a)$$
$$U = U_R - U_C$$

Where

U - Overall heat transfer coefficient
 U_R - Radiative heat transfer coefficient and
 U_c - Convective heat transfer coefficient

$$U_{R} = \sigma \xi \frac{\left(T_{s}^{4} - T_{a}^{4}\right)}{\left(T_{s} - T_{a}\right)}$$

Where σ - Stefan Boltzman constant

 ξ - Emissivity of the surface

 T_{c} - Surface temperature of the body

 T_a - Ambient temperature

$$U_{\rm C} = \frac{{\rm B}({\rm T}_{\rm S} - {\rm T}_{a})^{0.25}}{{\rm D}^{0.25}}$$

Where D - Length of the significant dimension of the structure (mm)

B - Constant depending on structure geometry

Values of B & D for some common surfaces [42].

Surface	D	В
Vertical planes & large cylinders	Height	1.35
Horizontal planes facing upward	Side	1.35
Horizontal planes facing downward	Side	0.60
Horizontal cylinders and small vertical cylinders	Diameter	1.15

Table 3.1 Values of B and D for some common surfaces

.

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

28

.

CHAPTER 4 METHODOLOGY

Mode of collection of data and measurements and their accuracy are very important considering the final results of any analysis. It was used very accurate instruments for collection of measurements and it was taken nearly one year's time for the measurements in various industries and those are presented in the appendices. To evaluate the exergy balance, the method is to calculate the exergy input and output separately, so that it is necessary to collect all the inputs and outputs of the system separately.

This chapter presents the method of selection criteria of the sampling size and the type of the samples, instruments used and specimen calculation for one set of sample. The measurements were taken from the industries and samples were selected according to the type of industries, configuration of boilers, size of the boilers and types of the burners.

4.1 Data Collection

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

There are about 1600 furnace oil fired boilers operating in Sri Lanka in different capacities in various industries. Mainly the boilers are used for process heating and very little in power generation in Sri Lanka. The measurements were taken in these industries and incorporated to the analysis.

Boiler tuning and flue gas analysis is one of the major activities of Energy & Environmental Management Centre of the NERD Centre. It was completed over 100 numbers of individual exercises during the year 2000 and 2001 and these data was taken for this analysis. The sampling size is 100 and the sample was decided based on the following factors.

- Different industries
- Different loads
- Different types of burners
- > Different types of boiler configurations, etc.

4.1.1 Different industries

There are various types of industries and manufacturing organizations in Sri Lanka and out of them the data were collected from the following industries.

- Consumer product manufacturing
- > Food and beverages manufacturing
- Tobacco processing
- Textile and textile processing
- Latex and rubber products manufacturing
- Manufacturing of paper products

4.1.2 Different loads

There is not much effect to the operation of the boilers depending on the type of industries but the capacities of the boilers vary according to the steam requirements, which is mainly dependent on the process. In some industries the specific thermal energy contribution to the product is very little compared to material and other costs involved. Component of the fuel cost is not highlighted compared to the others in the annual reports. Due to these reasons, people are not much worried about the operation and maintenance of boilers and thus the losses can be considerably high.

Process steam requirements are varied due to type of the product and also due to size of the process plant. Therefore it was greatly helpful to select the boilers in different capacities by selecting different types of industries. Depending on the output, the fuel consumption and the size of the burners and boilers vary. Due to these reasons the amount of losses in the areas such as blowdown, surface emission, flue gas, etc. vary very much. In some industries the boilers are not fully utilized due to high capacities of the boilers comparing to the process requirements. Therefore the frequency of the on and off operation is high. Due to these reasons the overall efficiencies get reduced and ultimately output gets reduced.

4.1.3 Configurations of boilers

There are about 1600 numbers of steam boilers operating in industries in Sri Lanka and over 80% consume furnace oil as their fuel. Therefore this study has focussed mainly for furnace oil fired boilers but the calculation procedures are common to any type of fuel.

Boilers are categorized into two main groups according to their configuration. Those are

- 1. Water tube boilers
- 2. Fire tube boilers

Water tube boilers are mainly used in power generation processes.

There are few water tube boilers operating in Sri Lanka for power generation and processes requirements. Two nos. of 83 MWe water tube boilers are operating in Kelanithissa power plant and it is run with furnace oil of viscosity 1000 sec. and the generation capacity of the power plant is 50 MWe. Four numbers of water tube boilers are operating in Pelwatta and Sewenagala sugar factories and these are fueled with both baggase and furnace oil and those are operating for both power generation and process heat applications.

Seven numbers of water tube boilers are operating in Kabool Lanka, Thulhiriya for process heating and out of them one is operating with saw dust and others are operating with furnace oil. Two numbers of water tube boilers are operating in the Nestle factory, Pannala, only for process heating and the capacities are 10 ton each and both the boilers are fuelled with furnace oil too. Apart from these few water tube boilers operating in the field, there are few in different capacities, and are mainly in garment industries.

Fire tube boilers are common in Sri Lanka and widely used in the industries for process heating applications and operating in below 20 barg. Most of the boilers are operating in 10-barg pressure and there are few numbers operating in 17 barg and 20 barg. Furnace oil is the common fuel being used in the field, firewood and sawdust are used in few boilers. One boiler is operating with producer gas which is taken from the output of the charcoal gasifier in Bieco – Link factory Griulla and another one is

being converted to producer gas in a DC mill named S A Silva and Sons in Loluwagoda. In addition to this there operate few boilers below 5 barg in par-boiling industries and paddy husk and firewood are the major fuels for these.

4.1.4 Different types of burners

Whatever the configuration of boilers the combustion is mainly dependent on the type of fuel and the type of burners. As it was discussed earlier furnace oil is the major energy source for boilers in Sri Lanka. Furnace oil is available in different viscosity in the country and it varies from 500 Redwood sec. to 3500 Redwood sec. Common types in the market are 500 sec, 800 sec, 1000 sec and1500 sec. Whatever the fuel viscosity the heat capacity is in a constant range and the average HHV is 43 MJ/kg [35].

(a) <u>Furnace oil combustion</u>

Furnace oil is categorized according to the type of viscosity and the furnace oil 1000 Redwood sec and 1500-sec are widely used in Sri Lanka. Before the combustion, fuel should be atomized. Proper atomization is a must to make a proper air-fuel mixture and there are three major types of fuel atomization. Those are

- Rotary cup atomization,
- Pressure jet atomization
- Twin fluid atomization.

(b) Rotary cup atomization

A cone type cup is rotated with high speed (around 3000 – 5000 rpm) horizontally and the fuel is supplied inside the cup. Due to the high speed the fuel is slipped to the tip of the cup. High velocity air is blown through the outer surface of the cup and this air takes the fuel at the tip of the cup and gets atomized. After atomization the fuel is fired by external sources and secondary air is supplied to the flame separately for proper combustion.

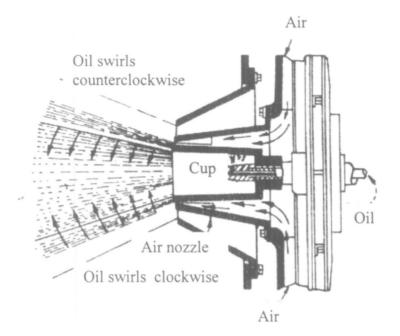


Figure 4.1 Rotary cup burner

The following parameters mainly affect the combustion in rotary cup burners.

- Fuel preheating temperature
- > Quantity and the velocity of the primary air
- > Speed and the subface condition of the rotary cup
- > Rates of fuel supply to the cup, etc.

Fine adjustments are essential in the above area to achieve better performance of the combustion and there is possibility to adjust all the parameters above in this type of rotary cup burners.

(b) Pressure jet atomization

Fuel is pressurized upto about 300 to 400 psi and blown through a small orifice to the atmosphere. Due to the sudden change of pressure the fuel gets expanded at the atmosphere and separated into particles. This is named pressure jet atomizing. The viscosity of the fuel is maintained by preheating the fuel and the average viscosity of the fuel that should be maintained is in the range of 100 sec [31] when atomizing. The equivalent preheating temperature to maintain the viscosity is varied with the type of fuel. As an example furnace oil 1000 sec should be preheated upto around 100 $^{\circ}$ C and it is around 115 $^{\circ}$ C for furnace oil 1500 sec [31].

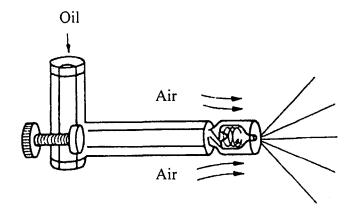


Figure 4.2 Pressure jet atomizer

Atomizing depends on the fuel pressure, viscosity and the condition of the nozzle in these type burners. Fuel pressure can be controlled easily by regulating the fuel pump and viscosity can be maintained uniformly keeping the fuel preheating temperature in a constant range. But the conditions of the nozzles get varied in time to time while the burner is in operation. Therefore frequent replacements of the nozzles are necessary in these burners. Therefore the atomization of this type burners are far limited.

(c) Twin fluid atomization

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Twin fluid atomizers are designed to spray a mixture of oil and air or a mixture of oil and steam. The fuel is generally introduced into the high velocity air stream in discrete jets. These are based on the spray nozzle that has emerged as the most popular mechanism of oil droplet preparation. These customarily operate with oil pressure less than 100 psi and more often less than 30 psi. The air pressure may vary from 3 - 15 psi in the medium air pressure, it may be 15 psi or more in high air pressure burners. The dry steam pressure may vary from 25 - 175 psig. The nozzles get wear frequently in this type of burners too. But by regulating the other parameters such as fuel preheating temperature, fuel pressure, compressed air pressure, etc. the combustion efficiency can be maintained at higher levels.

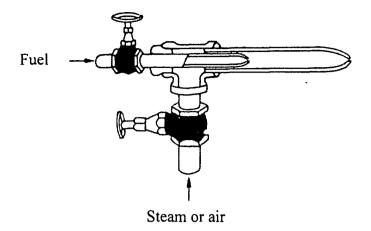


Figure 4.3 Twin fluid atomizer

In addition to the proper atomization the correct air-fuel ratio is needed for proper combustion. If the air supply is less, the fuel gets burnt partially and if the air supply is high, complete combustion occurs, but higher amount of exergy gets wasted through the flue gas. Therefore it is essential to maintain the correct amount of combustion air to achieve maximum possible efficiency.

The smoke number (opacity or suspended particulate matter) in the flue gas is a parameter that can decide the condition of the combustion. If the smoke number is zero, it implies that the combustion is complete and if it is greater than zero the combustion is incomplete. All the measurements for this analysis were taken when the smoke number was zero.

4.1.5 Fuel consumption

Steam flow meters are not installed in most of the boilers in Sri Lanka and only indicator is the fuel consumption. Unfortunately fuel is also not metered in most organizations but the daily consumption is available by measuring the level difference of stock tanks. Therefore the hourly consumption is predicted through these figures and taken for the analysis.

4.2 Sampling Size

The sampling size of this analysis is 100 and it was selected as mentioned above. If the sampling size is large the accuracy of the results is high, but there are limitations to collect information from the samples.

- The instruments are limited in Sri Lanka for analysis of boilers and also those are very expensive, mainly the flue gas analyzers. The hiring facilities are available but due to the above reasons, the per-day chargers are also high. Therefore collecting the measurements is impossible without having financial support.
- 2. Energy & Environmental Management Department of the NERD centre is involved in boiler tuning and flue gas analysis in industries. So the data of boiler and flue gas analysis were collected from the E&EMC of the NERD centre. The E&EMC of the NERD centre carries out flue gas analysis only on request of the management of industries. Therefore limited numbers of analysis are carried out per year and thus the sample size was limited up to 100.

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations

www.lib.mrt.ac.lk

4.3 Instruments Used

4.3.1 Flue gas analyzer

Flue gas analyzer is equipped with Electro chemical type sensors, which are calibrated at the factory.



Figure 4.4 Flue gas analyzer

In addition to that on line calibration facilities are available in each sensor. Ambient O_2 concentration, which is equivalent to 20.9% by volume is taken as reference point for calibration of O_2 sensor and 0 % by volume for other sensors such as CO, NO, NO_2 and SO_2 .

 Make - Kane May International Limited Swallowfied, Welwyn Garden City, Hertfordshine AL71JG, England
 Model - KM 9106
 SR Number - 52698311

4.3.2 Other instruments used

• Digital thermometer with thermocouples

Ì.

- Infrared thermometer
- Measuring tapes
- Conductivity meter

Kane International Limited Kane House • Swallowfield • Welwyn Garden City • Hertfordshire AL7 1jG • England Telephone +44 01707 375550 • Facsimile +44 01707 393277

ANALYSER CALIBRATION REPORT

<u>Instrument</u> :	КМ9106	<u>Serial No</u> :	52698311
			•••••••••••••••••••••••••••••••••••••••

Parameter(s)	Sign		Instrument		Equipment
	Inpu		Reading(s)		
Temperature	0	°C	- 6. 9		Temperature Simulator
	100	°C	99.6		ЕН/Т/109
Ē	1000	°C	-149.2		
Oxygen (O ₂)	0	%	ει		Using CO test gas
	5.09	%	52		BOC Alpha standard gas
Carbon Monoxide (CO)	0	ppm	C		In ambient air
	990	ppm	990		BOC Alpha standard gas
Nitrie Oxide (NO)	0	ppm	C		In ambient air
	1006	ppm	ensity 2 2 6 million	a, Sri Lank	BOC Alpha standard gas
Sulphur Dioxide (SO ₂)	0	ppm	r.lib.n C t.ac.lk		In ambient air
	1560	ppin	1560		BOC Beta standard gas
Nitrogen Dioxide (NO ₂)	0	ppm	C		In ambient air
-	180	ppm	1.30	1	BOC standard certified gas
Hydrocarbon	0	%	N/F		In ambient air
(Methane)	2.6	%	N/F		BOC standard certified gas
Pressure	0	mBar	N/F		Dead weight tester
	100	mBar	N/F	•	EX/C/100
Carbon Monoxide (CO)	0	%	N/F		In ambient air
[6CO]	3.58	%ο	N/F	1	BOC standard certified gas
Measured Flow Rate	ltrs/r	nin	2.1	1	TL529
Measured Pump Suction	mB	ar	593		EX/C/147

Signed: Ø.Nutt

Calibration Results		
lest Method:	Temperature: The temperature input is subjected to a known and traceable voltage simulating a thermiscouple input. The references voltages are taken from International Tables - B84937 (1973).	
	Gas: The gas input is subjected to a known and traceable value of a Certified gas mixture	
	Pressure: The pressure input is subjected to a known and traceable pressure using a dead weight tester	
Measurement L'ocertziaties:	The uncertainty assigned to the above measurements is PC for temperature, $\pm 2\%$ for gas measurements and 0.05% for pressure	

4.4 Method of Analysis

Exergy inputs and exergy outputs of each boiler were estimated by using standard exergy formulas. Both chemical exergy and physical exergy were considered for this analysis. All the formulas and method of calculations is presented in the chapter 3. Exergy inputs of a boiler take place through fuel, feed water, combustion air and electricity (blowers, feed water pumps, fuel preheating, etc.). Steam is the useful exergy output and exergy gets lost through the other areas such as flue gas, blow down, surface emission, etc. Ash production is very much less in furnace oil fired boilers compared to the other fuels such as saw dust, wood, paddy husk, etc. Thus the losses in this are is neglected. If the combustion is incomplete the unburnt carbon particles are emitted through the flue gas or can deposit inside the boiler tubes. Considerable amounts of exergy can be wasted in this mode. But all the measurements were taken when the smoke number was at zero and it can be assumed that the combustion is complete.

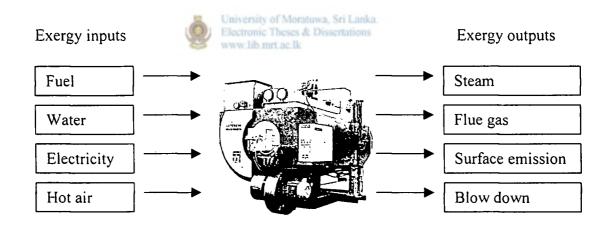


Figure 4.5 Exergy input and exergy output streams of boiler

4.5 Case Study Analysis - Boiler System

4.5.1 Data and measurements

(A) <u>Data</u>

Boiler make	-	Danks of Netherton
Capacity	-	5448 kg / hr at 150 psi
Burner control	-	Modulate automatic control pressure jet atomize

(B) <u>Measurements</u>

Fuel used	- Furnace oil 1000 sec.
Fuel consumption	- 5270 lt. / day (5005.68 kg/day)
Water consumption	- 65700 lt. / day
Power consumption of blown motor	- 5.5 kW
Power consumption of fuel pre heating	ng system
	- 12 kW
Consumpation air	- 1.38 m ³ /sec. @ 30°C

Consumption air Water treatment cost Flue gas temperature - 12 kw
- 1.38 m³/sec. @ 30°C
- Rs. 1150 / day
- 241°C

Table 4.1	Average	flue gas	measurement
-----------	---------	----------	-------------

Parameter	Measurements
Oxygen percentage	7.8
CO ₂ percentage	10.0
CO percentage	0.0275
SO ₂ percentage	0.077
NO percentage	0.032
NO ₂ percentage	Negligible
Flue gas temperature ⁰ C	241
Excess air percentage	60

.

i. Details of water

Parameter	TDS ppm	Hardness ppm
Feed water	72	44
Makeup water	96	54
Boiler water	1500	less than 4

Table 4.2 Water quality data

ii. Boiler dimensions

Length	-	15'
Diameter	-	8'

iii. Surface description

Table 4.3 Surface temperatures of boiler

Parameter	Surface Color	Surface Temperature (⁰ C)
Cylinder	Light blue	37
Back side	Silver	96
Burner side	Electronic Th Silver sectations	160

Fuel oil pre heating temp	- 120°C
Fuel pump pressure	- 20 bar
Feed water temperature	- 80°C

iv. Feed water treatment cost

Feed water treatment cost	- Rs. 1150.00 / day
---------------------------	---------------------

4.5.2 Composition analysis of fuel

Percentage composition of fuel (Gravimetric basis)

С	=	84.0
Η	=	14.0
S	=	2.0

4.5.3 Calculation

(a) <u>Calculations of exergy input to boiler</u>

i. Exegry in fuel

Composition weight basis

C - 84.0 H - 14.0 S - 2.0 Composition of the elements in mole basis C - 84/12 = 7H - 14/1 = 14

S - 2/32 = 0Combustion reaction (Stoichiometric)

 $(C_7H_{14} + 0.0625 \text{ S}) + 10.5625 \text{ O}_2 \longrightarrow 7\text{CO}_2 + H_2\text{O} + 0.0625\text{SO}_2$

= 0.0625

Exergy of fuel can be divided is to two parts

i. Chemical exergy

ii. Phiysical exerge or flow exergy

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Chemical exergy

$$E_{fuel} = HHV - T_0 \left\{ S_F + \left(\alpha + \frac{\beta}{4} \right) S_{O_2} - \alpha S_{CO_2} - \frac{\beta}{2} S_{H_2O} \right\} at(T_0 P_0) + \left\{ \alpha E_{CO_2}^{ch} + \frac{\beta}{2} E_{H_2O}^{ch} - \left(\alpha + \frac{\beta}{4} \right) E_{O_2}^{ch} \right\}$$

Applying the above equation to stoichiometric combustion equation

$$E_{fuel} = HHV - T_0 \{ S_F + 10.5625S_{02} - 7S_{C02} - 7S_{H20(1)} - 0.0625S_{S02} \} + 7E^{ch} + 7E^{ch} + 0.0625E^{ch} - 10.5625E^{ch} = 43.7 \times 10^3 \times 100 - 25 \{ 360 + 10.5625 \times 205.03 - 7 \times 213.69 - 7 \times 69.95 - 0.0625 \times 130 \} + \{ 7 \times 19870 + 7 \times 900 + 0.0625 \times 313400 - 10.5625 \times 3970 \} E_{fuel} = 44.797 MJ / kg of fuel$$

Physical exergy

 $E = (h - h_o) - T_o (S - S_o)$

Fuel comes to the boiler at $T = 30^{\circ}C$ and heated up to $120^{\circ}C$ heating is done by electrical heaters. So will take $T = 30^{\circ}C$ for exergy calculation and electrical load will add separately.

Enthalpy of fuel

$$(h_2 - h_1) = (h_{30} - h_{25})$$

= $C_p \Delta T$
= $C_p (303 - 298)$
= 1.2×5
= 6 KJ/ Kg

Entropy change between 30°C and 25°C is negligible

 \therefore Physical exergy = 6 kJ/kg of fuel

Total exergy input through fuel = 44.797 MJ/ kg of fuel

ii. Exergy of the feed water

Exergy of water also can be divided in to two categories Chemical exergy Physical exergy

Chemical exergy

 $e^{ch}_{H2O(1)} = 900 \text{ kJ / k mole} [28]$ = 50 kJ / kg

Physical exergy

 e^{ph} = (h - h_o) - T_o (S - S_o)

Water input to the boiler at $T = 80^{\circ}C$

$$(h - h_0) - T_0(S - S_0) = (h_{80} - h_{25}) - 25(S_{80} - S_{25})$$

= (334.9 - 104.8) - 298(1.075 - 0.367)
= 19.61 kJ/kg
Total exergy $e^{ch} + e^{ph} = 50 + 19.61$
= 69.12 KJ/kg
= 189.2 MJ/hr

iii.

Exergy in combustion air

Physical exergy

 $(h - h_{o}) - T_{o}(S - S_{o})$

Combustion air supply at $T = 30^{\circ}C$

= $(h_{30} - h_{25}) - 25(S_{30} - S_{25})$ = (130.26 - 128.34) - 537(0.60296 - 0.59945) Btu/lb = 0.082 KJ/kg = 0.395 MJ/hr

iv. Exergy in electricity input

Fuel preheating-12 kWBlower-5.5 kWWater pumping-7 x 1/3 kW

(The pump is operate 1/3 of full operating period)

Total - (12 + 5.5 + 7/3) x 3600 kJ/ hr i Lanka - 19.83 x 3600 kJ/ hr ib mr ac ik

- 342.2 kJ / kg of fuel

(b) <u>Calculation of exergy outputs</u>

i. Exergy loss through Boiler cylinder surface

$$U_{\rm R} = 5.57 \times 10^{-8} \times 0.92 \frac{310^4 - 303^4}{(310 - 303)}$$

= 6.00 W/m²K

$$U_{C} = B \frac{(T_{s} - T_{a})^{0.25}}{D^{0.25}}$$
$$= \frac{1.2 (310 - 303)}{2438.4^{0.25}} e^{0.277} W / m^{2} K$$
$$U = 6 + 0.277$$

$$= 6.277 \text{ W} / \text{m}^2$$

Qcylinder

= UA (
$$T_s - T_a$$
)
= 6.277 x 21.35 (310 -303)
= 938 W
= Q (1 - T_o/T)

Exergy

 $= Q (1 - T_0/T)$ = 938 (1 - 25/37) = 304.2 W

Similarly

Exergy loss through burner side surface

= <u>1418.5 W</u>

Exergy loss through back side surface

= <u>1504.5 W</u>

Total surface loss = 304.2 + 1418.5 + 1504.5 = 3227.2 W 55.69 kJ/kg of fuel Descriptions

ii. Exergy loss through boiler flue gas

Parameter	Composition Mole basis	Composition Weight basis	Percentage weight
O ₂	7.8	249.6	8.27
CO ₂	10.0	440.0	14.69
со	0.0275	0.77	0.025
SO_2	0.078	4.99	0.166
NO	0.023	0.69	0.023
N ₂	82.07	2297.96	76.75

Table 4.4 Stack composition in dry basis

Flue gas temperature - 241 °C

Percentage carbon in dry flue gas	= $14.69 \times 12/44 + 0.025 \times 12/28$ = $4.0 + 0.011$ = 4.01%
Percentage carbon in fuel	= 84%
∴ Weight of dry flue gas	= 84/4.01
	= 20.95 kg/ kg of fuel

 \therefore Corresponding fuel for the above flue gas

i

 \therefore Corresponding H₂0 Production

= $10 H_2O$ mole

 \therefore Mole fraction of elements in flue gas.

...

Parameter	Electro mole es & Dis	Mole fraction (%)
O ₂	7.8	7.1
CO ₂	10.0	9.1
СО	0.0275	0.025
SO ₂	0.078	0.071
NO	0.023	0.021
N ₂	82.07	74.61
H ₂ O	10.0	9.1
Total	110.0	100

Table 4.5 Mole fraction of stack composition

iii. Calculation of chemical exergy in flue gas

$$e^{ch} = RT_{o} \{ 7.8 \ln X_{O2}/X^{e}_{O2} + 10 \ln X_{CO2}/X^{e}_{CO2} + 10 \ln X_{H2O}/X^{e}_{H2O} + 0.0275 \ln X_{CO}/X^{e}_{CO} + 0.078 \ln X_{SO2}/X_{SO2} + 0.023 \ln X_{NO}/X^{e}_{NO} + 82.07 \ln X_{N2}/X^{e}_{N2} \}$$
(Refer chapter 3 for original formula)

= 8.315 x 298 { 7.8 ln 0.071/ 0.2035 + 10 ln 0.091/ 0.0003 + 10 ln 0.091/ 0.0303 + 0.0275 ln 0.0025/ 0.00025 + 0.078 ln 0.0071/7.75 x 10⁻⁷ + 0.023 ln 0.0021/1.26 x 10⁻⁶ + 82.07 ln 0.746/0.7567} = 147662.74 kJ/ 142.91 kg of fuel = 1033.26 kJ / kg of fuel

iv. Physical exergy in flue gas

$$(h - h_{o}) = (h_{241} - h_{25})$$

$$= 7.8(h_{241} - h_{25})_{02} + 10(h_{241} - h_{25})_{02} + 10(h_{241} - h_{25})_{802} + 0.0275(h_{241} - h_{25})_{N0} + 80.73(h_{241} - h_{25})_{N2}$$

$$= 7.8 \times 65232 + 10 \times 8939 + 10 \times 7422 + 0.0275 \times 6350 + 80.73 \times 6326 + 0.078 \times 9420 + 0.023 \times 6488$$

$$= 5081.8 \, \text{KJ/kg of fuel.}$$

$$T_{o}(S - S_{o}) = T_{o}(S_{241} - S_{25})_{02} + 10(S_{241} - S_{25})_{02} + 0.023(S_{241} - S_{25})_{00} + 82.07(S_{241} - S_{25})_{02} + 0.023(S_{241} - S_{25})_{N0} + 82.07(S_{241} - S_{25})_{N2} \}$$

$$= 298 \{ 7.8(221.5 - 205.1) + 10(236.1 - 213.8) + 10(207.6 - 188.8) + 0.0275(213.6 - 197.7) + 82.07(207.5 - 191.6) + 0.078(23.5) + 0.023(16.3) \}$$

$$= 3850.3 \, \text{kJ/kg of fuel}$$

$$Total exergy output through flue gas = e^{th} + e^{ph}$$

$$= 1231.5 \, kJ/\text{kg of fuel}$$

v.

Exergy loss through blow down

Percentage blow down = $(B \times M)$ (A - B)

Where

A - Maximum TDS maintained, ppm

B - Feed water TDS, ppm

 M - Percent makeup water expressed as a percentage of total evaporation (total evaporation - condensate return)

Percent blow down	=	5.04% of steam production
Feed water input	=	Steam production + blow down
	=	65700 kg/ day

let steam production be - \aleph

 $\aleph + \frac{5.04}{100} \aleph = 65700$

Amount of blow down

Physical exergy of blow down water

= $(h - h_o) - T_o(S - S_o)$ = $(763 - 104.8) - 298 \times (2.138 - 0.367)$ = 130.44 kJ/kg= 17153.12 kJ/hr= 82.25 kJ/kg of fuel.

= 2606 kg/ hr = 131.5 kg / hr

Let flash steam generated due to blow down be χ

 $\therefore 131.5 \times 336.4 = \chi \times 1052.3 + (131.5 - \chi) \times 40.94$ $\chi \times 1011.36 = 138 (336.4 - 40.94)$ $\chi = <u>38.42 \text{ kg/hr}$ </u>

Chemical exergy of flash steam.

$$e^{ch}$$
 = 900 kJ / K mole [28]
= 50 kJ / kg

 e^{ch} = 50 x 38.42 = 1921 kJ/ hr = 13.4 kJ/ kg of fuel

Total Exergy

 $= e^{ch} + e^{ph}$ = 1921 + 17153.12 = 19.0 MJ / hr = 133.5 kJ/kg of fuel

vi. Exergy out put in steam

Steam Production $= \frac{65700}{24} - 131.5$ = 2606.5 kg/hr $= (h - h_{o}) - T_{o}(S - S_{o})$ = (112778 - 104.9) - 298 (6.586 - 0.3674) = 819.95 kJ / kg = 2137.22 MJ / hr. Steam of the second second

Total Exergy of steam

 $e^{ch} + e^{ph} = 130.3 + 2137.22$ = 2267.5 MJ/hr

(c) <u>Results</u>

i. Exergy input

Table 4.6 Exergy inputs to the boiler

Parameter	Exergy in kJ / kg of fuel	Exergy in MJ / hr
Fuel	44797.00	9344.84
Water	907.15	189.2
Combustion air	1.89	0.395
Electricity	342.20	71.38
Total	46048.24	9605.82

ii. Exergy output

Parameter	Exergy in kJ / kg of fuel	Exergy in MJ / hr
Steam	16842.64	2267.5
Blow down	179.5	19.0
Flue gas	2348.19	489.76
Boiler surface	55.69	11.62
Total	19426.00	2787.88

Table 4.7 Exergy output from the boiler

Exergy destroyed	= exergy in - exergy out
	= 9605.82 - 2787.88
	= 6817.94 MJ / hr
Percentage exergy c	lestroyed
	= 6817.94 / 9605.82
	= 70.97 %
Exergy efficiency	$= \frac{2267.5}{9605.82}$
	= 23.6 %
Exergy based costin	ng of steam
C _F	= <u>Cost of fuel</u> Exergy in fuel
	= 16.5/44797
	= 0.036 Cts/kJ
` Cw	
Water trea	atment = 1.75 Cts/kg
Capital co	= 0.02 Cts/kg
Total cost	= 1.77 Cts/kg
Total salary =	25500 Rs / Month (3 Operators + 1 Forman)
_	25 50 Dc/br

= 35.50 Rs/hr

Unit cost of electricity

= Rs. 7.00 (Including unit charge, fixed charge, demand charge and taxes)

$$C_E$$
 = 7.00 Rs / kWh
= 0.194 Rs / kJ

Cost of steam

 $C_{s} = [0.036 \times 9344.84 \times 10^{3} + 1.77 \times 2737.5 + 0.194 \times 71.38 \times 10^{3} + 35.50] / 2267.5 \times 10^{3}$

= 1.57 Ctc/ MJ of steam

(c) <u>Energy Balance</u>

i. Energy input to the boiler

Fuel	=	208.6 kg /hr
	=	208.6 x 42.6
	=	8886.36 MJ/hr

- Water Temp @ 80°C University of Moratuwa, Sri Lanka, Electronic Theses & Dissertations $= \frac{65700}{24} \times 4.192 \times (80 - 30)$ = 573.78 MJ/hrElect $= 19.83 \times 3600 \times \text{ kJ/hr}$
 - = 71.38 MJ/hr
- ii.

Energy output from the boiler

Surface loss = (938 + 1918 + 5012) W= 7868 W = 28.32 MJ/hr

Stack loss = 23.2 kg/hr of fuel= 23.2 x 1.50 x (241 - 30)= 5.38 MI/kg of fuel

$$= 1123.0 \text{ MJ/kg of Iden}$$

Blow down loss

From earlier figures

Percentage of blow down Q	 = 5.04 % of Steam production = 131.5 kg/hr = 131.5 (Δh) = 131.5 (336.4 - 40.94) = 91.4 MJ/ hr
Energy of Steam	= $2606 \times \Delta h$ = 7249 MJ/hr
Miscellaneous	= 1039.8 MJ/ hr
η	= Energy in useful product Energy input
	=7249
	(8886.36 + 573.78 + 71.38)
	= <u>76.34 %</u>

1. . . 1. . .

iii. Energy based costing of steam Cost of fuel Cost of fuel Energy in fuel

> = 16.5/42600= 0.038 Cts/kJ

Water treatment cost	= 1.75 Cts/kg
Capital cost	= 0.02 Cts/kg
Total cost	= 1.77Cts/kg

Total salary	=	25500 Rs / Month	(3 Operator	+	1 Forman)
	=	35.50 Rs/hr				

Unit cost of electricity	=	Rs. 7.00	(Including unit charge, fixed charge,
			demand charge and taxes)

= 7.00 Rs / kWh= 0.194 Rs / kJ

=
$$(0.038 \times 8886.36 \times 10^3 + 1.77 \times 2737.5$$

+ $0.194 \times 71.38 \times 10^3 + 35.50) / 7249 \times 10^3$
= $0.049 \text{ Cts} / \text{kJ of steam}$

(d) <u>Summary</u>

┍╼╶┲ ╴┍╺╧┊╪┊┊╞┍┍ ┲┲┲┲ <mark>┙┙┍┲┲┲</mark> ┲┲ <mark>┙┙┍┲┲</mark> ┲┲┲	rgy and energy balance of th	and the second
Description	Exergy balance	Energy balance
	(MJ / hr)	(MJ / hr)
Input		
Fuel	9344.84	8886.36
Water	189.2	573.78
Combustion air	0.395	-
Electricity	71.38	71.38
Output		
Surface loss	11.62	28.32
Stack loss	489.76	1123.00
Blow down	University of M.9:0wa, Sri Lanka. Electronic Theses & Dissertations	91.40
Steam 🦉	www.lib.mrt2267.5	7249.00
Miscellaneous	-	1039.8
Exergy destroyed	6817.94	0

Table 4.8 Exergy and energy balance of the boiler

Description	Exergy balance (MJ / hr)	Percentage share
Input		
Fuel	9344.84	97.280
Water	189.2	1.970
Combustion air	0.395	0.004
Electricity	71.38	0.746
Output		
Surface loss	11.62	0.12
Stack loss	489.76	5.10
Blow down	19.0	0.20
Steam	2267.5	23.60
Exergy destroyed	6817.94	70.98

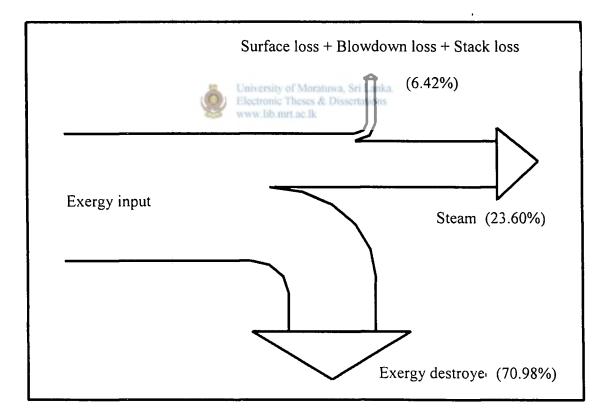


Fig 4.6 Sankey diagram for exergy balance of the boiler

•

Energy Balance

Description	Energy balance (MJ / hr)	Percentage share
Input		
Fuel	8886.36	93.23
Water	573.78	6.01
Combustion air	-	-
Electricity	71.38	0.75
Output		
Surface loss	28.32	0.29
Stack loss	1123.0	11.78
Blow down	91.4	0.96
Steam	7249.0	76.05
Miscellaneous	1039.8	10.92

Table 4.10 Energy balance of the boiler

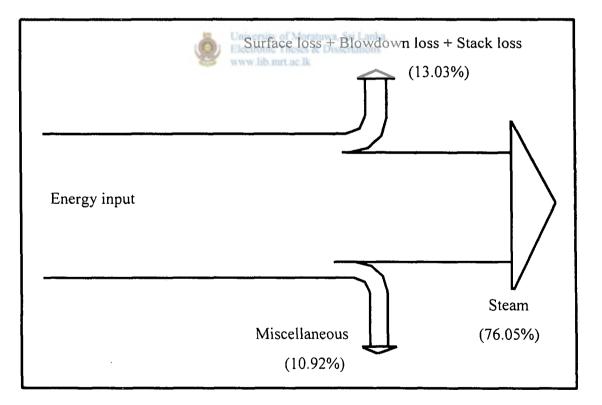


Fig 4.7 Sankey diagram for energy balance of the boiler

CHAPTER 5 ANALYSIS OF RESULTS

Steam is the useful product that is given by the boiler. The output of boiler varies from boiler to boiler and it depends on the efficiency of the system. Efficiency means both energy and exergetic efficiency. The efficiencies very due to the losses, which occur in the following areas.

- Blow down
- Surface emission
- Flue gas loss
- Exergy destruction

According to the details given in 4.5 in the previous chapter, calculations were performed for 100 numbers of boilers and the results are tabulated in the appendices.

The exergy losses, which occur through blow down, surface emission, stack emission and exergy destruction are discussed in the first part of the analysis.

- > Variation of exergy loss with TDS of blowdown water,
- > Variation of exergy destruction with exergy loss in flue gas,
- Variation of exergy destruction with flue gas temperature at different exces air levels,
- Variation of percentage exergy loss in flue gas with flue gas temperature at different excess air levels

are looked into in this chapter.

In addition to the variation of exergy losses of the system, the second part of the chapter discusses about the exergy efficiency of the boiler and variation of exergy efficiency with flue gas temperature at different excess air levels and energy efficiency. Comparison of cost of steam with exergy efficiency, variation of CO_2 emission with exergy and energy efficiency and variation of CO_2 emission with percentage flue gas losses are discussed at the end of this chapter.

5.1 Exergy Losses through Blowdown

Blowdown is needed to maintain the required total dissolved solids (TDS) level in a boiler. Maintaining TDS level is essential to achieve the maximum efficiency. The boiler tubes will be covered with scales, when the TDS level becomes high in boiler water and the result is poor heat transfer. Due to this reason stack temperature will increase and ultimately the exergy losses will increase.

If the rate of blow down is increased to reduce the TDS in boiler water, the sludge formation on the fire tubes will be reduced, but ultimately more exergy loss will occur through blowdown. Therefore blowdown should be controlled to minimize the exergy loss. TDS of feed water varies from place to place in Sri Lanka and generally TDS of boiler water should be maintained between 3000 - 3500 ppm [17] in package type low-pressure boilers.

In addition to the TDS, hardness of the feed water should be maintained in the minimum level possible. Normally softeners are maintained to control the hardness in feed water. However reference to the analysis the percentage exergy losses through the blowdown vary from 0.2000 the to 0.2000 and 1000 numbers of samples and the mean value is 0.09 %.

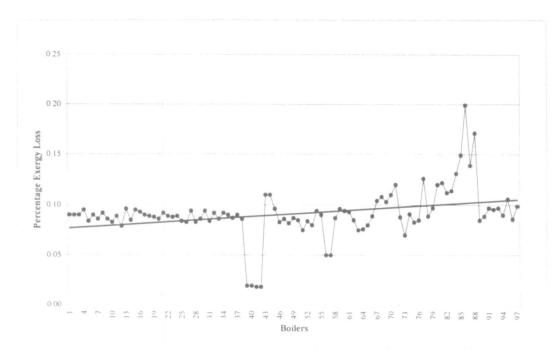


Figure 5.1 Variation of percentage exergy loss in blow down

According to Fig 5.1 the percentage blowdown loss is almost constant in each boiler. There are two extreme points in the fig 5.1. The percentage exergy loss of one set of sample is at 0.02%. This is because of the less amount of TDS present in boiler water. The condensate is totally collected to the feed water tank in this steam network and makeup water consumption is very small and TDS of feed water is maintained at low level. Thus the blowdown rate is very small and exergy loss is minimum. Maintaining this condition is possible if the total system consumes steam indirectly. But most of the plants consume both direct steam and indirect steam together. Due to this reason makeup water is taken to the boilers and TDS level of the boiler water is significant and the average blowdown loss is in the range of 0.09%. Comparing the abovementioned situation (collection of condensate totally) there is an average exergetic efficiency improvement potential of 0.07%. In addition to the direct improvement of the exergetic efficiency, the lifetime of the boiler also gets improved due to maintaining of water quality in a better range. But this area is not properly evaluated yet. The percentage exergy loss in the other extreme point is around 0.2% and this is because of maintaining TDS in feed water at higher levels (around 2800 ppm). By maintaining water quality in a better range it can minimize the exergy losses. The

recommended values of different parameters are given in the following table.

water and boller water [15]			
Parameter	Amount		
Boiler water			
Total Desolved Solid (TDS) -ppm	3500		
Hardness – mg / l	1000		
рН	10 – 11		
Feed water			
Total Desolved Solid - ppm	50		
Hardness – mg / l	10		
pH	8.5 - 9.5		

Table 5.1 Recommended levels for different parameters in feed

water and boiler water [13]

By maintaining the above figures, the rate of blowdown can be maintained in the range of 1.5 % of total steam production and the resultant exergy loss is 0.08 %.

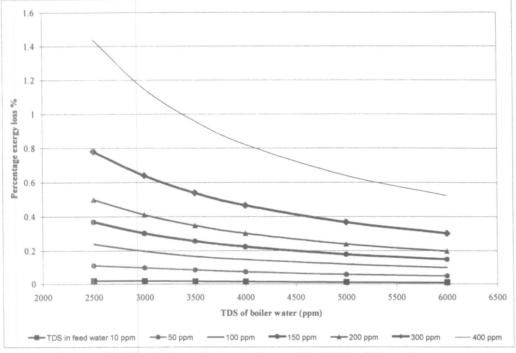


Figure 5.2 Variation of exergy loss with TDS of blowdown water

The above figure 5.2 gives the Variation of Moratuwa, Sri Lanka. Variation of exergy loss with amount of TDS level present in the boiler water. Reference to the figure, both the exergy and energy losses are reduced with increase of TDS level and the rate of reduction also gets reduced with increase of amount of TDS. In addition to that the exergy losses are always less than the energy losses.

5.2 Exergy Losses Through Surface Emission

Radiation and convection are the two modes that create surface losses. The emission through these two modes depends on the surface temperature, surface area, condition of the surface and wind velocity. In general, boilers are operated inside a boiler room and the average wind velocity is almost constant everywhere and it is around 1.5 m/s. The surface area depends on the capacity of the boiler but the surface condition (the surface emissivity) is almost constant and in average the surface emissivity is in the range of 0.85 [35]. Figure 5.3 below shows the variation of exergy loss through the surface emission. The percentage exergy loss varies between 0.05% and 0.94 % and in average the variation is almost constant and it is around 0.3% of the total.

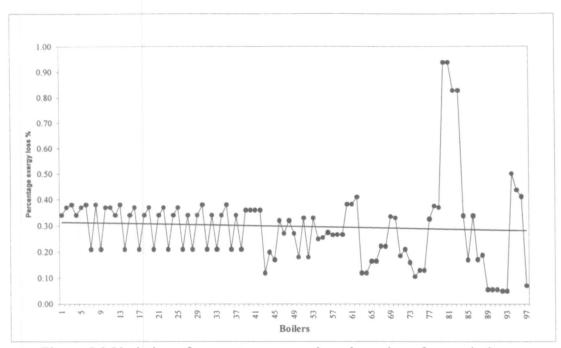


Figure 5.3 Variation of percentage exergy loss through surface emission

There are possibilities to reduce the existing exergy loss through the surface emission by reducing the surface temperatures of the boilers. It is better if it is possible to bring the surface temperature closer there insulation cost will get increased while reducing the surface temperature. Therefore there should be a compromise between these two factors and as a rule of thumb it can be said that the surface temperature should be in the range of 50 ^oC more than the ambient. By maintaining these figures the exergy loss can be reduced up to 0.05 %.

5.3 Exergy Losses in the Flue Gas

Flue gas losses depend on the temperature and the level of excess air. The exergy in flue gas is calculated using the following formula.

$$E_{x} = (H - H_{0}) - T_{0}(S - S_{0}) + a^{ch}$$
$$a^{ch} = RT_{0} \sum y_{i} \ln \left\{ \frac{y_{i}}{y_{i}^{e}} \right\}$$

 $y_i y_i^e$ represents the mole fraction of the species in the flue gas and the environment respectively.

When the level of excess air in the flue gas is fixed then the mole fraction remains constant. Therefore the chemical exergy in flue gas also remains constant. If we plot the exergy loss of flue gas with temperature while the excess air level remaining constant, the plot will follow the pattern identical to variation of enthalpy & entropy with temperature.

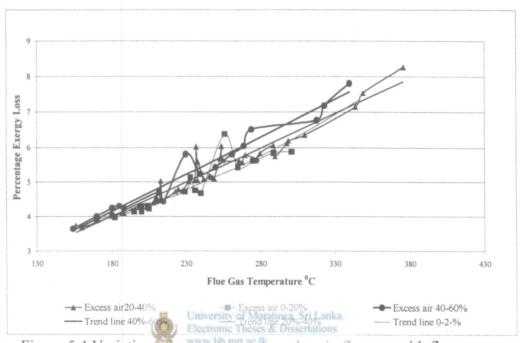


Figure 5.4 Variation of percentage exergy loss in flue gas with flue gas temperature at different excess air levels

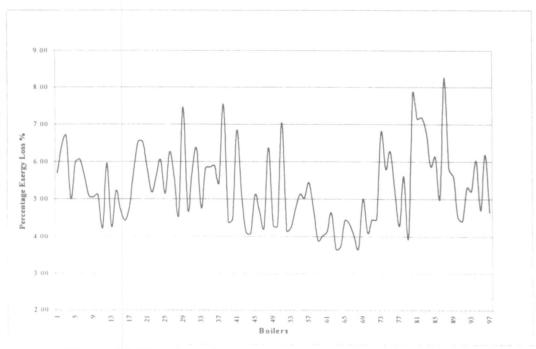


Figure 5.5 Variation of percentage exergy loss in flue gas

According to the measurements taken from the industries the flue gas temperature varies between 160° C and 349° C. The excess air level varies between 4.5% and 194%. The exergy loss of the flue gas varies between 3.65% & 8.27% and the average is 5.31%. All the variations are given in the following figures graphically.

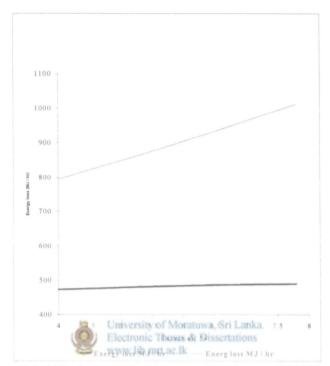


Figure 5.6 Variation of exergy and energy loss in flue gas with excess air at constant flue gas temperature

Reference to the figure 5.6 given above the exergy loss gets increased with increase of excess air level but the variation is very, very small. That means the increase of excess air is not much affected to the thermodynamics irreversibilities associated in the flue gas.

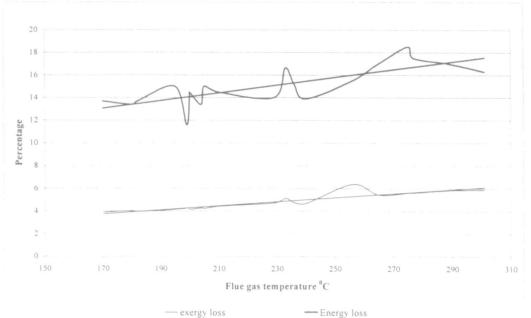
Quality of the flue gas is a measure of the combustion and the heat transfer. If the flue gas temperature is high more exergy is lost through the stack. Excess air is essential for proper combustion but again exergy loss occurs with increase of the amount of excess air. The recommended excess air level for an oil-fired boiler is in the range of 17 % to 22 % [31]. This amount is mainly provided

- 1. To achieve proper combustion
- 2. To maintain proper turbulence inside the combustion chamber and fire tubes.
- 3. To maintain an even flame.

The flue gas temperature gets increased due to

- Poor heat transfer (The heat transfer gets reduced due to scale or soot formation in the boiler tubes)
- 2. High excess air

3. Combustion of higher amount of fuel oil than the rated allowable limit. Therefore by implementing a proper operation and maintenance program, the flue gas temperature can be maintained at a low level. But the temperature reduction should be limited to 180 $^{\circ}$ C [13]. This limit is named the acid dew point and below this limit H₂SO₄ will form due to condensation of SO₂ present in the flue gas. H₂SO₄ acid is a heavily corrosive media and it will badly affect the stack and its accessories.


According to this there should be an optimum limit for flue gas parameters in oil fired boilers.

- 1. Flue gas temperature 180^oC [13]
- 2. Excess air level 17 % 22 % [31]

The equivalent O_2 concentration is 3.5 % - 4.0 %. If the combustion is complete the equivalent CO_2 concentration is 13.25 % - 12.9 % and the reference other parameters

are as follows.

CO	ppm	-	50
NO	ppm	-	310
NO_2	ppm	-	0
SO ₂	ppm	-	970

Reference to the above parameters the exergy loss in the flue gas becomes 3.4 % in any steam boiler and it is not dependent on the capacity of boilers.

The figure 5.7 and 5.8 give the variation of exergy loss and energy loss with flue gas temperature at constant excess air level.

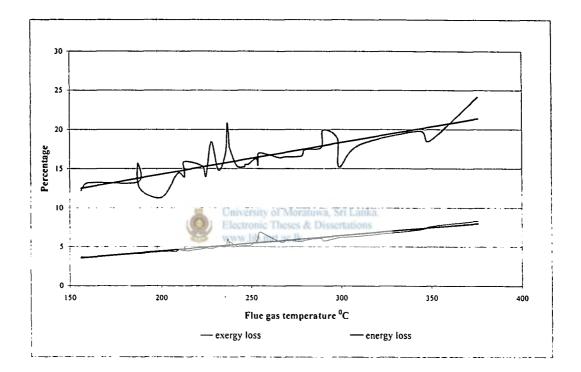
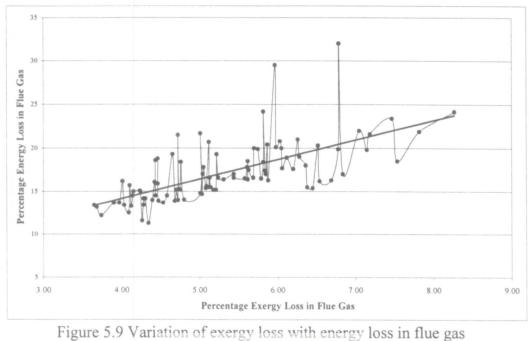
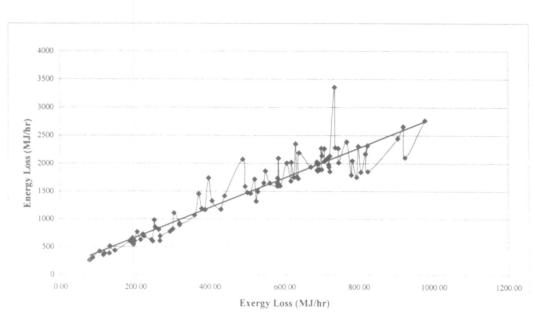



Figure 5.8 Variation of energy and exergy loss in flue gas with flue gas temperature at excess air 20-40%

Reference to the above figures the exergy loss is always less than the energy loss. The rates of increase of exergy loss with increase of flue gas temperature is also less than the proportional increase of energy loss. It is clear that the increase of flue gas temperature does not much affect the rate of thermodynamic irreversibilities associated with the flue gas. But the effect is significant.


Variation of exergy loss with energy loss in flue gas follows a linear relationship. Exergy loss is always lower than its energy loss and approximately energy loss is three times greater than the exergy loss in terms of MJ. The following figures illustrate the variation pattern.

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

The approximate variation can be given by the following formula.

Energy loss = 2.7 x Exergy loss + 132

Percentage energy loss = 2.3 x Percentage Exergy loss + 5.2

Figure 5.10 Variation of exergy loss with energy loss in flue gas

5.4 Exergy Destruction

Exergy means the maximum work potential that can be extracted from a given system. Comparing the same energy quantity at the high and low temperature, the work potential or the exergy gets reduced with reduction of temperature from high range to low range. In a boiler system this situation always happens.

The exergy of input fuel is at a higher level, the temperature of the combustion products is in the range of $1200 \ ^{0}C[36]$ and the energy in this mixture transfers to steam which is in low temperature. Mainly low-pressure boilers are operated in 10 barg and the equivalent steam temperature at this pressure is $180^{0}C$ [35]. There is a rapid temperature reduction in this process and due to this reason exergy is destroyed rapidly. Apart from the temperature variation, the irreversibilities in combustion reaction also cause exergy destruction.

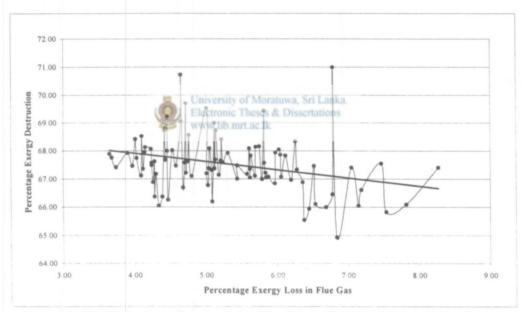


Figure 5.11 gives the variation of exergy destruction with percentage exergy losses in flue gas. Reference to the figure the exergy loss through the flue gas gets reduced with increase of percentage exergy destruction. The previous analysis gives that the percentage exergy losses through the blowdown and surface emission is very small and is in a constant range. When the flue losses are low, that means there are more exergy remaining in the combustion chamber to transfer to steam. While transferring exergy from combustion products to steam, exergy gets destroyed rapidly due to sudden temperature reduction between the two states. If the flue losses are high, less

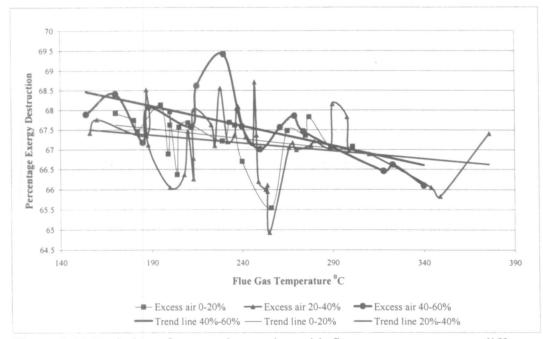


Figure 5.12 Variation of exergy destruction with flue gas temperature at different excess air levels

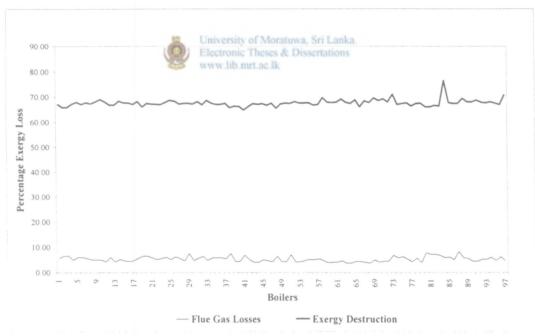
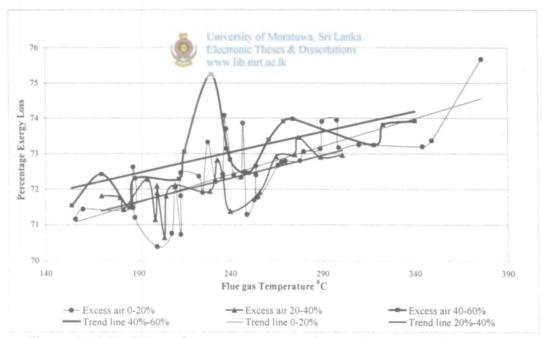
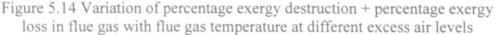


Figure 5.13 Variation of percentage exergy destruction and percentage exergy loss in flue gas

amount of exergy transfers to steam and thus the exergy destruction is less, but the exergy loss at the flue is high. Reference to these there are limitations to get the maximum exergetic efficiency.


According to the above figures the percentage exergy destruction gets reduced with increase of flue gas temperature and also the exergy destruction increases with


increase of excess air while the flue gas temperature is constant. This phenomenon gives a very good result.

- 1. Exergy destruction gets reduced with increase of flue gas temperature.
- Exergy destruction gets increased with increase of amount of excess air at constant flue gas temperature and this effect is reduced with increase of flue gas temperature.
- 3. The level of excess air does not affect the exergy destruction when the flue gas temperature is around 310°C and beyond this limit the exergy destruction gets reduced with increase of excess air.

Therefore the amount of excess air is very important in exergy analysis of boilers and should be maintained at the minimum possible limit.

Though the exergy destruction gets reduced with increase of flue gas temperature the combined loss of exergy destruction and exergy loss through flue gas gets increased and also it increases with increase of excess air. The variation is given in the following figure.

5.5 Exergetic Efficiency

Efficiency is the measure of system performance. The ratio between useful output to total input is taken as the efficiency. Considering a steam boiler the real output or the useful output is given through the steam, and flue gas, blow down and surface emission are the other outputs, which are present as losses. The inputs are given through fuel, electricity, feed water, combustion, etc. In general efficiency means the energy efficiency. As mentioned earlier, the ratio between the quantity of energy stored in the steam and energy inputs through number of input streams gives the efficiency. In average the energy efficiency is in the range of 80 % - 85 % [31] for package type low-pressure boilers.

Exergy means the real work output that can be extracted from a given form of energy. According to this analysis the work output of the steam is in a very low level compared to the work input. Therefore the exergetic efficiency is very low comparing the energy efficiency in package type low-pressure steam boilers.

According to the 1st law of thermodynamics energy is always conserved. The input energy is always equal to the outputs. Therefore one can make a balance between input and output energy. But in the case of exergy analysis inputs are not equal to the outputs. Exergy exists in steam, blow down water, flue gas and surface emission. Compared to the input exergy, the quantity of output exergy is less. That means some amount is disappeared. This destruction takes place due to generation of entropy within the system and this reaction is named exergy distruction.

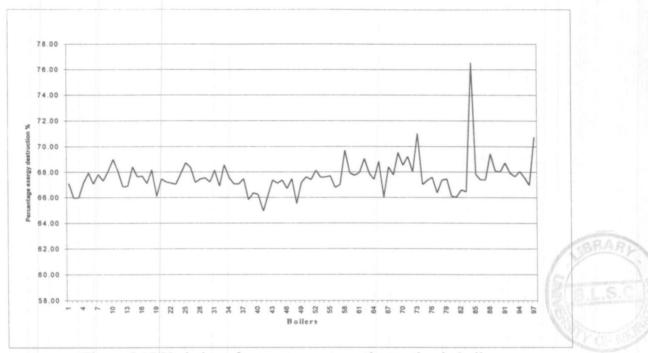
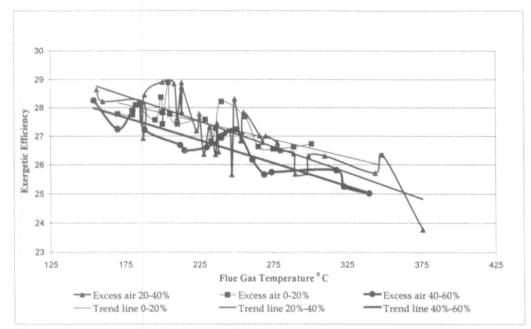
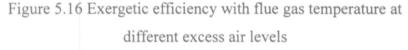
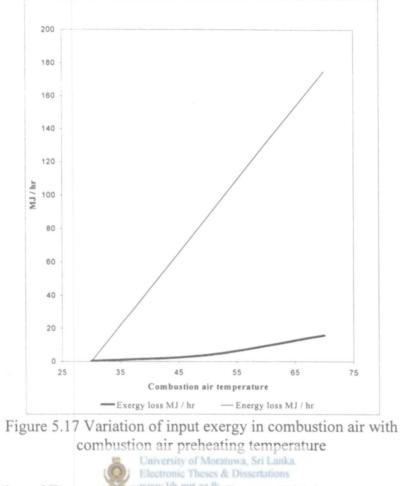




Figure 5.15 Variation of percentage exergy destruction in boilers

Exergy destruction is mainly dependent on the temperature difference between the combustion mixture and the products. Steam temperature gets varied with variation of the steam pressure and this malysis is based on 10 barg steam. The steam temperature is 180 $^{\circ}$ C at 10 barg [35] and the temperature of the combustion mixture is in the range of 1200 $^{\circ}$ C [36]. Due to these temperature variations the average exergy destruction is in the range of 67.63 % in package type low-pressure steam boilers. The average exergy loss through the flue gas is 5.31 % and it is in the range of 0.39 % for both surface emission and blowdown. Depending on the above figures the average exergetic efficiency becomes 26.6 % in most of the boilers. The analysis gives that the exergetic efficiency varies between 17.12 % and 28.9 %. Out of them 96 % are operating between 24.5% and 28.9 %. The average is 26.89 %.



According to this analysis the minimum possible exergy losses in a boiler should be within the following limits.

Percentage exergy loss through blowdown	-	0.08 %
Percentage exergy loss through flue gas	-	3.4 %
Percentage exergy loss through surface emission	-	0.05 %

With reference to these limits the percentage exergy destruction is 67.1 % and the exergetic efficiency is 28.0 %. This is the maximum possible exergetic efficiency that can be taken by maintaining the optimum running condition in a boiler.

Apart from the above, the efficiency can be increased by preheating the combustion air before feeding to the combustion. According to Figure 5.17 below the amount of contribution to the exergetic efficiency is very small. But the contribution amount to the energy efficiency is significant.

5.6 Variation of Exergetic Efficiency with Energy Efficiency

Reference to the following figure 5.18, it is clear that there is a relationship between energy efficiency and exergetic efficiency.

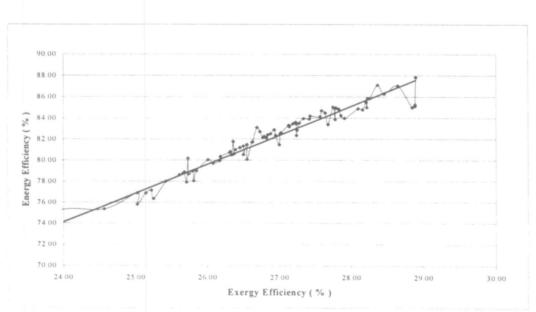


Figure 5.18 Variation of exergetic efficiency with energy efficiency of boilers

With increase of exergetic efficiency, the energy efficiency also gets increased, and the relationship can be illustrated by the following formula.

$$\varepsilon = 0.36 \eta + 3.0$$

Where, ε – Exergetic efficiency η – Energy efficiency

5.7 Cost of Steam Vs Exergetic Efficiency

Cost analysis is very essential in any system. The specific cost of any product is a measure of the system performance and also it is helpful to compare the existing system with others.

The variation of specific cost of steam with exergetic efficiency is illustrated in the following figure. Reference to the figure the specific cost of steam gets reduced with increase of exergetic efficiency. That is due to increase of output with increase of exergetic efficiency. The steam cost varies between 1.36 Rs./MJ and 1.78 Rs./MJ based on the exergetic efficiency and the average is 1.49 Rs./MJ. The equivalent average cost of steam based on energy efficiency is 0.52 Rs./MJ. This implies that the Cost of steam based on energy efficiency is approximately three times higher than the cost of steam based on energy efficiency. The cost of steam is based on the number of input parameters as describe bellow.

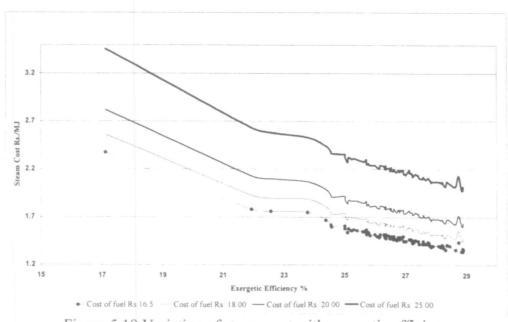


Figure 5.19 Variation of steam cost with exergetic efficiency

5.7.1 Type of fuel

Various types of fuel are used in steam boilers. Furnace oil, diesel, firewood, saw dust, bagasse, paddy husk and electricity are widely used in Sri Lanka. Furnace oil is the most popular fuel for steam boilers and very little quantity of coal is used in steam engine operated locomotives in Sri Lanka. As far as the world is concerned, coal and LNG are widely used in steam generation.

Calorific values of fuels vary with the type of fuel. As an example the higher calorific value of the furnace oil is in the range of 43 MJ/kg [35] and it is 19.5 MJ/kg for dry sawdust. The efficiency of boilers also varies with the type of fuels due to variation of combustion properties. The overall energy efficiency of the furnace oil fired package type boilers are in the range of 80 % - 85 % [31] and it varies between 60 % - 70 % [31] in wood or saw dust fired low pressure steam boilers.

The configuration of the burners also varies with the type of fuel and due to this reason the combustion properties get varied. The prices are also different from type to type and the prices mainly depend on the availability and transportability. Therefore it is clear that the cost of steam varies with the type of fuel.

Electronic Theses & Dissertations www.lib.mrt.ac.lk

5.7.2 Cost of electricity.

Electricity is widely used in the area of fuel pre-heating, fuel atomizing, air blowing and water pumping in steam boilers. Apart from that very little quantity is used in the control unit. Fuel is pressurized through an electrically operated fuel pump in pressure jet atomizing burners and the rotary cup is driven by an electric motor in rotary cup atomizing burners. Generally compressed air is used in twin fluid atomizing burners and the compressors are energized by electricity.

The cost of electricity mainly depends on the following.

- Tariffs system
- Energy consumption
- Amount of self-generation, etc.

(a) <u>Tariff system</u>

At present the Ceylon Electricity Board has introduced seven numbers of tariff systems for industries in Sri Lanka. The customer can select one of them and basically the selection is carried out according to the energy consumption. Industrial time of day tariff charges according the peak and off peak consumption and industrial purpose I_2 , I_3 , S_2 and S_3 have fixed rate charge per unit consumption. Apart from that demand charge and monthly fixed charge is included to the electricity bill and the rates are different from tariff to tariff.

(b) <u>Electricity consumption</u>

The electricity consumption pattern and the quantity are different from organization to organization. Some factories are operated 24 hours and some are operated during the daytime only. The unit charge for peak hours is higher than the off peak hours in time of day tariff. In Earlier days the peak hour consumption was met by the self-generation in most of the organizations due to less generation cost. At present the unit costs for both self-generation and peak hour grid electricity are almost equal due to higher fuel prices. A fixed charge is included in any type of tariff system and depending on the number of unit consumed the amount contribution to the unit cost from fixed charge varies. The maximum demand varies due to both power factor and unit consumption and this amount also contributes to the unit cost.

As far as the average unit cost is concerned, it varies from organization to organization. Therefore the average cost of grid electricity was taken for this analysis as Rs. 5.70 per kWh.

5.7.3 Cost of water treatment

Boiler water treatment can be separated into two main categories.

- a. Primary treatment
- b. Feed water treatment

(a) <u>Primary treatment or pretreatment</u>

Water is taken from different sources. Rivers, wells, ponds, lakes, rain etc. are the main sources in Sri Lanka and the water is in different qualities in each source.

Depending on the quality of water it should be treated upto recommended conditions before used. This is called the primary treatment or pre treatment.

(b) Boiler feed water treatment

Pre treated water also contains dissolved or suspended impurities, which may cause trouble. Concentrations of impurities in fresh water vary from about 30 to over 2000 parts per million.

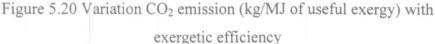
The principal substances are calcium and magnesium carbonates and sulphates, and in smaller amounts, silicon salts. Salts of sodium, potassium, aluminium, iron and manganese may be present, and both mineral and organic acids too.

The carbonates and sulphates mentioned above cause temporary and permanent hardness. They have the characteristic of reacting with soap to form insoluble curds, inhibiting its detergent effect. Both precipitates as scale when heated, carbonate scale being softer and more like sludge than sulphates scale. Silica produces a very hard complex scale, which is very difficult to remove. Other materials may increase the scale bulk by entrainment. This may lead to the composition of complex scales or sludge deposits.

Dissolved oxygen or CO_2 may cause corrosion in the boiler water, excessively high alkalinity, dissociation of steam in contact with hot surfaces and acid water. Both oxygen and carbon dioxide are highly soluble in cold water.

It is recognized that the presence of contaminants will promote carry-over. Total solids, alkalinity and organic matter are all important. Any increase, which leads to support film formation, will greatly increase the tendency of moisture to carry over with the steam either continuously in small quantities or intermittently in large quantities.

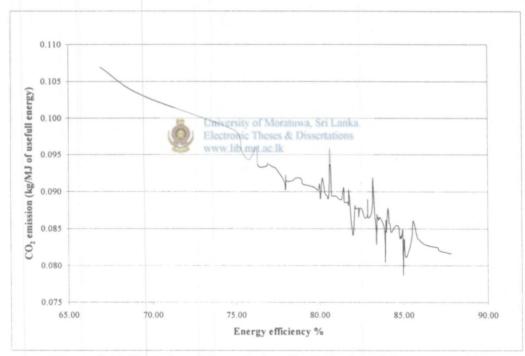
Because of the above facts it is always necessary to treat the water further before using to generate steam.

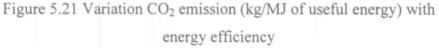

Water treatment cost is mainly dependent on the quality of water and type of chemical used. If the quality is so bad the amount of chemicals needed is high and the result is higher water treatment cost. There are different types of chemicals in the market in different brands and the cost varies from type to type. In addition to the above the transport cost of water or the pumping cost and the maintenance cost of these equipment are incorporated to the cost of water treatment. Therefore evaluation of water treatment cost is very complex and it varies from organization to organization. So, an average figure was estimated and introduced to the analysis.

In addition to the cost of water treatment, life cycle cost of the plant, operation and maintenance cost, etc. should be incorporated. But these figures also vary with type of equipment, output, operation and maintenance, etc. Unfortunately I was not possible to collect the data to evaluate the above figures in this analysis.

5.8 CO₂ emission Vs Exergetic Efficiency.

Exergetic efficiency is mainly dependent on the exergy destruction and exergy losses through the flue gas. As we discussed earlier exergy destruction occurs due to rapid temperature reduction between the combustion products and steam. Exergy loss through the flue gas mainly depends on the excess air and the flue gas temperature. If the excess air level is high the exergy loss is also high and it leads to reduce exergetic efficiency. If the combustion of fuel is complete the amount of CO_2 emission gets increased but ultimately the efficiency is increased. According to the figure below the CO_2 emission (kg/MJ of useful exergy) is reduced while the exergetic efficiency is increased. This shows that the increase of steam output is higher than the amount of CO_2 emission with respect to the increase of exergetic efficiency.


The relationship between exergetic efficiency and the CO_2 emission can be given by the following formula.


CO_2 emission (kg/MJ of useful exergy) = 6.5 / ε

Where ε - Exergetic efficiency of the boiler

5.9 CO₂ emission Vs Energy Efficiency

According to the previous analysis, the energy efficiency of a steam boiler is higher than its exergetic efficiency. Therefore the specific CO_2 emission reference to the useful energy (kg/MJ of useful energy) is very much less than the specific CO_2 emission reference to the useful exergy.

The pattern of the variation of the CO_2 emission with energy efficiency is the same as its variation with exergetic efficiency. But the relationship is somewhat different and can be illustrated as follows.

CO₂ emission (kg/MJ of useful energy) = 9.2 / η

Where η – Energy efficiency of the boiler

According to the previous analysis it is clear that the variation pattern of specific CO_2 emission with exergetic efficiency and energy efficiency is similar to the variation pattern of specific steam cost with exergetic efficiency.

5.10 CO₂ emission Vs Percentage Exergy Loss in Flue Gas

Amount of CO_2 emission is equivalent to the amount of fuel used in the burner. According to the following figure the specific CO_2 emission reference to the steam output is getting increased with increase of percentage exergy loss in flue gas.

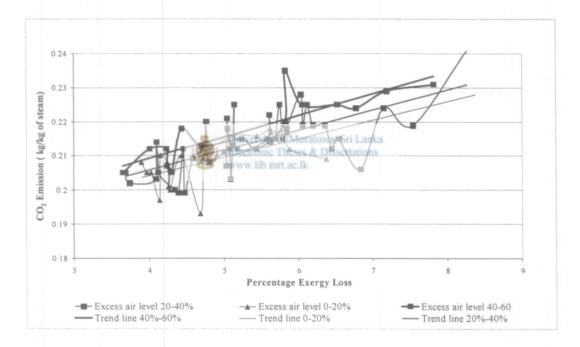


Figure 5.22 Variation of CO₂ emission with percentage exergy loss in flue gas at different excess air level

Due to the increase of exergy loss, the exergetic efficiency gets reduced and the steam output will be reduced.

Apart from that, the figure 5.22 indicates that the specific CO_2 emission reference to the steam output is getting increased with increase of excess air while the percentage exergy loss remaining constant. Reference to the exergy analysis to keep the flue gas loss at constant level, it is necessary to reduce the flue gas temperature while increasing the excess air. That means there is an inverse relationship between flue gas temperature and excess air when the flue gas loss is constant. However, according to the figure 5.22 CO_2 emission (kg/h of steam) is getting increased with increase of excess air at constant flue loss. Reference to the previous analysis the exergy loss through the blow down and the surface emission is in a constant range. To increase the specific CO_2 emission (kg/kg of steam), the only possibility is to reduce the exergetic efficiency, but the exergy losses through surface emission, blow down and flue gas are constant at this instance. Therefore the exergy destruction has to be increased. Reference to this the following results can be predicted.

- 1. To maintain the exergy loss through flue gas in constant level, the temperature of flue gas should be reduced while increasing the excess air.
- 2. The exergy destruction will increase with increase of amount of excess air while the exergy loss through the flue gas remaining constant.
- 3. Exergy losses through flue gas get reduced with reduction of both flue gas temperature and excess air.

CHAPTER 6

EXERGETRIC EFFICIENCY IMPROVEMENT POTENTIAL

Exergetic efficiency of a package type steam boiler is somewhat lower than its energy efficiency. Mainly the exergy gets destroyed through system irreversibility and according to this analysis the average destruction is around 67.3%. In addition to this, exergy is lost through flue gas, surface emission and blowdown in different quantities. According to the analysis it is possible to increase by about 2.17% on average by reducing the existing losses and comparing the average exergy destruction, the potential is very small.

The exergetic efficiency of a steam boiler can be improved in two ways as mentioned below.

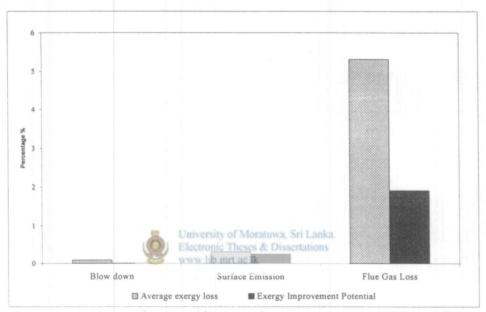
- > By reducing the existing losses in various streams.
- > By implementing better energy efficient systems.

This chapter presents the details of exergy improvement potential, all the results are illustrated pictorially.

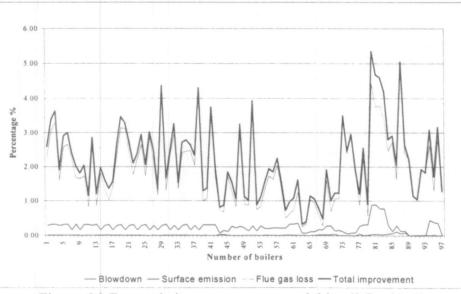
6.1 Potential Improvement of Exergy Efficiency by Reducing the Existing Losses in Boilers

As discussed in section 5.6 the exergetic efficiency can be improved maximum up to 28.0% by reducing the existing losses without changing the configuration. It is impossible to extract the total losses and there are limitations to reduce it. These limitations are based on the operation and maintenance of the boilers and accessories. The exergy losses of a steam boiler occur through blowdown, surface and flue gas and some amount of exergy gets destroyed by the system irreversibility. But without changing the configuration exergy distortion cannot be minimized to a certain limit. According to the analysis the average losses are in the range of,

Blowdown	- 0.09 %
Surface emission	- 0.3 %
Flue gas loss	- 5.31 %


By maintaining the boiler accessories and operating parameters properly, the losses of the above areas can be reduced up to the following limits.

Blowdown	-	0.08 %
Surface emission	-	0.05 %
Flue gas loss	-	3.4 %


and the average total improvements is in the range of,

Blowdown	-	0.01 %
Surface emission	-	0.25 %
Flue gas loss	-	1.91 % and the total improvements is 2.17 %

The following figure illustrate both the percentage losses and the improvements.

The total average exergetic improvement potential is in the range of 2.17 % from the total exergetic input. Reference to the 1998 energy balance published by the Energy Conservation Fund, the total furnace oil consumption is in the range of 524.2 thousand metric ton per annum. According to the above figures there is potential to save 11.4 thousand metric tons of furnace oil per annum. This is equivalent to 492×10^3 GJ of exergy per annum and the corresponding reduction of CO₂ emission is 36 thousand metric tons per annum.

6.2 Improvement of Exergy Potential by Implementing Better Energy Efficient System.

We discussed the possibility to improve the exergy potential by reducing the losses in the existing systems in the above section. In addition to that the potential of exergy can be improved by implementing efficient energy utilization systems. As we discussed earlier, the exergy distruction due to system irreversibility can be reduced by this way. There are number of methods to improve the exergetic potential in steam boilers.

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

6.2.1 Cogeneration

The concept of cogenaration is based on the principle of thermal cascading which consists of generation of power on site where a substantial fraction of waste heat produced is recovered to satisfy the heating demand of the end user. There is thus a considerable enhancement of the overall conversion efficiency. The average exergetic efficiency of a cogeneration system is in the range of 33 % [18] of total inputs.

6.2.2 Thermal power plant (Steam turbine based)

Electricity is generated through a steam turbine in this type of power plants. Steam is produced in a boiler and feed in to the turbine. The overall exergetic efficiency is in the range of 40 %[18] of total input.

6.2.3 Thermal cascading

Suppose there is a large industrial complex with various sub-sectors and the energy requirement of the above sectors is different. As an example an industrial complex and its energy requirements can be defined as follows.

Process	Required temperature level ⁰ C
Metallurgical treatment process	>1700
Ceramic furnace	1700 - 1200
Steam cracking	1200 – 900
Catalytic chemical reactions	900 - 600
Dehydration, distillation process	600 – 200
Drying, textiles etc.	200 - 80

 Table 6.1 Variation of temperatures in different processes

At present these various thermal energy sources providing heat at different levels are almost independent of each other and it is illustrated in the following figure.

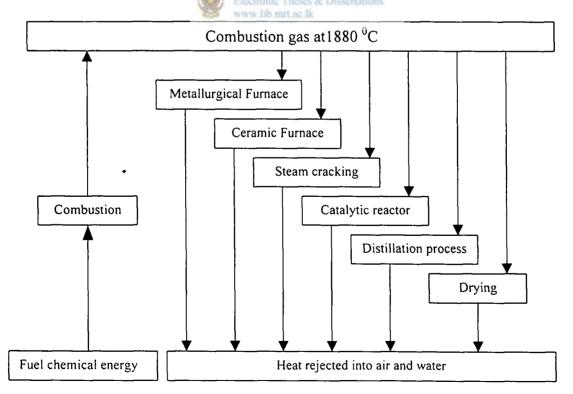


Figure 6.3 Heat provided at different levels for different processes

Fuel is burnt and hot combustion gas is sometimes used directly in some equipment or used indirectly through heat carrying fluids, mainly superheated steam at high temperatures, between 100 and 500 0 C or water at low temperature between 50 and 150 0 C. The ideal way of using energy would be to link all the operation in a thermal cascade so that the heat flux leaving one equipment becomes the input to the next. The maximum thermal potential of heat can be extracted by using it at the appropriate level in specific equipment.

But in practice the maximum interconnections of various exchangers and machines are difficult to carry out because of various factors. Particularly the quantity and the temperature levels should match and their management is quite complex especially if one wants to modify existing facilities. The locations of the equipment pose another constraint.

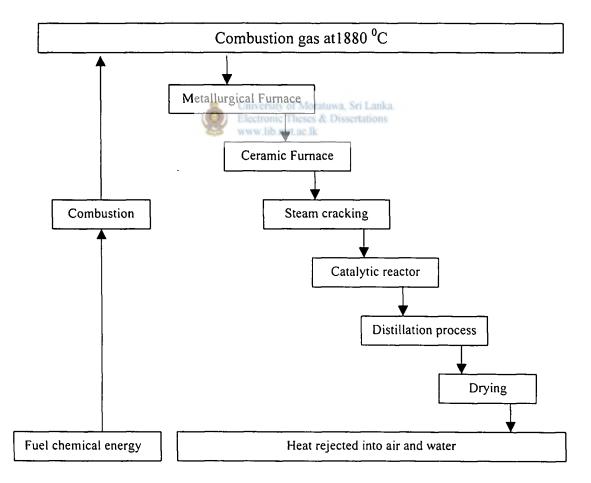


Figure 6.4 Optimum cascading of thermal energy in industries

CHAPTER 7 CONCLUSION

Exergy analysis is a technique at the forefront of applied thermodynamics research where by systems that utilize energy are assessed in the light of the second law of thermodynamics. All forms of energy transfer and transport can be represented by equivalent exergy transfers which are, in fact, the quantities of work that could be produced from the same types of energy transfer or transport by perfect thermodynamics device, free to interact with a specified reference environment. It is a fundamental physical law that energy is conserved. But conventional energy analysis can only account for where energy is distributed or lost from systems of interest. Exergy analysis can highlight where energy is used inefficiently.

Exergetic efficiency or the rational efficiency is a very useful measure for the thermodynamic quality of a technical process. In the case of steam boilers, exergetic efficiency is always less than the energy efficiency. This is mainly due to rapid exergy destruction taking place within the boilers. The exergy destruction takes place due to rapid temperature reduction between combustion products and the steam. On average, exergetic efficiency of a steam boiler is three times less than the energy efficiency and it can be evaluated using the following formula.

$$\varepsilon = 0.36\eta - 3.0$$

Where ε - Exergetic efficiency η - Energy efficiency

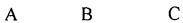
Flue gas loss gets increased with increase of both amount of excess air and flue gas temperature. But the effect of increasing excess air is not much significant in comparison to the increase of flue gas temperature. As an example, the reduction of exergetic efficiency is around 0.5%, when increasing the excess air level by 60%. But by increasing the flue gas temperature by 50 $^{\circ}$ C at constant excess air level, the exergetic efficiency is reduced by 1%.

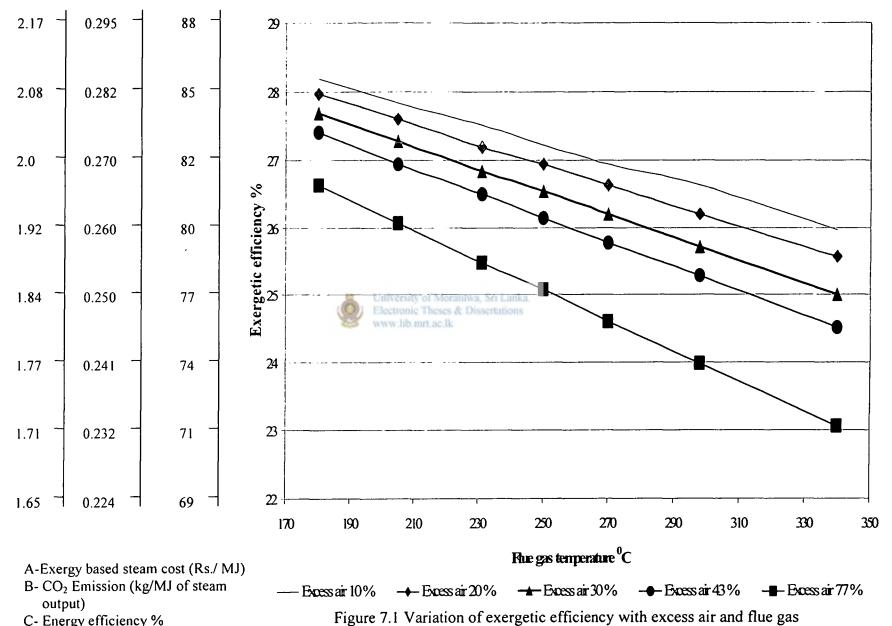
The other losses, which occur through surface emission and blowdown are very small. The blowdown loss is in the range from 0.02% to 0.2% and the surface emission

varies between 0.05% and 0.94%. The average of the above parameters are 0.09% and 0.3% respectively and the improvement potential in this area is negligible.

Mainly the exergy loss of a boiler occurs through the exergy destruction due to rapid system irreversibility. It is impossible to reduce the irreversibility rate without changing the configuration of a boiler and the system. But the existing losses in the other streams such as flue gas, blow down and surface emission can be minimized to a certain limit by adjusting the existing operating parameters to optimum condition. The maximum possible exergetic efficiency that can be taken by maintaining the above parameters to the optimum condition is 28.0%. The improvement potential of the existing exergetic efficiency varies between 0% to 6.5% from total inputs. The average improvement potential is 2.2%. The savings are equivalent to 11.4 thousand metric tons of furnace oil per annum in Sri Lanka and the corresponding reduction of CO_2 emission is 36 thousand metric tons per annum.

The specific CO_2 emission (kg/MJ of useful exergy) is reduced with increase of exergetic efficiency. This shows that the increase of steam output is higher than the amount of CO_2 emission with respect to the increase of exergetic efficiency. This behavior follows the following formula.


 CO_2 emission (kg/MJ of useful exergy) = $6.5/\varepsilon$


Where ε - Exergeic efficiency

The steam cost varies between 1.36 Rs./MJ and 1.78 Rs./MJ based on the exergetic efficiency and the average is 1.49 Rs./MJ. The equivalent average cost of steam based on energy efficiency is 0.52 Rs./MJ. This implies that the cost of steam based on exergetic efficiency is approximately three times higher than the cost of steam based on energy efficiency.

As we discussed earlier there are few parameters, which directly effect to the exergetic efficiency. Flue gas parameters such as excess air and flue gas temperature, blow down parameters and surface emission are the major parameters. Variation of exergetic efficiency with such parameters is illustrated in the following figures.

C- Energy efficiency %

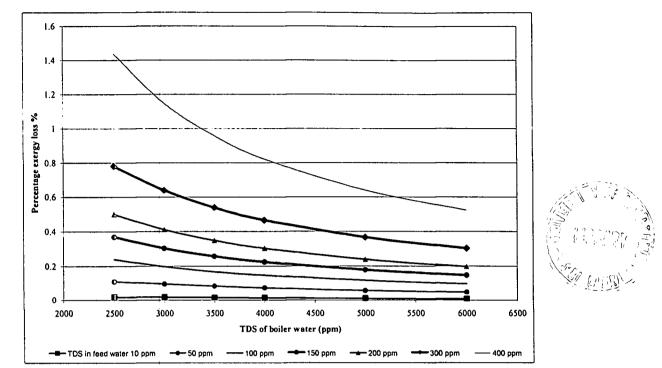


Figure 7.2 Variation of exergy loss with TDS in feed water and and blow down water

To prepare these figures, it was assumed that the surface emission is constant in each boiler and it is taken as 0.05%. Exergetic efficiency varies with variation of TDS levels of boiler and feed water. As a bench mark it was taken that the TDS of such parameters as 3500 ppm and 50 ppm respectively and the corresponding loss is equivalent to 0.08%.

If the blowdown parameters are different, the corresponding losses can be taken from figure 7.2 and the correction would be made accordingly. As an example if the TDS levels of feed water and blowdown water are 100 ppm and 3000 ppm respectively and the level of excess air is 77% and flue gas temperature is $310 \, {}^{0}$ C, reference to figure 7.2 the actual blow down loss is 0.2%. Difference between recommended value and the actual value is -0.12% (0.08% - 0.2%). The exergetic efficiency taken from the figure 7.1 is 25.0 % but the actual efficiency is 24.88 % (0.12% less than the direct reading)

In addition to the above, the cost of steam, CO_2 emission and the energy efficiency corresponding to the exergetic efficiency can be directly taken from figure 7.1.

References

- 1. Auracher H, The application of exergy to refrigeration process optimization, XVth International congress of refrigeration, 1979, ii, 239 – 255.
- Barclay F J, Co-generation in arid and cool climates: a new unified perspective using exergy analysis, *Proc Instn Mech Engrs*, 1988, 202, 129 – 139.
- Ben I W, Second law analysis of gas turbines, 1999, http://www.benwiens.com/energy2.htm
- 4. Datta A and Som S.K, Energy and exergy balance in a gas turbine combustor, Proc Instn Mech Engrs, Part A, Journal of Power and Energy, 1999, 213, 23 – 31.
- 5. David R M and Jan Szargut, Standard chemical exergy of some elements and compounds on the planet earth, *Energy*, 1986, 11, 733 755.
- 6. Dekker E J, Exergy analysis of the production process of delamine in the context of the MPI of the N.V. Dutch Gasunion,

http://www.thw.wb.utwente.nl/topics/exergy/exergy-journal/No2/dekker/index.htm

- 7. Eastop T D and McConkey A, Applied Thermodynamics, 1993, (Wesley Longman Limited)
- 8. Egrican, A.N and Ahmet, K, Second law analysis of a solar powered rankine cycle / Vapor compression cycle, *Heat recovery systems*, 1986, 6, 135 145.
- 9. EPA Global warming site,

http://www.epa.gov/globalwarming/actions/efficiency/index.htm

- 10. Erik Tober, *Theoretical background of exergy analysis*, http://www.thw.wb.utwente.nl/topics/exergy/theory_e.thm
- 11. Gallo, W.L.R. and Milanez, L.F. Choice of a reference state for exergetic analysis, *Energy*, 1990, 15, 113 121.
- 12. Gerard Hirs, Exergy loss: A basis for energy taxing, http://www.thw.wb.utwente.nl/topics/exergy/publications/extax.htm
- 13. Goodall, P M, The Efficient Use of Steam, 1980 (Westbury house)
- 14. Goran Wall and Mei Gong, Exergy analysis versus pinch technology, http://www.exergy.se/mei/papers/exergy-pinch/
- Graveland, A.J.G.G. and Gisolf, E. Exergy analysis: An efficienct tool for process optimization and understanding, *Chemical engineering*, 1998, 22, 454 – 552.

- 16. Hammond G P and Stapleton A J, Exergy analysis of the United Kindom energy system, *Proc Instn Mech Engrs, Part A*, 2001, 215, 1 21.
- 17. Harry, M S and Anthony, L K, Boiler Operators Guide, 1981 (McGraw-Hill Book Company)
- Herbert W H and Stephen C H, Second law analysis: An alternative indicator of system efficiency, *Energy*, 1980, 5, 865 – 873.
- Hua B, Chen Q. L, and Wang P, A new exergoeconomic approch for analysis and optimization of energy systems, *Energy*, 1997, 22, 1071 – 1078.
- 20. Huang, Y.C, Hung, C.I and Chen, C.K. Exergy analysis for a combined system of steam-injected gas turbine cogeneration and multiple-effect evaporation, *Proc Instn Mech Engrs*, Part A, 2000, 214, 61 – 73.
- 21. Jan, S. Energy and exergy analysis of the preheating of combustion reactants, Energy research, 1988, 12, 45-58.
- 22. Kotas T.J, Mayhew Y.R and Raichura R.C, Nomenclature for exergy analysis, Proc Instn Mech Engrs, Part A, Journal of Power And Energy, 1995, 209, 275 -280.
- 23. Kotas T J, Hirs G G and Cornelissen R L, An exergy analysis of an oil distillation process, http://www/thw.wb.utwente.nl/topics/exergy/exergyjournal/no2/cornelissen/index.htm
- 24. Kumar S, Prevost M and Bugarel R, Exergy analysis of a compression refrigeration system, *Heat Recovery System & CHP*, 1989, 9, No.2, 151 157.
- 25. Marc, A.R. and Ibrahim, D, Exergy analysis of waste emission, *Energy*, 1999,
 23, 1153 1163.
- McGovern J.A, Exergy analysis a different perspective on energy, Part 1 and Part 2, Proc Instn Mech. Engrs. Part A, Journal of Power and Energy, 1990, 204, 253 - 267.
- 27. Moran, M. J. Availability Analysis, A Guide to Efficient Energy Use, 1982 (Pretice-Hall, Englewood Cliff, New Jersey)
- 28. Moran, M. J and Sharpiro, H.N Fundamentals of Engineering Thermodynamics, 1988 (John Wiley, New York)
- 29. Mozes W, Cornelisson R L, and Hirs G G, Exergy analysis of the conventional textile washing process,

http://www.thw.wb.utwente.nl/topics/exergy/publications/detergent.htm

- 30. Murat T, Mithat U and Akif O, Exergy analysis of solar-assisted heat pump systems, Applied energy, 1988, 29, 1 16.
- 31. Murgai, M P and Ram Chandra, Boiler Operations, 1990 (Wiley Eastern Limited, India)
- 32. Nag, P.K and De, S, Study of thermodynamic performance of an intargrated gasification combine cycle power plant, Proc Instn Mech Engrs, Part A, 1998, 212, 89 – 95.
- Noel D N and Seader J D, Lost work: A measure of thermodynamic efficiency, Energy, 1980, 5, 757 – 769.
- 34. Paul W O C, Energy management, 1992 (McGraw-Hill Book Company)
- 35. Peter, D O, Handbook of Energy Data and Calculations, 1985 (Butterworths)
- 36. Sharma, S P and Chandra Mohan, Fuels and Combustion, 1987 (Tata McGraw-Hill Publication, New Delhi)
- 37. Simon F S and Jan L R, *Performance criteria for a heat exchanger*, http://www.thw.wb.utwente.nl/topics/exergy/publications/hx_crit/htm
- 38. Via Santa Marta, Exergy analysis of the semi-closed gas turbine combined cycle, http://www.fias.de.unifi.it/flowers/fiasgpm.htm
- 39. http://www.coe.ttu.edu/me/dpj/thermo/Exergy/Exergy.htm
- 40. United State Environmental Protection Agency Site: hiip://www.epa.gov/globalwarming/

APPENDIX A DATA & MEASUREMENTS

.

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

.

Organization

: CU

Table 01 Details of Boilers							
Parameter	Boiler No. 01	Boiler No. 02	Boiler No. 03	Boiler No. 04			
Туре	Horizontal, 3- pass fire tube						
Capacity	8200 kg/hr @17bar	8200 kg/hr @17bar	8200 kg/hr @17bar	7000 kg/hr @17bar			
Fuel Consumption	295 ltr/hr	295 ltr/hr	295 ltr/hr	295 ltr/hr			

Table 02Details of Burners

Details of Burners								
Parameter	Boiler No. 01	Boiler No. 02	Boiler No. 03	Boiler No. 04				
Туре	Rotary cup	Rotary cup	Rotary cup	Rotary cup				
Blow Motor	15 kW	15 kW	15 kW	7.5 kW				
Heater	12 kW	12 kW	12 kW	10 kW				
Fuel preheating temperature ⁰ C	80	80	80	80				
Pump Motor	22 kW	22 kW	22 kW	8.5 kW				

Table 03CUB – 1 Measured on 5th July 1997

Parameter	Boiler No. 01					
Farameter	Trial 1	Trial 2	Trial 3			
Combustion Efficiency	Univ8314 of Morat	wa, Sri L:83:2	83.2			
O ₂ Percentage	4.3 History	4.3	4.3			
CO ₂ Percentage	12.7	12.7	12.7			
CO ppm	5.0	6.0	6.0			
NO ppm	208	210	214			
NO ₂ ppm	0	0	0			
SO ₂ ppm	810	860	840			
Flue Gas Temperature ^o C	278	278	278			
Excess Air Percentage	26	26	26			
Smoke No.	0	0	0			

Table 04CUB - 2 Measured on 5th July 1997

Denemister	Boiler No. 02					
Parameter	Trial 1	Trial 2	Trial 3			
Combustion Efficiency	84.6	84.6	84.6			
O ₂ Percentage	4.3	4.2	4.3			
CO ₂ Percentage	12.6	12.6	12.7			
CO ppm	30	48	60			
NO ppm	281	190	198			
NO ₂ ppm	0	0	0			
SO ₂ ppm	953	990	985			
Flue Gas Temperature ⁰ C	254	254	254			
Excess Air Percentage	26	25	26			
Smoke No.	0	0	0			

De un rectar	Boiler No. 03					
Parameter	Trial 1	Trial 2	Trial 3	Trial 4		
Combustion Efficiency	83.7	83.7	83.8	83.7		
O ₂ Percentage	5.6	5.6	5.6	5.5		
CO ₂ Percentage	11.6	11.6	11.8	11.7		
CO ppm	57.0	58.0	58.0	58.0		
NO ppm	190	200	205	185		
NO ₂ ppm	0	0	0	0		
SO ₂ ppm	990	929	982	1010		
Flue Gas Temperature ^o C	252	253	253	253		
Excess Air Percentage	32	32	32	32		
Smoke No.	0	0	0	0		

Table 05CUB –3 Measured on 5th July 1997

 Table 06

 CUB – 1,2,3&4 Measured on June 1998

	CUB-1		CUB-2		CUB-3		CUB-4	
Parameter	High Fire	Low Fire	High Fire	Low Fire	High Fire	Low Fire	High Fire	Low Fire
Combustion Efficiency	83.6	85.2	79.9	81.1	82.3	84.5	82.5	87.1
O ₂ Percentage	2.9	4.7	9.4	10.8	4.9	7.3	3.1	4.1
CO ₂ Percentage	13.8	12.3	8.6	7.6	12.1	10.2	13.5	12.7
CO ppm	152	60	48	38	68	50	120	70
NO ppm	252	200	198	170	210	180	248	228
NO ₂ ppm		ElectrOnic TI	ieses 0. Diss	ertati01s	0	0	0	0
SO ₂ ppm	1090	670	630	621	730	670	1040	649
Flue Gas Temperature ^o C	289	232	251	212	289	218	277	168
Excess Air Percentage	15	28	78	108	28	55	17	25
Smoke No.	1	0	0	0	0	0	1	0

Table 07CUB – 3&4 Measured on 23rd July 1999

Parameter	CU	B-3	CUB-4		
Farameter	Low Fire	High Fire	Low Fire	High Fire	
Combustion Efficiency	85.3	84.6	85.4	82.2	
O ₂ Percentage	2.4	4.9	4.8	5.5	
CO ₂ Percentage	14.8	12.1	12.2	11.6	
CO ppm	260	30	60	55	
NO ppm	260	244	265	280	
NO ₂ ppm	0	0	0	0	
SO ₂ ppm	1000	660	710	820	
Flue Gas Temperature ⁰ C	167	212	184	238	
Excess Air Percentage	13	30	30	34	
Smoke No.	1	0	0	0	

Parameter	Before '	Tuning	After Tuning		
Farameter	Low Fire	High Fire	Low Fire	High Fire	
Combustion Efficiency	79.3	85.2	84.9	85.6	
O ₂ Percentage	13.0	4.1	7.0	3.9	
CO ₂ Percentage	5.9	12.7	10.9	12.8	
CO ppm	320	80	110	90	
NO ppm	110	220	238	198	
NO ₂ ppm	0	0	0	0	
SO ₂ ppm	630	968	840	990	
Flue Gas Temperature ⁰ C	154	206	148.0	191	
Excess Air Percentage	156	22	47	22	
Smoke No.	0	0	0	0	

Table 08CUB – 2 Measured on 23rd July 1999

Table 09CUB – 1,3&4 Measured on 5th October 1999 (Before tuning)

	CUE	8-1	CUB-3		CUB-4	
Parameter	Low Fire	High Fire	Low Fire	High Fire	Low Fire	High Fire
Combustion Efficiency	70.5	78.4	88.4	84.7	80.7	80.0
O ₂ Percentage	14.5	8.4	0.3	2.0	10.0	7.5
CO ₂ Percentage	4.8	9.4	15.7	14.4	8.3	10.1
CO ppm	600	190	1600	1090	160	200
NO ppm	138 lectr	onic142 es d	Dis195tions	243	144	165
NO₂ ppm	0	0	0	0	0	0
SO ₂ ppm	480	798	1120	1070	688	888
Flue Gas Temperature ^o C	193	254	167	237	187	247
Excess Air Percentage	210	60	2	10	80	20
Smoke No.	0	0	2	1	0	0

Table 10CUB - 2 Measured on 5th October 1999 (After Tuning)

	CU	B-1	CUB-3		CUB-4	
Parameter	Low Fire	High Fire	Low Fire	High Fire	Low Fire	High Fire
Combustion Efficiency	84.7	82.4	85.5	84.4	85.6	83.1
O ₂ Percentage	5.4	4.1	2.4	2.8	5.4	5.0
CO ₂ Percentage	11.7	12.7	14.0	13.7	11.6	12.0
CO ppm	110	80	260	270	90	80
NO ppm	198	267	188	239	185	248
NO ₂ ppm	0	0	0	0	0	0
SO ₂ ppm	998	970	1020	1010	881	790
Flue Gas Temperature ⁰ C	2.2	268	187	226	185	240
Excess Air Percentage	32	23	13	15	32	28
Smoke No.	0	0	1	1	0	0

	CU	B-1	CUB-2		CUB-4	
Parameter	Low Fire	High Fire	Low Fire	High Fire	Low Fire	High Fire
Combustion Efficiency	78.4	80.1	81.8	83.8	81.0	79.7
O ₂ Percentage	12.9	5.6	9.7	5.6	10.4	9.1
CO ₂ Percentage	6.0	1.7	8.5	12.0	7.9	8.9
CO ppm	350	40	10	20	10	10
NO ppm	77	190	199	271	103	128
NO ₂ ppm	0	0	0	0	0	0
SO ₂ ppm	210	1043	666	917	220	300
Flue Gas Temperature ^o C	217	290	227	254	231	274
Excess Air Percentage	162	32	86	31	100	77
Smoke No.						

Table 11CUB – 1,2&4 Measured on 15th December 1999 (Before Tuning)

Table 12CUB – 1,2&4 Measured on 15th December 1999 (After Tuning)

	Boiler	er No. 01 Boiler		No. 02	Boiler No. 04	
Parameter	Low Fire	High Fire	Low Fire	High Fire	Low Fire	High Fire
Combustion Efficiency	83.1	82.6	82.9	84.8	85.0	83.6
O ₂ Percentage	5.5	4.6	8.4	4.2	6.2	5.1
CO ₂ Percentage	1.8	12.3	9.6	12.6	11.1	11.9
CO ppm	20 lectr	onic 130ses &	Disse 20 ons	20	10	10
NO ppm	210	184	143	264	170	223
NO₂ ppm	0	0	0	0	0	0
SO ₂ ppm	200	143	21	186	194	155
Flue Gas Temperature ⁰ C	216	280	218	246	225	266
Excess Air Percentage	32	28	78	25	42	32
Smoke No.						

Table 13CUB – 1,2&4 Measured on 9th August 2000 (Before Tuning)

	CU	B-1	CUB-2		CUB-4	
Parameter	Low Fire	High Fire	Low Fire	High Fire	Low Fire	High Fire
Combustion Efficiency	65.0	80.0	86.0	84.5	79.0	82.0
O ₂ Percentage	16.6	7.9	4.8	4.3	13.0	4.4
CO ₂ Percentage	3.2	9.8	12.2	12.5	5.9	12.4
CO ppm	760	90	80	95	1600	88
NO ppm	67	139	212	286	118	280
NO ₂ ppm	0	0	0	0	0	0
SO ₂ ppm	288	841	865	941	369	1008
Flue Gas Temperature ⁰ C	215	269	210	247	206	308
Excess Air Percentage	389	60	29	26	166	27
Smoke No.	2	2	0	0	0	0

96

•

D- up at of an	CU	B-1	CUB-4	
Parameter	Low Fire	High Fire	Low Fire	High Fire
Combustion Efficiency	83.5	83.5	85.5	82.0
O ₂ Percentage	6.5	4.8	5.5	4.4
CO ₂ Percentage	10.8	12.2	11.7	12.4
CO ppm	92	58	66	70
NO ppm	130	210	223	267
NO ₂ ppm	0	0	0	0
SO ₂ ppm	800	1037	870	1008
Flue Gas Temperature ^o C	210	268	170	307
Excess Air Percentage	38	30	32	27
Smoke No.	1	1	0	0 /2

Table 14CUB – 1&4 Measured on 9th August 2000 (After Tuning)

Table 15CUB – 1,3&4 Measured on 4th January 2001 (Before Tuning)

	CU	B - 1	CUI	8 - 3	CUI	B - 4
Parameter	Low Fire	High Fire	Low Fire	High Fire	Low Fire	High Fire
Combustion Efficiency	82.0	76.6	86.0	86.0	80.0	82.0
O ₂ Percentage	7.1	10.3	6.3	2.6	11.6	3.8
CO ₂ Percentage	<u>10.4</u>	rsity 8:0 locati	iwa, 11.0inka,	13.8	7.0	12.9
CO ppm	200	ronic 400es &	Disse100ons	200	300	300
NO ppm	165	137	219	268	134	232
NO ₂ ppm	0	0	0	0	0	0
SO ₂ ppm	883	627	292	563	627	920
Flue Gas Temperature ^o C	246	292	198	229	223	311
Excess Air Percentage	51	97	43	14	126	22
Smoke No.	1	1	0	0	0	0

Table 16CUB – 1&4 Measured on 4th January 2001 (After Tuning)

Do uno stario	CUE	<u>B – 1</u>	CUB - 4	
Parameter	Low Fire	High Fire	Low Fire	High Fire
Combustion Efficiency	85.0	82.0	81.6	82.0
O ₂ Percentage	3.2	4.1	4.7	3.8
CO ₂ Percentage	13.4	12.6	12.2	12.9
CO ppm	100	100	100	300
NO ppm	158	198	197	232
NO ₂ ppm	0	0	0	0
SO ₂ ppm	1130	1128	630	920
Flue Gas Temperature ⁰ C	251	310	228	311
Excess Air Percentage	18	25	28	22
Smoke No.	0	0	0	0

	CUE	3 - 1	Ο Ο Ο Ο Ο	J B - 3	CU	B -4
Parameters	Low fire	High fire	Low fire	High fire	Low fire	High fire
Combustion Efficiency	79.0	81.6	83.8	83.0	87.0	83.7
O ₂ Percentage	13.1	7.8	4.9	3.6	1.2	1.8
CO ₂ Percentage	5.8	9.9	12.0	13.1	14.9	14.4
CO ppm	610	180	40	60	9490	3250
NO ppm	128	137	221	253	143	246
NO ₂ ppm	0	0	0	0	0	0
SO ₂ ppm	480	815	943	1072	1118	1114
Flue Gas Temperature ^o C	205	161	252	289	225	301
Excess Air Percentage	171	60	31	20	6	9
Smoke Number	0	0	0	0	1	2

 Table 17

 CUB – 1,3&4 Measured on 2nd May 2001 (Before Tuning)

Table 18CUB – 1&4 Measured on 2nd May 2001 (After Tuning)

	CUB – 1		CUB - 4	
Parameters	Low fire	High fire	Low fire	High fire
Combustion Efficiency	84.0	83.0	85.5	81.5
O2 Percentage	5.2	4.1	4.8	5.7
CO2 Percentage	11.5	12.6	12.2	11.5
CO ppm	170	120	450	425
NO ppm	www.7.h.mrt.ac.1	183	193	238
NO2 ppm	0	0	0	0
SO2 ppm	988	1082	892	950
Flue Gas Temperature ⁰ C	231	265	227	349
Excess Air Percentage	31	25	29	37
Smoke Number	0	0	0	0

Table 19 Boiler Dimensions

		oner Dimensions		
Parameter	Boiler No. 01	Boiler No. 02	Boiler No. 03	Boiler No. 04
Length (feet)	20	20	20	16
Diameter (feet)	12	12	12	10

	Boiler Su	Table 20 Irface Temperatur	те – ⁰ С	
Parameter	Boiler No. 01	Boiler No. 02	Boiler No. 03	Boiler No. 04
Cylinder Side	52	55	58	48
Back Side	178	182	180	210
Burner Side	89	88	78	70

Table 21 TDS of Water - ppm

Parameter	Boiler No. 01	Boiler No. 02	Boiler No. 03	Boiler No. 04
Feed Water	50	50	50	50
Boiler Water	3000	3200	3100	3220

Feed water temperature: 78 °C

1

	Table 22 Boiler Data
Parameter	BLB 1
Туре	Horizontal, 3 – pass fire tube package
Capacity	10 Tons/hr
Fuel Consumption	250 ltrs / hrs

	Table 23	
•	D (

Burner Data			
Parameter	BLB 1		
Туре	Rotary cup modulate control		
Blow Motor	11 kW		
Heater	12 kW		
Fuel preheating temperature	80 °C		
Water Pump	11 kW		

Table 24
BLB-1 Measured on 30 th November 2000 (Before Tuning)

	Burner Positions					
Parameter	Low flame	20% from low	40% from low flame	60% from low flame	80% from low	High flame
Combustion Efficiency	87.5	flame 86.6	86.0	85.3	flame 83.9	83.1
O_2 Percentage	2.7	4.6	5.2	5.6	7.2	8.0
CO ₂ Percentage	13.7	12.3	11.8	11.5	10.4	9.7
CO ppm	200	400	300	300	200	300
NO ppm	259	228	210	197	191	192
NO ₂ ppm	0	0	0	0	0	0
SO ₂ ppm	813	864	849	823	732	623
Flue Gas Temperature ⁰ C	192.6	199.8	208.2	217.3	227.2	228.8
Excess Air Percentage	15	28	33	37	52	62
Smoke No.	1	0	0	0	0	0

Table 25BLB-1 Measured on 30th November 2000 (After Tuning)

	Burner Positions					
Parameter	Low flame	20% from low flame	40% from low flame	60% from low flame	80% from low flame	High flame
Combustion Efficiency	87.3	87.0	86.1	85.8	85.4	84.4
O ₂ Percentage	4.0	4.0	4.4	4.3	4.8	5.9
CO ₂ Percentage	12.8	12.8	12.4	12.5	12.1	11.3
CO ppm	200	200	200	200	200	200
NO ppm	253	220	211	210	197	198
NO ₂ ppm	0	0	0	0	0	0
SO ₂ ppm	834	646	923	936	881	821
Flue Gas Temperature ^o C	192.2	196.7	212.6	221.0	225.5	232.5
Excess Air Percentage	22	22	26	26	30	39
Smoke No.	0	0	0	0	0	0

.

	Burner Positions						
Parameters	Low flame	20% from low flame	40% from low flame	60% from low flame	80% from low flame	High flame	
Combustion Efficiency	86.4	83.1	83.0	80.0	79.5	75.0	
O ₂ Percentage	3.0	5.0	5.1	6.8	7.3	10.1	
CO ₂ Percentage	13.5	11.3	11.2	10.6	10.3	8.1	
CO ppm	60	60	50	40	40	80	
NO ppm	0	0	0	0	0	0	
NO ₂ ppm	210	208	205	205	195	170	
SO₂ ppm	1057	910	896	814	766	661	
Flue Gas Temperature ^o C	221	254	255	286	306	316	
Excess Air Percentage	17	37	38	48	54	96	
Smoke Number	0	0	0	0	0	0	

Table 26BLB-1 Measured on 23rd April 2001 (Before tuning)

 Table 27

 BLB-1 Measured on 23rd April 2001 (After tuning)

	Burner Positions						
Parameters	Low flame	20% from low flame	40% from low flame	60% from low flame	80% from low flame	High flame	
Combustion Efficiency	85.8	85.4	84.4	83.4	83.0	82.1	
O ₂ Percentage	4.8	4.3	4.1	4.3	4.0	4.6	
CO ₂ Percentage	12.1	Univerl 2.01 Mo	ratuw1233 Lank	12.5	12.8	12.3	
CO ppm	80	ectror70 hese	& Dis70 ^{tations}	90	80	70	
NO ppm	0	0	0	0	0	0	
NO ₂ ppm	198	200	205	200	210	208	
SO ₂ ppm	1029	968	1080	1080	1095	972	
Flue Gas Temperature ^o C	222	230	249	273	289	299	
Excess Air Percentage	30	23	22	23	22	28	
Smoke Number	0	0	0	0	0	0	

Table 28Boiler Dimensions					
Parameter	BLB 1				
Length (feet)	20				
Diameter (feet)	12				

Table 29 Boiler Surface Temperature – ⁰C

Parameter	BLB 1
Cylinder Side	51
Back Side	188
Burner Side	78

Table 30	
TDS of Water -	וממ

TDS of Water - ppm				
Parameter	BLB 1			
Feed Water	10			
Boiler Water	3100			
<u>ما میں میں میں میں میں میں میں میں میں میں</u>				

Feed water temperature: 98 °C

Organization : FN.

Details of Boiler			
Parameter	FNB 1		
Туре	Horizontal, 2-pass fire tube		
Capacity	2000 kg/hr		
Fuel Consumption	105 ltr/hr		

Tab	ole	31	
Details	of	Boil	e

Details of Burner				
Parameter	FNB 1			
Туре	Pressure jet atomizing			
Blow Motor	5.5 kW			
Heater	6 kW			
Fuel preheating temperature	105 °C			
Water Pump	4 kW			

Т	at	ole	3	2	
tail		۰ f	p		***

Table 33FNB – 1 Measured on 08th November 2000 (Before Tuning)

Parameter	Low flame	20% from low flame	40% from low flame	60% from low flame	High flame
Combustion Efficiency	84.0	86.3	86.7	87	87.3
O ₂ Percentage	11.5	8.7	5.7	4.5	4.1
CO ₂ Percentage	7.0	9.1	11.5	12.3	12.6
CO ppm	80	70	85	65	95
NO ppm	198	203	222	227	225
NO ₂ ppm	0	0	0	0	0
SO ₂ ppm	380	554	725	861	847
Flue Gas Temperature ⁰ C	162.6	164.8	187.2	193.2	194.3
Excess Air Percentage		72	37	28	24
Smoke No.	0	0	0	0	0

 Table 34

 red on 08th November 2000 (After Tuning)
 ENR 1 Mean

FINB – 1 Measured on 08 November 2000 (After 1 uning)					
Parameter	Low flame	20% from low	40% from low	60% from low	High flame
		flame	flame	flame	
Combustion Efficiency	88.0	88.2	87.5	87	87.3
O ₂ Percentage	6.5	5.4	5.0	4.5	4.1
CO ₂ Percentage	11.0	11.8	12.0	12.3	12.6
CO ppm	85	97	70	55	75
NO ppm	200	207	215	227	225
NO ₂ ppm	0	0	0	0	0
SO ₂ ppm	384	560	766	861	847
Flue Gas Temperature ⁰ C	160.6	165.0	188.3	193.2	194.3
Excess Air Percentage	42	34	30	28	24
Smoke No.	0	0	0	0	0

I

Ĩ

.

101

Table 35 Boiler Dimensions

Doner Dimensions		
Parameter	FNB 1	
Length (feet)	16	
Diameter (feet)	8	

Table 36

Boiler Surface Temperature – ⁰C

Parameter	FNB 1
Cylinder Side	48
Back Side	128
Burner Side	78

Table 37

TDS of Water - ppm		
Parameter	FNB 1	
Feed Water	62	
Boiler Water	3300	

Feed water temperature: 80 °C

Organization : TB.

Table 38Details of Boiler

Param	eter	TBB 1
Туре	University of	Mor Horizontal,3-pass fire tube
Capacity	www.lib.mt	13000 lb/hr
Fuel Consumpt	ion	230 ltr/hr

Table 39Details of Burner

Parameter	TBB 1		
Туре	Pressure Jet Atomizing Automatic On/Off Controlling		
Blow motor	7.5 kW		
Heater	6 kW		
Fuel preheating temperature	110 °C		
Water pump	5 kW		

Table 40TBB – 1 Measured on 14th Sep 2000

Davomator	Trial 1		Trial 2	
Parameter	Low Fire	High Fire	Low Fire	High Fire
Combustion Efficiency	86.0	84.5	85.9	86.2
O ₂ Percentage	4.2	3.8	4.6	3.6
CO ₂ Percentage	12.5	12.9	12.3	12.8
CO ppm	70	55	80	85
NO ppm	212	232	203	240
NO ₂ ppm	0	0	0	0
SO ₂ ppm	962	951	829	940
Flue Gas Temperature ⁰ C	213	242	210.0	248
Excess Air Percentage	25	23	27	20
Smoke No.	0	0	0	0

-

Table 41 **Boiler Dimensions**

Parameter	TBB 1
Length (feet)	15
Diameter (feet)	8

Table 42

Boiler Surface Temperature – ⁰C

Parameter	TBB 1
Cylinder Side	61
Back Side	138
Burner Side	90

Table 4	13
---------	----

Table 43TDS of Water - ppm			
Parameter	TBB 1		
Feed Water	63		
Boiler Water	3750		
	0 -		

Feed water temperature: 74 °C

Organization : BC.

Table 44 **Details of Boiler**

Parameter	BCB 2	BCB 3
Туре	Horizontal, 3-pass fire tube	Horizontal, 3-pass fire tube
Capacity	2000 kg/hr	3200 kg/hr
Fuel Consumption	Universi 92 Itr/hruwa, Sri Lanka.	115 ltr/hr

W	ww	lib.r	mrt.	ac	Ik			
			T	ab	le	45		
]	Det	ail	s (of]	Bu	rne	er

Parameter	BCB 2	BCB 3				
Туре	Pressure Jet Atomizing Automatic ON/Off Controlling 3 Nozzles are	Pressure Jet Atomizing Automatic ON/Off Controlling				
	available for 3 steps	2 steps				
Blow Motor	3 kW	3 kW				
Heater	3.5 kW	5 kW				
Fuel preheating temp: °C	110 °C	110 °C				
Water pump	5 kW	5 kW				

Т	able	46			
th	-	-		_	

BCB 2,3 Measured on 07 th September 2000 (Before Tuning)							
Parameter		BCB – 2			B - 3		
rarameter	Step 1	Step 2	Step 3	Low Fire	High Fire		
Combustion Efficiency	84.5	86.1	82.2	85.0	84.8		
O ₂ Percentage	7.8	0.9	3.4	9.6	5.8		
CO ₂ Percentage	9.8	15.1	12.9	8.7	11.4		
CO ppm	55	9400	60	70	75		
NO ppm	62	89	110	156	197		
NO ₂ ppm	0	0	0	0	0		
SO ₂ ppm	167	261	200	584	824		
Flue Gas Temperature ^o C	207	240	280.0	179	222		
Excess Air Percentage	60	5	20	80	36		
Smoke No.	0	2	0	0	0		

Parameter		BCB – 2			BCB - 3		
rarameter	Step 1	Step 2	Step 3	Low Fire	High Fire		
Combustion Efficiency	85.0	84.5	82.2	85.8	87.6		
O ₂ Percentage	6.0	3.1	3.4	7.0	3.6		
CO ₂ Percentage	11.2	13.3	12.9	10.0	12.8		
CO ppm	75	60	60	65	55		
NO ppm	200	96	110	162	173		
NO ₂ ppm	0	0	0	0	0		
SO ₂ ppm	170	254	200	69	883		
Flue Gas Temperature ^o C	214	256	280	185.0	230		
Excess Air Percentage	38	17	20	52	20		
Smoke No.	0	0	0	0	0		

Table 47 BCB 2.3 Measured on 07th September 2000 (After Tuning)

Table 48 **Boiler Dimensions**

.

Boller Diffensions						
Parameter	BCB 2	BCB 3				
Length (feet)	12	12				
Diameter (feet)	7.5	7.5				

Table 49 Boiler Surface Temperature – ⁰ C					
Parameter	BCB 2	BCB 3			
Cylinder Side	55	58			
Back Side	170	162			
Burner Side 🛛 💄	University of 75 ratuwa, Sri Lanka.	82			
	Electronic Theses & Dissertations www.lib.mer.ac.lk Table 50				

TDS of Water - ppm					
Parameter	BCB 2	BCB 3			
Feed Water	48	48			
Boiler Water	3400	3250			

Feed water temperature: 80 °C

Organization LG. :

Table 51 Details of Boiler

Details of Bonel					
Parameter	LGB – 1	LGB - 2			
Туре	Oil fired, fire type, automatic controlled	Oil fired, fire type, automatic controlled			
Capacity	6038 lbs/hr	750 lbs/hr			
Fuel Consumption .	135 ltr/hr	41 ltr/hr			

Table 52 **Details of Burner**

Parameter	LGB – 1	LGB - 2				
Туре	Modulate Control	Pressure jet atomizing				
Blow Motor	3 kW	2 kW				
Heater	5 kW	2 kW				
Fuel preheating temperature	110 °C	110 °C				
Water pump	5 kW	3 kW				

Deveryeter	LGB – 1			LGB - 2	
Parameter	25%	50%	90%	Low Fire	High Fire
Combustion Efficiency	85.8	84.2	85.7	86.0	78.0
O ₂ Percentage	1.1	5.5	1.6	5.1	13.1
CO ₂ Percentage	15.0	11.7	14.7	12.0	4.7
CO ppm	1600	70	1450	85	120
NO ppm	133	170	210	165	195
NO ₂ ppm	0	0	0	0	0
SO ₂ ppm	1118	833	1108	731	849
Flue Gas Temperature ^o C	205	191	200.0	159	200
Excess Air Percentage					
Smoke No.	2	2	2	0	0

 Table 53

 LGB 1&2 Measured on 07th September 2000 (Before Tuning)

	Table 54	
LGB 1&2 Measured	on 07 th September	2000 (After Tuning)

Parameter		LGB – 1		LGI	3 - 2
rarameter	25%	50%	90%	Low Fire	High Fire
Combustion Efficiency	82.5	84.4	85	80.2	85.0
O ₂ Percentage	8.5	5.4	3.9	3.9	3.0
CO ₂ Percentage	9.2	11.7	13.0	10.7	13.8
CO ppm	65	90	110	110	125
NO ppm	170	175	183	220	240
NO ₂ ppm	0	0	0	0	0
SO ₂ ppm	882	875	990	933	965
Flue Gas Temperature ^o C	1.7n7versit	y of M88uwa	Sri La195	202	205
Excess Air Percentage		c Theses & Diss	ertations		
Smoke No.	0	0	0	0	0

Table 55

	Boller Dimensions				
Parameter	LGB 1	LGB 2			
Length (feet)	12	8			
Width / Diam (feet)	6	5			
Length (feet)	-	5			

Table 56

Boil	er Surface Temperatu	re – ⁰ C
Parameter	LGB 1	LGB 2
Cylinder Side	57	51
Back Side	168	182
Burner Side	75	82

Table 57

	TDS of Water - ppn	n
Parameter	LGB 1	LGB 2
Feed Water	48	48
Boiler Water	3300	3400

Feed water temperature: 72 °C

De	Table 58 Details of Boiler			
Parameter	LDB 1			
Туре	3-pass, fire tubes, horizontal			
Capacity	2800 kg/hr			
Fuel Consumption	167 Ltr/hr			

-0

Table 59 **Details of Burner**

	Dotaile of Duritor			
Parameter	LDB 1			
Туре	Compressed air atomizing			
Blowe Motor	7.5 kW			
Heater	7.5 kW			
Fuel preheating temperature	110 °C			
Water pump	3 kW			

 Table 60

 LDB 1 Measured on 17th July 2000 (Before Tuning)

Parameter	Low Fire	High Fire	Middle Fire
Combustion Efficiency	87.0	84.8	-
O ₂ Percentage	3.3	2.2	
CO ₂ Percentage	13.4	14.4	-
CO ppm	120	560	
	ersity of 210 atuwa,		
NO ₂ ppm	tronic Theors & Diss	ertations 0	
SO ₂ ppm	880	970	
Flue Gas Temperature ⁰ C	157	236	-
Excess Air Percentage	19	11	-
Smoke No.	1	1	-

 Table 61

 LDB 1 Measured on 17th July 2000 (After Tuning)

		Trial 1	_		Trial 2	
Parameter	Low Fire	High Fire	Middle Fire	Low Fire	High Fire	Middle Fire
Combustion Efficiency	84.3	83.4	83.0	82.2	83.8	83.2
O ₂ Percentage	4.2	3.5	4.0	6.6	3.3	4.3
CO ₂ Percentage	12.6	12.3	12.8	10.7	13.3	12.6
CO ppm	90	70	65	60	110	95
NO ppm	210	224	251	214	238	243
NO ₂ ppm	0	0	0	0	0	0
SO ₂ ppm	930	989	881	675	1088	995
Flue Gas Temperature ⁰ C	200	233	229.0	210	226	227
Excess Air Percentage	24	20	22	42	19	25
Smoke No.	0	0	0	0	0	0

Table 62Boiler Dimensions

Parameter	LDB 1
Length (feet)	15
Diameter (feet)	8

Table 63

Boiler Surface T	emperature ⁰C
Parameter	LDB 1
Cylinder Side	54
Back Side	109
Burner Side	182

Table 64 TDS of Water (ppm) Parameter LDB 1 ed Water 58

Feed Water58Boiler Water3550

Feed water temperature: 68 °C

Organization : BN.

Table 65Details of BoilersParameterBNB 1BNB 2TypeWater tubeWater tubeCapacity10 Ton10 TonFuel Consumption396 ltr./ hrs396 ltr./ hrs

Table 66 Details of Burners

Parameter	BNB 1	BNB 2
Туре	Compressed air atomizing	Compressed air atomizing
Blow Motor	11 kW	11 kW
Heater	24 kW	24 kW
Fuel preheating temperature	100 °C	100 °C
Water pump	15 kW	15 kW

Table 67BNB 1 Measured on 28th June 2000

Deventer	Burner positions of full scale				
Parameter	0	25%	50%	75%	100%
Combustion Efficiency	84.0	83.2	85.3	85.7	85.8
O ₂ Percentage	8.7	9.0	44.7	2.9	3.1
CO ₂ Percentage	9.2	9.0	12.2	13.6	13.4
CO ppm	192	185	238	213	221
NO ppm	0	0	0	0	0
NO ₂ ppm	192	185	238	213	221
SO ₂ ppm	740	704	974	1185	1119
Flue Gas Temperature ^o C	208.2	216.8	231.4	239.2	234.8
Excess Air Percentage	72	76	29	16	17
Smoke No.	0	0	0	0	0

Parameter		Burner position of full scale			
Farameter	0	25%	50%	75%	100%
Combustion Efficiency	80.2	81.3	83.4	83.1	83.0
O ₂ Percentage	11.0	9.7	6.3	6.3	6.5
CO ₂ Percentage	7.4	8.4	11.0	1.0	10.8
CO ppm	1448	172	198	194	158
NO ppm	0	0	0	0	0
NO ₂ ppm	148	172	198	194	158
SO ₂ ppm	590	601	704	838	906
Flue Gas Temperature ⁰ C	227.4	235.5	249.6	253.4	250.8
Excess Air Percentage	113	87	43	43	45
Smoke No.	0	0	0	0	0

Table 68BNB 2 Measured on 28th June 2000

Table 69 Boiler Dimensions

	Boller Dimensions	
Parameter	BNB 1	BNB 2
Length (feet)	20	20
Width (feet)	12	12
Height (feet)	15	15

Table 70 Boiler Surface Temperature ⁰ C				
Parameter	BNB 1	BNB 2		
Cylinder Side	65	60		
Back Side 💻 👔	iniversity of N88atuwa, Sri	Lanka, 86		
Burner Side	lectronic The 05t Dissert	ations 108		
60 W	ww.lib.mrt.ac.lk			

Table 71

TDS of Water (ppm)				
Parameter	BNB 1	BNB 2		
Feed Water	25	25		
Boiler Water	2800	2750		

Feed water temperature: 72 °C

Organization : RR.

Tat	ole	72
Details	of	Boiler

Parameter	RRB 1	RRB 2	RRB3	
Туре	Reverse flame fire tube	3-pass fire tube	3-pass fire tube	
Capacity	6000 kg/hr	3000 lb/hr	2000 kg / hr	
Fuel Consumption	230 ltr/ hrs	63 ltr / hrs	63 ltr/ hrs	

Details of Burner				
Parameter	RRB 1	RRB 2	RRB3	
Туре	Modulate automatic control	Pressure jet atomizing	Pressure jet atomizing	
Blowe Motor	7.5 kW	3.5 kW	3.5 kW	
Heater	10 kW	3.5 kW	3.5 kW	
Fuel preheating temperature	110 °C	110 °C	110 °C	
Water pump	7.5 kW	3 kW	3 kW	

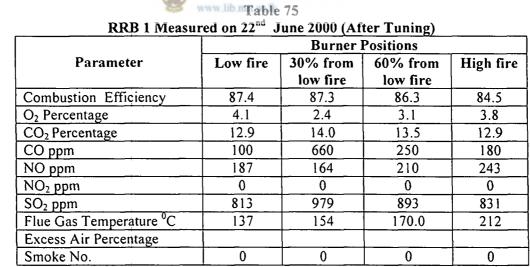

Table 73 Details of Burner

 Table 74

 RRB 1 Measured on 22nd June 2000 (Before Tuning)

***************************************	Burner Position				
Parameter	Low fire	30% from low fire	60% from low fire	High fire	
Combustion Efficiency	87.5	81.1	78.5	83.5	
O ₂ Percentage	5.3	10.3	1.4	4.8	
CO ₂ Percentage	11.9	8.0	7.2	12.2	
CO ppm	90	110	2100	120	
NO ppm	181	188	221	263	
NO ₂ ppm	0	0	0	0	
SO ₂ ppm	633	618	1125	703	
Flue Gas Temperature ^o C	135	175	183.0	226	
Excess Air Percentage					
Smoke No.	Universit ⁰	O onka	0	0	

Electronic Theses & Dissertations

	Before Tuning		After Tuning	
Parameter	Low Fire	High Fire	Low Fire	High Fire
Combustion Efficiency	88.0	86.6	87.6	85.5
O ₂ Percentage	1.2	1.5	3.2	2.0
CO ₂ Percentage	14.8	14.7	13.4	14.3
CO ppm	2800	2600	280	990
NO ppm	181	208	193	241
NO ₂ ppm	0	0	0	0
SO ₂ ppm	1210	1180	892	1019
Flue Gas Temperature ^o C	160	179	140	200
Excess Air Percentage				
Smoke No.	2	2	0	0

Table 76RRB 2 Measured on 22nd June 2000

Table 77

RRB 3 M	Aeasured	on 22 nd	June 2000
---------	----------	---------------------	-----------

Parameter	Low Fire	High Fire
Combustion Efficiency	79.5	80.7
O ₂ Percentage	12.0	11.0
CO ₂ Percentage	6.7	7.1
CO ppm	120	135
NO ppm	133	188
NO ₂ ppm	0	0
SO ₂ ppm	651	582
Flue Gas Temperature ⁰ C	175	180
Excess Air Percentage	lib.mrt.ac.lk	
Smoke No.	0	0

Table 78

n

Boller Dimensions					
Parameter	RRB 1	RRB 2	RRB3		
Length (feet)	20	7.5	7.5		
Diameter (feet)	12	12	12		

Table 79

Boiler Surface Temperature

Parameter	RRB 1	RRB 2	RRB3		
Cylinder Side	48	51	53		
Back Side	133	143	151		
Burner Side	98	88	110		

Table 80 TDS of Water (npm)

Parameter	RRB 1	RRB 2	RRB3
Feed Water	55	55	55
Boiler Water	3350	3400	3510

Feed water temperature: 73 °C

Organization : RD.

Details of Boiler				
Parameter	RDB 1	RDB 2	RDB 3	
Туре	Fire tube	Fire tube	Fire tube	
Capacity	5000 lb/hr	6000 lb/hr	2000 kg/hr	
Fuel Consumption	117 ltr/hrs	125 ltr/ hrs	113 ltr/ hrs	

Table 81

Table 82 **Details of Burner**

Parameter	RDB 1	RDB 2	RDB 3
Туре	Pressure jet atomizing	Pressure jet atomizing	Pressure jet atomizing
Blowe Motor	3 kW	3 kW	3 kW
Heater	4.5 kW	4.5 kW	4.5 kW
Fuel preheating temperature	110 °C	110 °C	110 °C
Water pump	3 kW	3 kW	3 kW

Table 83RdB 1,2&3 Measured on 27th April 2000 (Before Tuning)

Baramatar	RDB 1		RDB 2	RDB 3	
Parameter	Low Fire High Fire	Low Fire	High Fire		
Combustion Efficiency	86.6	87.4	81.4	83.8	86.5
O ₂ Percentage	6.6	3.1	8.5	7.2	3.8
CO ₂ Percentage	<u>10.7</u>	13.6	Sri Lan 9.5	10.3	12.9
CO ppm	(Ol)10 lectro	nic The80 & Diss	entations95	120	140
NO ppm	167	182	249	193	211
NO ₂ ppm	0	0	0	0	0
SO₂ ppm	665	890	538	568	792
Flue Gas Temperature ^o C	154	174	215	170	180
Excess Air Percentage					
Smoke No.	-	-	0	-	-

Table 84RdB 1,2&3 Measured on 27th April 2000 (After Tuning)

Parameter	RDB 1		RDB 2	RDB 3	
Farameter	Low Fire High Fire	RDB 2	Low Fire	High Fire	
Combustion Efficiency	87.8	87.5	88.7	86.8	86.5
O ₂ Percentage	4.4	3.0	3.8	5.2	3.8
CO ₂ Percentage	12.6	13.6	12.9	11.9	12.9
CO ppm	160	90	120	110	70
NO ppm	188	193	221	193	231
NO ₂ ppm	0	0	0	0	0
SO ₂ ppm	814	935	883	671	729
Flue Gas Temperature ⁰ C	156	170	199	160	180
Excess Air Percentage					
Smoke No.	0	0	0	0	0

HI

Table 85 **Boiler Dimensions**

Donci Dimensions				
Parameter	RDB 1	RDB 2	RDB 3	
Length (feet)	14	7.5	6.5	
Diameter (feet)	6	15	14	

Table 86

Boiler Surface Temperature ⁰ C				
Parameter	RDB 1	RDB 2	RDB 3	
Cylinder Side	48	48	53	
Back Side	134	142	138	
Burner Side	70	82	84	

Table 87				
TDS of Wa	ater (ppm)			
DDD 1	DDD 1			

Parameter	RDB 1	RDB 2	RDB 3
Feed Water	44	44	60
Boiler Water	3450	3000	3300

Feed water temperature: 76 °C

Organization TA. :

Table 88Details of Boiler		
Parameter TAB 1		
Туре	Fire tube reverse flame	
Capacity	1600 lb/hr	
Fuel Consumption	Theses & Dissen 46 ltr/ hrs	
S www.lib.n	art ac lk	

www.lib.mrt.ac.lk Table 89

Details of Burner

TAB 1
Pressure jet atomizing
2.8 kW
3.0 kW
110 0C
3 kW

Table 90TAB 01 Measured on 3rd April 2000 (Before Tuning)

	TAB 1		
Parameter	Low Fire	High Fire	
Combustion Efficiency	80.9	78.3	
O ₂ Percentage	10.4	9.3	
CO ₂ Percentage	7.9	8.7	
СО ррт	160	130	
NO ppm	190	231	
NO ₂ ppm	0	0	
SO ₂ ppm	503	571	
Flue Gas Temperature ^o C	176	218	
Excess Air Percentage			
Smoke No.	0	0	

Deiremeter	TAB 1		
Parameter	Low Fire	High Fire	
Combustion Efficiency	84.2	84.3	
O ₂ Percentage	6.4	5.4	
CO ₂ Percentage	10.4	11.7	
CO ppm	80	90	
NO ppm	179	218	
NO ₂ ppm	0	0	
SO ₂ ppm	673	708	
Flue Gas Temperature ^o C	148	187	
Excess Air Percentage			
Smoke No.	0	0	

 Table 91

 TAB 01 Measured on 3rd April 2000 (After Tuning)

Table 92

Boiler Dimensions

Parameter	Dimension
Length (feet)	8
Width (feet)	5
Height (feet)	5

Table 93

Boiler Surface Temperature ⁰C

Measurements
63
bratuwa Sri 145
es & Dissertat98s

Table 94

TDS of Water (ppm)

Parameter	Mech Mar Boiler
Feed Water	66
Boiler Water	3370

Feed water temperature: 72 °C

Organization : FW.

Table 95

Details of Boilers		
Parameter	FWB 1	
Туре	Horizontal fire tube	
Capacity	3000 kg/H @15.75 kg/cm ²	
Fuel Consumption	184 ltr / hrs	

Table 96 Details of Burner

Parameter	FWB 1	
Туре	Pressure jet atomizing	
Blow Motor	5.5 kW	
Heater	7.5 kW	
Fuel preheating	100 °C	
temperature		
Water pump	4.5 kW	

FWB 1 Measured on 10 th February 2000			
Parameter	Trial 1	Trial 2	Trial 3
Combustion Efficiency	89.7	89.7	89.6
O ₂ Percentage	10.2	10.0	9.9
CO ₂ Percentage	8.1	8.2	8.3
CO ppm	0.004	0.001	0.002
NO ppm	143	145	145
NO ₂ ppm	0	0	0
SO ₂ ppm	591	657	6644
Flue Gas Temperature ⁰ C	190.5	192.8	194.8
Excess Air Percentage			
Smoke No.	0	0	0

		Table 97	7
WB	1	Measured on 10 th	th February 2000

Boiler Dimensions

Parameter	Dimension
Length (feet)	14
Diameter (feet)	7.5

Boiler Surface Temperature ⁰ C			
Parameter Temperatu		Parameter	Temperature
Cylinder Side	63		
Back Side	138		
Burner Side	89		

5	Table 100
Y	TDS of Water (ppm)

Parameter	TDS
Feed Water	64
Boiler Water	2900

Feed water temperature: 68 °C

Organization RL. :

	Table 101Details of Boilers	
Parameter	RLB 1	RLB 2
Туре	Fire tube, 3-pass	Fire tube, two pass
Capacity	20000 lbs/hr	8000 lbs/hr
Fuel Consumption	300 ltr/hrs	129 ltr/hrs

Details of Burner		
Parameter	RLB 1	RLB 2
Туре	Pressure jet atomizing	Pressure jet atomizing
Blowe Motor	7.5 kW	4 kW
Heater	12 kW	6 kW
Fuel preheating temperature	110 °C	110 °C
Water pump	11 kW	4.5 kW

Table 102

Parameter	RL	RLB 1		RLB 2	
rarameter	Low Fire	High Fire	Low Fire	High Fire	
Combustion Efficiency	<50	84.1	<50	68.0	
O ₂ Percentage	19.4	4.1	19.0	14.0	
CO ₂ Percentage	0.2	12.9	0.2	6.1	
CO ppm	-	160	-	360	
NO ppm	-	276	-	283	
NO ₂ ppm	-	0	-	0	
SO ₂ ppm	-	916	-	416	
Flue Gas Temperature ⁰ C	165	213	160	243	
Excess Air Percentage			-		
Smoke No.	0	0	0	0	

Table 103RLB 1&2 Measured on 12th February 2000

Table 104

Boiler Dimensions		
Parameter	RLB 1	RLB 2
Length (feet)	20	10
Diameter (feet)	10	6.5

Table 105 Boiler Surface Temperature ⁰ C			
Parameter RLB 1 RLB 2			
Cylinder Side	62	58	
Back Side	152	138	
Burner Side	versity of 192atuwa, Sri I		
((()) Ele	stronic Theses & Disserta	tions	

Table 106

TDS of Water (ppm)			
Parameter	RLB 1	RLB 2	
Feed Water	52	52	
Boiler Water	3360	3400	

Feed water temperature: 75 °C

Organization : FC.

Table 107Details of Boilers

Parameter	FCB 1	FCB 2
Туре	3-pass reverse flame, wet	3-pass reverse flame, wet
	back	back
Capacity	5802 kg/hr	5448 kg/hr
Fuel Consumption	312 Ltr/hr	237 Ltr/hr

Table 108 Details of Burner

Parameter	FCB 1	FCB 2
Туре	Rotary cup automatic	Pressure jet atomizing
Blow Motor	7.5 kW	7.5 kW
Heater	12 kW	12 kW
Fuel preheating temperature	80 °C	80 °C
Water Pump	8.5 kW	8.5 kW

+

Parameter	Low flame	25% from low flame	50% from low flame	75% from low flame	High flame
Combustion Efficiency	87.2	87.2	84.2	83.5	83.5
O ₂ Percentage	2.1	2.4	6.7	6.0	5.8
CO ₂ Percentage	14.2	13.9	10.7	11.2	115
CO ppm	100	100	75	80	90
NO ppm	227	231	214	220	220
NO ₂ ppm	0	0	0	0	0
SO ₂ ppm	870	868	675	700	721
Flue Gas Temperature ^o C	239	238	256	270	282
Excess Air Percentage	10	13	44	38	36
Smoke No.	0	0	0	0	0

Table 109FCB 1 Measured on November 1999

Table 110

FCB 2 Measured on November 1999 (Before Tuning)

Parameter	Low flame	20% from low flame	40% from low flame	60% from low flame	High flame
Combustion Efficiency	795	80.0	81.0	82.8	85.2
O ₂ Percentage	12.8	12.4	11.5	9.1	5.8
CO ₂ Percentage	6.2	6.3	7.1	8.8	11.4
CO ppm	2100	1800	200	100	100
NO ppm	111	114	138	193	254
NO ₂ ppm	0 Oniversi	ty of MOratuwa	Sri LanQa	0	0
SO ₂ ppm	400ctron	c The413c Dise	entati 470	585	767
Flue Gas Temperature ^o C	233	234	237	246	248
Excess Air Percentage	156	142	116	72	36
Smoke No.	0	0	0	0	0

 Table 111

 FCB 2 Measured on November 1999 (After Tuning)

Parameter	Low flame	20% from low flame	40% from low flame	60% from low flame	High flame
Combustion Efficiency	83.7	83.5	83.4	82.8	85.2
O ₂ Percentage	6.0	6.4	6.6	6.8	5.8
CO ₂ Percentage	11.3	10.9	10.6	10.4	11.4
CO ppm	90	85	90	75	90
NO ppm	224	228	232	240	254
NO ₂ ppm	0	0	0	0	0
SO ₂ ppm	660	689	680	585	767
Flue Gas Temperature ⁰ C	235	238	240	246	248
Excess Air Percentage	38	41	44	46	36
Smoke No.	0	0	0	0	0

Table 112 **Boiler Dimensions**

Doner Dimensions				
Parameter	FCB 1	FCB 2		
Length (feet)	18	18		
Diameter (feet)	8	8		

Table 113 0C **.** . **T**.

Boiler Surface Temperature ⁰ C				
Parameter	FCB 1	FCB 2		
Cylinder Side	52	57		
Back Side	144	153		
Burner Side	98	88		

Table 114

	TDS of Water (ppm	I)
Parameter	FCB 1	FCB 2
Feed Water	53	53
Boiler Water	3300	3500

Fee water temperature: 72 °C

Water pump

Organization TL. :

Details of Boilers		
Parameter	Description	
Туре	3-pass, fire tube	
Capacity	2000 kg/hr	
Fuel Consumption	of Moratuwa, Sil 10°ltr/ hrs	
Carl Electronic	Theses & Dissertations	

Table 115

www.lib.mrt.ac.lk Table 116

Details of Burner Description Parameter Pressure jet atomizing Type Blow Motor 3.5 kW Heater 4.0 kW Fuel preheating 110 °C temperature

Table 117 Measured on 21st April 1999

3 kW

	Tri	Trial 1		Trial 2		Trial 3	
Parameter	High Fire	Low Fire	High Fire	Low Fire	High Fire	Low Fire	
Combustion Efficiency	86.6	85.5	86.4	85.7	86.2	85.1	
O ₂ Percentage	3.4	7.8	3.2	7.5	3.3	8.5	
CO ₂ Percentage	13.2	9.7	13.2	9.9	13.2	9.1	
CO ppm	280.0	153.0	599.0	690.0	657.0	635.0	
NO ppm	214	193	221	182	231	201	
NO ₂ ppm	0	0	0	0	0	0	
SO ₂ ppm	1120	578	1073	634	982	524	
Flue Gas Temperature ⁰ C	204	178	208	178	210	177	
Excess Air Percentage							
Smoke No.	0	0	0	0	0	0	

Table 118 Boiler Dimensions

Parameter	Measurement
Length (feet)	10
Width (feet)	6
Height (feet)	6

Table 119

Boiler Surface Temperature

Parameter	Measurement
Body Side	70
Back Side	163
Burner Side	118

Table 120

TDS of Water (ppm)		
Parameter	Measurement	

Feed Water	60
Boiler Water	2900
F	1 75 00

Feed water temperature: 75 °C

Organization : TK.

Table 121 Details of Boilers

Parameter	ТКВ 2		
Туре	Reverse flame single pass	Reverse flame single pass	
Capacity	10 tons/hr	10 tons/hr	
Fuel Consumption	275 ltr/ hrs	275 ltr/ hrs	

Table 122 Details of Burner

Details of Burner		
Parameter	TKB 1	ТКВ 2
Туре	Pressure jet atomizing	Pressure jet atomizing
Blowe Motor	11 kW	11 kW
Heater	12 kW	12 kW
Fuel preheating temperature	100 °C	100 °C
Water pump	7.5 kW	7.5 kW

Table 123TKB 1&2 Measured on 23rd May 2000

Parameter	TKB 1		TKB 2	
Farameter	High	Low	High	Low
Combustion Efficiency	81.5	83.5	86.3	85.8
O ₂ Percentage	3.5	3.6	2.4	4.3
CO ₂ Percentage	13.1	13.1	14.1	12.6
CO ppm	120	135	960	70
NO ppm	283	278	211	193
NO ₂ ppm	0	0	0	0
SO ₂ ppm	968	983	1018	892
Flue Gas Temperature ⁰ C	275	227	182	174
Excess Air Percentage				
Smoke No.	2	2	0	0

Table 124

Boiler Dimensions		
Parameter	TKB 1	TKB 2
Length (feet)	18	18
Diameter (feet)	10	10

Table 125

Boiler Surface Temperature ^o C		
Parameter	TKB 1	TKB 2
Cylinder Side	75	68
Back Side	183	210
Burner Side	115	123

Table 126TDS of Water (ppm)ParameterTKB 1TKB 2Feed Water5656Boiler Water35003400

Feed water temperature: 80 °C

Organization : TN.

Table 127 Details of Boiler TNB 1

Parameter	TNB 1	TNB 2
Туре	3 Pass fire tube	3 Pass fire tube
Capacity	1250 kg/hr	1600 kg/hr
Fuel Consumption	Electro 75: Ltr/hr& Dissertations	100 Ltr/hr
	manage life must on The	

Table 128 Details of Burner

Details of Duffiel		
Parameter	TNB 1	TNB 2
Туре	Pressure jet atomizing	Pressure jet atomizing
Blow Motor	3.5 kW	4.0 kW
Heater	4.5 kW	4.5 kW
Fuel preheating	100 °C	100 °C
temperature		
Pump motor	4.5 kW	4.5 kW

Table 129TNB 1&2 Measured on 24th May 2000 (Before tuning)

D	TNB 1		TNB 2	
Parameter	High	Low	High	Low
Combustion Efficiency	78.1	82.6	78.4	78.6
O ₂ Percentage	7.6	5.1	7.5	10.9
CO ₂ Percentage	10.0	12.2	10.1	7.6
CO ppm	140	230	400	300
NO ppm	381	298	361	283
NO ₂ ppm	0	0	0	0
SO ₂ ppm	831	743	635	583
Flue Gas Temperature ⁰ C	340	248	323	250
Excess Air Percentage				
Smoke No.	0	0	0	0

2

	TN	B 1	TNB 2	
Parameter	High	Low	High	Low
Combustion Efficiency	80.2	85.2	80.1	82.4
O ₂ Percentage	4.4	3.0	6.5	7.0
CO ₂ Percentage	12.5	13.4	11.4	10.8
CO ppm	180	130	360	500
NO ppm	310	280	420	198
NO ₂ ppm	00	0	0	0
SO ₂ ppm	820	930	570	592
Flue Gas Temperature ^o C	344	248	318	230
Excess Air Percentage				[
Smoke No.	0	0	0	0

Table 130TNB 1&2 Measured on 24th May 2000 (After tuning

Table 131 oiler Dimensio

_

Boiler Dimensions			
Parameter	TNB 1	TNB 2	
Length (Feet)	15	17	
Diameter (Feet)	6	6	

Table 132Boiler Surface Temperature		
Parameter	TNB 1	TNB 2
Cylinder Side	98	110
Back Side	183	195
Burner Side 🚊	University of 68 ratuwa, Sri Lunka,	63
	Electronic Theses & Dissertations	

Table 133

	ΓDS of Water (ppm	ı)
Parameter	TNB 1	TNB 2
Feed Water	63	63
Boiler Water	2800	3000

Feed water temperature: 78 °C

Organization : CS.

Table 134 Details of Boilers					
Parameter	CSB 1	CSB 2	CSB 3		
Туре	Horizontal, fire tube	Horizontal fire tube	Horizontal fire tube		
Capacity	6000 kg/hr	5000 pph	2000 kg/hr		
Fuel Consumption	165 Ltr/hr	115 Ltr/hr	115 Ltr/hr		

Table 135 Details of Burner

Details of Durner						
Parameter	CSB 1	CSB 2	CSB 3			
Туре	Pressure jet atomize Modulating control	Pressure jet atomizing high low	Pressure jet atomizing high low			
Blowe Motor	15 kW	4 kW	4.5 kW			
Heater	12 kW	8 kW	13.2 kW			
Fuel preheating temperature	110 °C	110 °C	110 °C			
Water pump	5 kW	3 kW	3 kW			

*

Parameter	CSB 1			CS	CSB 2	
rarameter	Low Fire	Middle Fire	High Fire	Low Fire	High Fire	
Combustion Efficiency	79.7	79.6	83.4	81.1	81.0	
O ₂ Percentage	10.1	10.0	6.9	6.2	4.1	
CO ₂ Percentage	8.2	8.1	10.6	11.1	12.8	
CO ppm	170	160	210	180	90	
NO ppm	218	231	223	272	310	
NO ₂ ppm	0	0	0	0	0	
SO ₂ ppm	568	633	594	631	879	
Flue Gas Temperature ⁰ C	203	206	198.0	250	298	
Excess Air Percentage	87	87	47	40	22	
Smoke No.	0	1	2	0	1	

Table 136 CSB 1&2 Measured on 9th August 2000

Table 137 rod on 20th Fohrmory 2000

COD 4

Parameter	Low flame	25% from low flame	50% from low flame	75% from low flame	High flame
Combustion Efficiency	83.0	82.0	83.0	82.0	82.9
O ₂ Percentage	8.2	10	6.1	6.5	4.3
CO ₂ Percentage	9.6	8.2	11.0	10.8	12.7
CO ppm	360	280	119	230	189
NO ppm	386	287	420	368	398
NO ₂ ppm	Un0versity	of Mor:Ouwa, Sr	i LankaO	0	0
SO ₂ ppm	710	624	ation 738	922	1072
Flue Gas Temperature ^o C	215	216	236	250	268
Excess Air Percentage					
Smoke No.	0	0	0	0	0

Table 138CSB 2&3 Measured on 20th February 2000

Parameter	CSB 3		CSB 2	
Farameter	Low Fire High Fire		Low Fire	High Fire
Combustion Efficiency	84.5	77.2	70.3	75.8
O ₂ Percentage	4.3	11.3	11.7	5.7
CO ₂ Percentage	12.6	7.2	6.8	11.5
CO ppm	270	560	420	258
NO ppm	178	218	288	335
NO ₂ ppm	0	0	0	0
SO ₂ ppm	978	635	583	729
Flue Gas Temperature ^o C	219	230	308	376
Excess Air Percentage				
Smoke No.	0	0	0	0

Table 139

Boiler Dimensions CSB 2 CSB 3 Parameter CSB 1 Length (feet) 12 8.5 5.8 Diameter or Width (feet) 9 5.5 10.5 Height (feet) -5 -

-

Table 140Boiler Surface Temperature

Doner Surface Temperature					
Parameter	CSB 1	CSB 2	CSB 3		
Cylinder Side	60	55	55		
Back Side	180	108	140		
Burner Side	75	180	125		

Table 141

TDS of Water (ppm)						
Parameter CSB 1 CSB 2 CSB 3						
Feed Water	610	610	610			
Boiler Water	6300	5800	7680			

Feed water temperature: 60 °C

Organization : TH.

Table 142

Details of Bollers					
Parameter	THB 1	THB 2	THB 3		
Туре	Horizontal, 3-pass fire tube	Horizontal fire tube	Horizontal fire tube		
Capacity	12000 lb/hr	12000 lb/hr	12000 lb/hr		
Fuel Consumption	285 Ltr/hr	275 Ltr.hr	295 Ltr/hr		

Table 143

Details of Burner							
Parameter	(C) THBtrbnic Theses &	DissertatioTHB 2	THB 3				
Туре	Pressure jet atomize	Pressure jet atomize	Pressure jet atomize				
	Modulating control	Modulating control	Modulating control				
Blowe Motor	5.5 kW	5.5 kW	5.5 kW				
Heater	10 kW	10 kW	10 kW				
Fuel preheating	110 °C	110 °C	110 °C				
temperature							
Water pump	7.5 kW	7.5 kW	7.5 kW				

Table 144TNB 1 Measured on 16th February 2001 (Before tuning)

Da	Burner Position of full scale				
Parameter	Low	25%	50%	75%	High
O ₂ %	8.4	9.3	8.8	8.1	7.2
CO ₂ %	9.4	8.8	9.1	9.6	10.3
CO PPm	40	20	20	20	20
NO PPm	161	166	196	211	226
NO ₂ PPm	0	0	0	0	0
SO ₂ PPm	974	901	942	1010	1066
Flue Temp ⁰ C	213	223	238	248	252
Excess Air %	67	80	74	64	53
Smoke No.	0	0	0	0	0
Efficiency %	84.2	82.7	82.2	82.2	82.6

Demonstern	Burner Position of full scale				
Parameter	Low	25%	50%	75%	High
O ₂ Percentage	5.1	4.5	4.6	4.5	4.6
CO ₂ Percentage	11.9	12.4	12.3	12.3	12.3
CO PPm	80	170	120	50	60
NO PPm	141'	216	214	163	225
NO ₂ PPm	0	0	0	0	0
SO ₂ PPm	921	849	859	957	975
Flue Temp. ^o C	197	207	211	210	212
Excess Air %	32	27	28	27	28
Smoke No.	0	0	0	0	0
Efficiency %	87.0	86.5	86.3	86.5	86.2

 Table 145

 TNB 1 Measured on 16th February 2001 (After tuning)

Table 146TNB 2 Measured on 16th February 2001 (Before tuning)

Danamatan	Burner Position of full scale					
Parameter	Low	25%	50%	75%	High	
O ₂ Percentage	7.4	8.2	8.0	8.5	8.0	
CO ₂ Percentage	10.1	9.6	9.7	9.4	9.7	
CO PPm	40	30	40	40	40	
NO PPm	175	174	177	182	187	
NO ₂ PPm	0	0	0	0	0	
SO ₂ PPm	1042	957	968	931	948	
Flue Temp. ⁰ C	213(0)	Electron 214 Juses &	216	224	225	
Excess Air %	55 🐷	www.lib64t.ac.lk	63	68	63	
Smoke No.	0	0	0	0	0	
Efficiency %	84.5	83.9	83.9	83.1	83.4	

Table 147 16th Eab

01 / 1

INB 2	ivieasured on 10	February 2001	
		Burner Position	of full coolo

Danamatan		Burner	Position of fu	ll scale	
Parameter	Low	25%	50%	75%	High
O ₂ Percentage	9.0	9.3	7.2	1.0	2.2
CO ₂ Percentage	9.0	8.7	10.3	15.0	14.1
CO PPm	150	200	100	9300	150
NO PPm	148	158	213	202	235
NO ₂ PPm	0	0	0	0	0
SO ₂ PPm	235	518	784	855	861
Flue Temp. ^o C	199.5	211.6	232.3	236.1	243.1
Excess Air %	75	81	53	5	11
Smoke No.	0	0	0	01	0
Efficiency %	84.2	83.2	83.6	86.5	85.8

·			I coruary 200	يجاكر ويستعلمك الروج ومسكان ومعا		
Parameter	Burner Position of full scale					
rarameter	Low	25%	50%	75%	High	
O ₂ Percentage	5.2	5.3	4.3	2.1	2.3	
CO ₂ Percentage	11.8	11.8	12.5	14.2	14.0	
CO PPm	40	20	20	30	50	
NO PPm	174	200	235	248	253	
NO ₂ PPm	0	0	0	0	0	
SO ₂ PPm	776	823	907	1037	902	
Flue Temp. ^o C	216.5	226.9	245.8	259.4	256.0	
Excess Air %	33	33	26	11	12	
Smoke No.	0	0	0	0	0	
Efficiency %	85.7	85.2	84.8	85.2	85.2	

Table 148TNB 3 Measured on 16th February 2001

Table 149 Boiler Dimensions

	Boller Dimens	sions	
Parameter	THB 1	THB 2	THB 3
Length (feet)	14	14	14
Diameter (feet)	7	7	7

	Table Boiler Surface T		
Parameter	THB 1	THB 2	THB 3
Cylinder Side	L U48ersity of Mo	ratuwa, Sri 4.5nka.	46
Back Side	(Q) E108onic These	& Dissert 110s	106
Burner Side	104	112	109

Table 151 TDS of Water (ppm)

Parameter	THB 1	THB 2	THB 3
Feed Water	65	65	65
Boiler Water	4200	3750	3800

Feed water temperature: 72 °C

Organization : TS.

Table 152 Details of Boiler

	Details o	I Boller	
Parameter	TSB 1	TSB 2	TSB 3
Туре	Fire Tube	Fire Tube	Fire Tube
Capacity	1120 kg/hr	1120 kg/hr	2000 kg/hr
Fuel Consumption	68 Ltr/hr	68 Ltr/hr	105 Ltr/hr

Table 153 Details of Burner

Parameter	TSB 1	TSB 2	TSB 3
Туре	Pressure Jet Atomizing	Pressure Jet Atomizing	Pressure Jet Atomizing
Blow Motor	3 kW	3 kW	5 kW
Heater	4.5 kW	4.5 kW	6 kW
Fuel preheating temperature	100 °C	100 °C	100 °C
Water Pump	3 kW	3 kW	4 kW

	TSB 1		TSB 2		TSB 3	
Parameter	High Fire	Low Fire	High Fire	Low Fire	High Fire	Low Fire
Combustion Efficiency	79.2	80.9	84.8	87.1	82.4	84.1
O ₂ Percentage	11.2	11.7	7.2	10.3	4.2	8.3
CO ₂ Percentage	7.2	6.8	10.1	7.8	12.3	9.3
CO ppm	140	120	182	119	262	169
NO ppm	140	120	182	119	262	169
NO ₂ ppm	0	0	0	0	0	0
SO₂ ppm	529	495	906	666	1032	734
Flue Gas Temperature ^o C	237.1	206.2	211.5	139.4	298.7	210.7
Excess Air Percentage	116	128	53	98	25	66
Smoke No.	0	0	0	0	0	0

Table 154TSB 1,2&3 Measured on 25th July 2000

Table 155 Boiler Dimensio

· · · · · · · · · · · · · · · · · ·	Boiler Di	mensions	
Parameter	TSB 1	TSB 2	TSB 3
Length (Feet)	14	14	18
Diameter (Feet)	7.5	7.5	8.0

Table 156	
Boiler Surface Temperature ⁰ C	2

Parameter	TSB 1	TSB 2	TSB 3				
Cylinder Side	LS8ersity of Ma	ratuwa, Sri 5.5nka.	54				
Back Side	138 These	& Dissent1511s	163				
Burner Side	122	109	118				

Table 157

Parameter	TSB 1	TSB 2	TSB 3	
Feed Water	56	56	56	
Boiler Water	3300	3000	3600	

Feed water temperature: 73 °C

I.

ł

Organization : PN.

Table 158 Details of Boiler

Parameter	Description
Туре	4-pass, fire tube
Capacity	4000 kg/hr
Fuel Consumption	240 Ltr/hr

Table 159 Details of Burner

Description				
Pressure Jet Atomizing				
3 kW				
5 kW				
100 °C				
5 kW				

Parameter	High Fire	Low Fire 80.9	
Combustion Efficiency	83.0		
O ₂ Percentage	7.5	10.8	
CO ₂ Percentage	10.1	7.9	
CO ppm	160	120	
NO ppm	220	192	
NO ₂ ppm	0	0	
SO ₂ ppm	682	634	
Flue Gas Temperature ⁰ C	214	189	
Excess Air Percentage	52	100	
Smoke No.	1	1	

Table 160PNB 1 Measured on 11th July 2000

Table 161

Boiler Dimensions				
Parameter	Boiler			
Length (feet)	15			
Diameter (feet)	8			

Table 162 Boiler Surface Temperature – ⁰C

Parameter	Boiler		
Cylinder Side Contract of Mor	atuwa, Sri Lan48		
Back Side	140		
Burner Side	105		

Table 163

Parameter	Boiler
Feed Water	65
Boiler Water	3400

Feed water temperature: 80 °C

Description of boiler identification number

Symbol	Identification
First two character	Organization
Third character and first digit	Organizational serial number of the boiler

APPENDIX B RESULTS

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Tab	le ()1
-----	------	----

	Boiler	Exergytic	Flue gas	Steam		CO ₂ Emission	Energy
No.	Identification	Efficiency	Temperature	Output	Excess air	(kg/ kg of	Efficiency
	Number	(%)	(°C)	(kg/hr)	(%)	steam)	(%)
1	CUB10797	26.77	278	3792	24.40	0.215	82.15
2	CUB20797	27.14	254	3845	23.60	0.212	83.30
3	CUB30797	26.84	253	3803	34.80	0.215	82.40
4	CUB10698	27.34	232	3874	27.60	0.211	83.95
5	CUB20698	25.61	252	3628	78.00	0.225	78.60
6	CUB30698	26.39	289	3738	29.20	0.219	81.00
7	CUB40698	26.55	20)	3761	17.50	0.217	81.49
8	CUB30799	27.13	242	3844	29.20	0.217	83.30
9	CUB40799	26.45	238	3747	34.00	0.212	
							81.19
10	CUB2B/T0799	25.42	184	3600	156.00	0.226	78.00
11	CUB2A/T0799	27.23	188	3858	47.00	0.212	83.60
12	CUB1B/T1099	22.58	193	3196	194.00	0.253	69.25
13	CUB3B/T1099	28.37	199	4020	4.50	0.201	87.10
14	CUB4B/T1099	26.08	220	3678	87.00	0.222	79.69
15	CUB1A/T1099	27.19	223	3851	33.20	0.212	83.45
16	CUB3A/T1099	27.43	210	3886	7.00	0.210	84.20
17	CUB4A/T1099	27.79	225	3921	33.20	0.208	84.95
18	CUB1B/T10299		290	3639	34.80	0.225	78.85
19	CUB2B/T10299		254	3808	34.80	0.215	82.50
20	CUB4B/T10299		274	3632	59.40	0.225	78.69
21	CUB1A/T10299		280	3754	26.80	0.218	81.35
22	CUB2A/T10299		246	3854	23.60	0.212	83.50
23	CUB4A/T10299		266	3812	30.80	0.214	82.59
24	CUB1B/T0800	25.66	269b.mrt.a	Ik 3634	56.90	0.225	78.75
25	CUB2B/T0800	25.66	247	3840	24.40	0.225	83.20
26	CUB4B/T0800	25.42	226	3600	156.00	0.221	77.99
27	CUB1A/T0800	26.79	268	3796	28.40	0.215	82.25
28	CUB4A/T0800	27.64	210	3900	26.00	0.209	84.49
29	CUB1B/T0101	24.56	292	3477	97.80	0.234	75.35
30	CUB3B/T0101	27.59	229	3909	13.00	0.209	84.70
31	CUB4B/T0101	25.85	223	3646	118.80	0.223	78.99
32	CUBIA/T0101	26.31	310	3727	22.80	0.219	80.75
33	CUB4A/T0101	26.37	228	3720	27.60	0.220	80.59
34	CUB1B/T0501	26.18	261	3708	55.80	0.220	80.35
35	CUB3B/T0501	26.62	289	3771	20.00	0.217	81.70
36	CUB4B/T0501	26.73	301	3816	9.00	0.212	82.69
37	CUBIA/T0501	26.63	265	3773	17.50	0.216	81.75
38	CUB4A/T0501	26.34	349	3715	27.60	0.219	80.49
39	BLB1B/T1100	28.85	208	3787	23.60	0.199	85.00
40	BLB1A/T1100	28.89	213	3792	25.20	0.199	85.10
41	BLB1B/T0401	27.85	255	3654	30.80	0.206	82.00
42	BLB1A/T0401	28.32	249	3716	22.80	0.203	83.40
43	FNB1B/T1100	28.21	187	1535	35.50	0.205	85.48
44	FNBIA/TI100	28.46	188	1549	30.00	0.203	86.28
45	TBB10900	27.24	248	3243	21.00	0.213	83.43
46	BCB1B/T0900	28.22	240	1350	4.50	0.193	84.98
47	BCB2B/T0900	27.91	180	1668	81.00	0.207	83.98
48	BCB1A/T0900	27.68	256	1324	10.70	0.209	83.38
49	BCB2A/T0900	28.16	185	1683	47.00	0.205	84.78
50	LGB1B/T0900	27.83	200	1960	8.00	0.206	84.84
51	LGB2B/T0900	25.14	200	536	159.80	0.229	76.87
52	LGB1A/T0900	27.57	195	1942	16.30	0.210	84.14
53	LGB2A/T0900	27.78	205	585	17.00	0.208	83.87

¥

Table 01 (Contd.)

	Boiler	Exergytic	Flue gas	Steam		CO ₂ Emission	Energy
No.	Identification	Efficiency	Temperature	Output	Excess air	(kg/ kg of	Efficiency
	Number	(%)	(°C)	(kg / hr)	(%)	steam)	(%)
54	LDB1B/T0700	27.28	236	2371	11.40	0.211	83.52
55	LBDIA/T0700	26.82	233	2331	19.50	0.216	82.12
56	BNB10600	27.86	231	5759	27.60	0.207	84.25
57	BNB20600	27.24	250	5629	49.70	0.212	82.35
58	RRB1B/T0600	25.22	183	3013	114.20	0.229	77.13
59	RRB1A/T0600	27.78	170	3318	17.50	0.208	84.93
60	RRB2B/T0600	27.75	180	906	7.50	0.205	85.02
61	RRB2A/T0600	27.42	200	895	10.00	0.197	83.92
62	RRB3A/T0600	25.80	180	842	105.00	0.224	78.97
63	RDB1B/T0400	28.26	154	1717	43.40	0.205	85.83
64	RDB1A/T0400	28.65	156	1741	25.20	0.202	87.03
65	RDB2B/T0400	26.50	215	1726	65.00	0.218	80.53
66	RDB2A/T0400	28.90	200	1883	21.00	0.200	87.83
67	RDB3B/T0400	27.25	170	1598	49.20	0.212	82.84
68	RDB3A/T0400	28.23	160	1656	31.60	0.205	85.84
69	TAB1B/T0400	25.02	218	600	76.50	0.230	76.88
70	TAB1A/T0400	26.93	187	646	33.20	0.214	82.88
71	FWB1B/T0200	26.01	193	2482	87.00	0.223	80.03
72	RLB10200	28.75	213	4258	22.80	0.212	82.90
73	RLB20200	21.95	243	1477	194.00	0.262	66.88
74	FCB11199	27.01	270	4391	38.00	0.215	82.49
75	FCB2B/T1199	26.17	237	3949	116.50	0.221	79.94
76	FCB2A/T1199	26.95	240 sity of		anka43.40	0.215	82.34
77	TLB10499	28.89	204	1611	19.00	0.200	85.25
78	TKB10500	26.55	275	3808	19.50	0.218	80.08
79	ТКВ20500	28.10	182	4031	12.80	0.205	84.87
80	TNB1B/T0500	25.02	340	978	44.60	0.231	75.80
81	TNB1A/T0500	25.71	344	1005	25.40	0.224	77.90
82	TNB2B/T0500	25.25	323	1287	52.50	0.229	76.34
83	TNB2A/T0500	25.81	318	1316	42.50	0.224	78.04
84	CSB10800	17.12	236	2159	87.00	0.337	78.37
85	CSB20800	25.73	298	1540	22.80	0.225	80.18
86	CSB10201	26.36	236	2253	38.90	0.221	81.77
87	CSB20201	23.78	376	1437	35.60	0.241	74.88
88	CSB30201	24.39	230	1463	49.20	0.235	76.24
89	THB1B/T0201	26.15	238	3876	24.40	0.222	81.47
90	THB1A/T0201	27.46	211	4071	109.60	0.211	85.57
91	THB20201	26.69	216	3818	49.20	0.217	83.17
92	THB3B/T0201	26.61	232	4082	111.90	0.218	82.88
93	THB3A/T0201	27.00	246	4141	69.20	0.215	84.08
94	TSB10500	25.31	237	897	26.80	0.228	77.44
95	TSB20500	27.14	212	962	58.00	0.213	83.09
96	TSB30500	26.32	299	1431	23.60	0.219	80.82
97	PNB10500	24.58	189	3072	101.40	0.235	80.63

Vé

	Boiler		Cost of	Steam at		Cost of Steam at						
No.	Identification	Differe		ces - Exerg	v Based	Different Fuel Prices - Energy Based						
	Number	-		./MJ)		(Rs./MJ)						
		Rs.16.50	Rs.18.00	Rs.20.00	Rs.25.00	Rs.16.50	Rs.18.00	Rs.20.00	Rs.25.00			
1	CUB10797	1.49	1.61	1.78	2.19	0.51	0.56	0.62	0.77			
2	CUB20797	1.47	1.59	1.75	2.16	0.50	0.55	0.61	0.76			
3	CUB30797	1.49	1.61	1.75	2.19	0.51	0.56	0.62	0.77			
4	CUB10698	1.46	1.58	1.75	2.15	0.50	0.55	0.61	0.76			
5	CUB20698	1.55	1.68	1.85	2.28	0.53	0.58	0.64	0.80			
6	CUB30698	1.51	1.63	1.79	2.21	0.52	0.57	0.63	0.79			
7	CUB40698	1.50	1.63	1.80	2.22	0.51	0.56	0.62	0.77			
8	CUB30799	1.47	1.60	1.77	2.19	0.50	0.55	0.61	0.76			
9	CUB40799	1.51	1.63	1.79	2.21	0.51	0.56	0.62	0.77			
10	CUB2B/T0799	1.56	1.69	1.87	2.30	0.53	0.58	0.64	0.80			
11	CUB2A/T0799	1.46	1.58	1.75	2.15	0.50	0.55	0.61	0.76			
12	CUB1B/T1099	1.76	1.90	2.10	2.58	0.60	0.65	0.73	0.91			
13	CUB3B/T1099	1.41	1.52	1.68	2.07	0.48	0.52	0.58	0.73			
14	CUB4B/T1099 CUB1A/T1099	1.50	1.63	1.80	2.22	0.52	0.57	0.63	0.79			
16	CUB1A/T1099 CUB3A/T1099	1.47	1.59	1.75	2.16	0.50	0.55	0.61	0.76			
17	CUB4A/T1099 CUB4A/T1099	1.45 1.41	1.57 1.53	1.74	2.14	0.50	0.55	0.61	0.76			
18	CUB1B/T10299	1.41	1.53	1.69 1.85	2.09	0.49	0.53	0.59	0.74			
19	CUB2B/T10299	1.33	1.60	1.83	2.28	0.53	0.58	0.64	0.80			
20	CUB4B/T10299	1.48	1.65	1.77	2.18 2.25	0.51 0.52	0.56	0.62	0.77			
21	CUB1A/T1029	1.52	1.63	1.80	2.23	0.52	0.57	0.63	0.79			
22	CUB2A/T1029	1.46	1.59	1.80	2.21	0.51	0.56 0.55	0.62	0.77			
23	CUB4A/T1029	1.45			2.13 tuwa2514.anka		0.55	0.61 0.61	0.76			
24	CUB1B/T0800	1.55		troni 1.85 ses	Di 2.28 ons	0.50	0.53	0.61	0.76 0.80			
25	CUB2B/T0800	1.55		1.85	2.28	0.50	0.58	0.61	0.80			
26	CUB4B/T0800	1.56	1.69	1.87	2.30	0.53	0.55	0.64	0.70			
27	CUB1A/T0800	1.49	1.61	1.78	2.19	0.51	0.56	0.62	0.30			
28	CUB4A/T0800	1.42	1.54	1.70	2.10	0.49	0.53	0.59	0.74			
29	CUB1B/T0101	1.62	1.75	1.93	2.38	0.56	0.61	0.68	0.85			
30	CUB3B/T0101	1.45	1.57	1.73	2.12	0.49	0.53	0.59	0.74			
31	CUB4B/T0101	1.51	1.64	1.81	2.24	0.52	0.57	0.63	0.79			
32	CUBIA/T0101	1.52	1.64	1.81	2.23	0.52	0.57	0.63	0.79			
33	CUB4A/T0101	1.48	1.61	1.78	2.20	0.51	0.56	0.62	0.77			
34	CUB1B/T0501	1.52	1.65	1.82	2.24	0.52	0.57	0.63	0.79			
35	CUB3B/T0501	1.50	1.62	1.79	2.20	0.51	0.56	0.62	0.77			
36	CUB4B/T0501	1.46	1.59	1.75	2.17	0.50	0.55	0.61	0.76			
37	CUB1A/T0501	1.50	1.62	1.79	2.20	0.51	0.56	0.62	0.77			
38	CUB4A/T0501	1.49	1.61	1.78	2.20	0.51	0.56	0.62	0.77			
39	BLB1B/T1100	1.34	1.45	1.61	1.98	0.49	0.53	0.59	0.74			
40	BLBIA/T1100	1.34	1.45	1.60	1.98	0.49	0.53	0.59	0.74			
41	BLB1B/T0401	1.39	1.51	1.66	2.06	0.52	0.57	0.63	0.79			
42	BLBIA/T0401	1.36	1.48	1.64	2.02	0.50	0.55	0.61	0.76			
43	FNB1B/T1100	1.41	1.53	1.68	2.07	0.50	0.55	0.61	0.76			
44	FNBIA/TI100	1.40	1.51	1.67	2.05	0.50	0.55	0.61	0.76			
45	TBB10900	1.44	1.56	1.72	2.13	0.50	0.55	0.61	0.76			
46 47	BCB1B/T0900	1.39	1.51	1.66	2.05	0.50	0.55	0.61	0.76			
47	BCB2B/T0900	1.40	1.52	1.68	2.07	0.50	0.55	0.61	0.76			
48	BCB1A/T0900	1.42	1.54	1.70	2.09	0.51	0.56	0.62	0.77			
49 50	BCB2A/T0900 LGB1B/T0900	1.39	1.51	1.67	2.06	0.50	0.55	0.61	0.76			
51	LGB1B/10900 LGB2B/T0900	1.40 1.58	1.52	1.68	2.08	0.49	0.53	0.59	0.74			
52	LGB2B/10900 LGB1A/T0900	1.58	1.71 1.54	1.88	2.32	0.61	0.66	0.74	0.92			
53	LGB1A/T0900	1.42	1.54	1.70 1.71	2.10	0.50	0.55	0.61	0.76			
<u> </u>	2002/010900	1.45		1.71	2.10	0.56	0.61	0.68	0.85			

Table 02

¥

Table 02 (Contd.)

	Boiler			Steam at		Cost of Steam at						
No.	Identification	Differe		ces - Exergy	Based	Different Fuel Prices - Energy Based						
	Number			./MJ)		(Rs./MJ)						
		Rs.16.50	Rs.18.00	Rs.20.00	Rs.25.00	Rs.16.50	Rs.18.00	Rs.20.00	Rs.25.00			
54	LDB1B/T0700	1.44	1.56	1.73	2.13	0.50	0.55	0.61	0.76			
55	LBD1A/T0700	1.47	1.59	1.75	2.17	0.51	0.56	0.62	0.77			
56	BNB10600	1.40	1.52	1.68	2.07	0.49	0.53	0.59	0.74			
57	BNB20600	1.43	1.55	1.72	2.12	0.49	0.53	0.59	0.74			
58	RRB1B/T0600	1.56	1.70	1.87	2.31	0.54	0.59	0.65	0.82			
59	RRB1A/T0600	1.43	1.55	1.70	2.10	0.49	0.53	0.59	0.74			
60	RRB2B/T0600	1.44	1.55	1.71	2.11	0.52	0.57	0.63	0.79			
61	RRB2A/T0600	1.45	1.57	1.73	2.13	0.50	0.55	0.61	0.76			
62	RRB3A/T0600	1.54	1.67	1.84	2.26	0.53	0.58	0.64	0.80			
63	RDB1B/T0400	1.38	1.50	1.65	2.04	0.48	0.52	0.58	0.73			
64	RDB1A/T0400	1.36	1.48	1.63	2.02	0.47	0.51	0.57	0.71			
65	RDB2B/T0400	1.48	1.60	1.77	2.18	0.51	0.56	0.62	0.77			
66	RDB2A/T0400	1.36	1.47	1.63	2.01	0.47	0.51	0.57	0.71			
67	RDB3B/T0400	1.45	1.57	1.73	2.14	0.50	0.55	0.61	0.76			
68	RDB3A/T0400	1.40	1.52	1.67	2.06	0.49	0.53	0.59	0.74			
69	TAB1B/T0400	1.61	1.74	1.92	2.35	0.57	0.62	0.69	0.86			
70	TAB1A/T0400	1.50	1.62	1.78	2.19	0.53	0.58	0.64	0.80			
71	FWB1B/T0200	1.52	1.65	1.82	2.24	0.52	0.57	0.63	0.79			
72	RLB10200	1.44	1.56	1.72	2.13	0.50	0.55	0.61	0.76			
73	RLB20200	1.78	1.93	2.13	2.63	0.63	0.69	0.76	0.95			
74	FCB11199	1.45	1.57	1.74	2.15	0.50	0.55	0.61	0.76			
75	FCB2B/T1199	1.50	1.62	1.79	2.21	0.52	0.57	0.63	0.79			
76	FCB2A/T1199	1.45	1.58Um	ersit1.74Mora	tuwa 2515 anka		0.55	0.61	0.76			
77	TLB10499	1.37	1.48 Elec	troni1.64 ses	2.02 OI	0.48	0.52	0.58	0.73			
78	TKB10500	1.48	1.61	1.77 Lib mid ac lk	2.19	0.51	0.56	0.62	0.77			
79	TKB20500	1.40	1.52	1.68	2.07	0.48	0.52	0.58	0.73			
80	TNB1B/T0500	1.58	1.72	1.89	2.33	0.57	0.62	0.69	0.86			
81	TNB1A/T0500	1.54	1.67	1.84	2.27	0.55	0.60	0.67	0.83			
82	TNB2B/T0500	1.56	1.69	1.87	2.30	0.55	0.60	0.67	0.83			
83	TNB2A/T0500	1.53	1.65	1.83	2.25	0.54	0.59	0.65	0.82			
84	CSB10800	2.37	2.56	2.82	3.46	0.56	0.61	0.68	0.85			
85	CSB20800	1.57	1.69	1.87	2.30	0.51	0.56	0.62	0.03			
86	CSB10201	1.52	1.65	1.82	2.24	0.57	0.62	0.69	0.86			
87	CSB20201	1.75	1.89	2.07	2.53	0.57	0.62	0.69	0.86			
88	CSB30201	1.47	1.60	1.76	2.18	0.57	0.62	0.69	0.86			
89	THB1B/T0201	1.45	1.57	1.74	2.15	0.51	0.56	0.62	0.80			
90	THB1A/T0201	1.57	1.70	1.87	2.31	0.49	0.50	0.59	0.74			
91	THB20201	1.47	1.59	1.75	2.16	0.50	0.55	0.61	0.74			
92	THB3B/T0201	1.67	1.81	1.99	2.44	0.50	0.55	0.61	0.76			
93	THB3A/T0201	1.49	1.62	1.79	2.21	0.49	0.53	0.01	0.76			
94	TSB10500	1.42	1.54	1.75	2.11	0.49	0.55	0.59				
95	TSB20500	1.47	1.59	1.76	2.17	0.57	0.62	0.69	0.86			
96	TSB30500	1.51	1.63	1.80	2.17	0.37	0.62	0.69	0.86			
97	PNB10500	1.60	1.73	1.80	2.22	0.57	0.62	0.69	0.86 0.86			

	Boiler		Percentage			Flue gas lo			
No.	Identification		Surface Exergy				Surface	(MJ/kg of	
	Number	Flue Gas	Blow Down	Losses	Destruction	Flue gas	Blow down	Losses	Steam)
1	CUB10797	5.69	0.09	0.34	67.11	16.6	0.6	0.65	0.185
2	CUB20797	6.45	0.09	0.37	65.95	15.4	0.6	0.70	0.207
3	CUB30797	6.69	0.09	0.38	66.00	16.3	0.6	0.70	0.217
4	CUB10698	5.01	0.10	0.34	67.20	14.8	0.6	0.65	0.160
5	CUB20698	5.98	0.08	0.37	67.94	20.1	0.6	0.70	0.203
6	CUB30698	6.06	0.09	0.38	67.08	17.7	0.6	0.70	0.200
7	CUB40698	5.63	0.09	0.21	67.83	17.5	0.6	0.40	0.184
8	CUB30799	5.08	0.09	0.38	67.32	15.4	0.6	0.70	0.163
9	CUB40799	5.05	0.09	0.21	68.09	17.8	0.6	0.40	0.165
10	CUB2B/T0799	5.12	0.08	0.37	69.00	20.7	0.6	0.70	0.175
11	CUB2A/T0799	4.23	0.09	0.37	68.07	15.1	0.6	0.70	0.135
12	CUB1B/T1099	5.97	0.08	0.34	66.84	29.5	0.6	0.65	0.230
13	CUB3B/T1099	4.26	0.10	0.38	66.89	11.6	0.6	0.70	0.131
14	CUB4B/T1099	5.22	0.09	0.21	68.40	19.3	0.6	0.40	0.174
15	CUB1A/T1099	4.73	0.10	0.34	67.63	15.3	0.6	0.40	0.174
16	CUB3A/T1099	4.43	0.09	0.37	67.68	14.5	0.6	0.05	0.131
17	CUB4A/T1099	4.80	0.09	0.21	67.10	14.0	0.6	0.70	
18	CUB1B/T1029	5.75	0.09	0.21	68.16	19.9	0.6	0.40	0.150
19	CUB2B/T1029	6.54	0.09	0.34	66.11	19.9			0.195
20	CUB4B/T1029	6.52	0.09	0.37			0.6	0.70	0.212
21	CUB1A/T1029	5.84	0.09		67.46	20.3	0.6	0.40	0.220
22	CUB2A/T1029	5.18		0.34	67.22	17.4	0.6	0.65	0.192
22	1 1		0.09	0.37	67.15	15.2	0.6	0.70	0.166
23 24	CUB4A/T1029 CUB1B/T0800	5.62	0.09 Unix	0.21	67.05	16.4	0.6	0.40	0.181
24	CUB2B/T0800	6.05	0.09 Elec	0.34	67.86	20.0	0.6	0.65	0.205
25 26	CUB2B/10800 CUB4B/T0800	5.14	0.08	0.37	68.72	15.5	0.6	0.70	0.165
20 27	CUB1A/T0800	6.26 5.58	0.08	0.21	68.34	21.0	0.6	0.40	0.213
28	CUB4A/T0800		0.09	0.34	67.18	16.5	0.6	0.65	0.181
28 29		4.58	0.08	0.21	67.47	14.5	0.6	0.40	0.144
	CUB1B/T0101	7.47	0.09	0.34	67.55	23.4	0.6	0.65	0.265
30	CUB3B/T0101	4.72	0.09	0.38	67.22	14.0	0.6	0.70	0.149
31	CUB4B/T0101	5.70	0.08	0.21	68.14	20.0	0.6	0.40	0.192
32	CUB1A/T0101	6.36	0.09	0.34	66.89	18.0	0.6	0.65	0.210
33	CUB4A/T0101	4.76	0.09	0.21	68.56	18.4	0.6	0.40	0.157
34	CUB1B/T0501	5.82	0.09	0.34	67.57	18.4	0.6	0.65	0.193
35	CUB3B/T0501	5.85	0.09	0.38	67.06	17.0	0.6	0.70	0.191
36	CUB4B/T0501	5.88	0.09	0.21	67.08	16.3	0.6	0.40	0.189
37	CUBIA/T0501	5.44	0.09	0.34	67.48	17.0	0.6	0.65	0.178
38	CUB4A/T0501	7.54	0.09	0.21	65.83	18.5	0.6	0.40	0.249
39	BLB1B/T1100	4.39	0.02	0.36	66.37	14.0	0.3	0.70	0.133
40	BLB1A/T1100	4.47	0.02	0.36	66.26	13.9	0.3	0.70	0.135
41	BLB1B/T0401	6.84	0.02	0.36	64.93	17.0	0.3	0.70	0.214
42	BLB1A/T0401	5.09	0.02	0.36	66.20	15.6	0.3	0.70	0.157
43	FNBIB/TI100	4.12	0.11	0.12	67.36	13.3	0.8	0.50	0.127
44	FNBIA/T1100	4.09	0.11	0.20	67.12	12.5	0.8	0.47	0.125
45	TBB10900	5.12	0.10	0.17	67.37	15.5	0.8	0.32	0.163
46	BCB1B/T0900	4.68	0.08	0.32	66.70	13.9	0.5	0.60	0.144
47	BCB2B/T0900	4.24	0.09	0.27	67.49	15.0	0.5	0.52	0.132
48	BCB1A/T0900	6.38	0.08	0.32	65.54	15.5	0.5	0.60	0.201
49	BCB2A/T0900	4.30	0.09	0.27	67.18	14.2	0.5	0.60	0.133
50	LGB1B/T0900	4.28	0.09	0.18	67.62	14.2	0.5	0.40	0.134
51	LGB2B/T0900	7.05	0.08	0.33	67.41	22.0	0.5	0.60	0.134
52	LGB1A/T0900	4.15	0.08	0.18	68.13	15.0	0.5	0.40	0.131
53	LGB2A/T0900	4.24	0.08	0.33	67.57	15.0	0.5	0.40	0.131

Ψ

¥

Table 03 (Contd.)

ųŲ.

7

[Boiler		Percentage	Exergy Lo	ses	Percei	ntage Energ	y Loss	Flue gas loss
No.	Identification			Surface	Exergy			Surface	(MJ/kg of
	Number	Flue Gas	Blow Down	Losses	Destruction	Flue gas	Blow down	Losses	Steam)
			:			-			
54	LDB1B/T0700	4.75	0.09	0.25	67.62	15.2	0.8	0.48	0.151
55	LBD1A/T0700	5.13	0.09	0.25	67.69	16.6	0.8	0.48	0.166
56	BNB10600	5.03	0.05	0.28	66.78	14.7	0.5	0.55	0.157
57	BNB20600	5.44	0.05	0.26	67.01	16.6	0.5	0.55	0.174
58	RRB1B/T0600	4.72	0.09	0.27	69.70	21.5	0.8	0.57	0.163
59	RRB1A/T0600	3.90	0.10	0.27	67.92	13.7	0.8	0.57	0.123
60	RRB2B/T0600	4.03	0.09	0.38	67.74	13.4	0.8	0.78	0.127
61	RRB2A/T0600	4.14	0.09	0.38	67.96	14.5	0.8	0.78	0.131
62	RRB3A/T0600	4.65	0.09	0.41	69.05	19.3	0.8	0.93	0.157
63	RDB1B/T0400	3.65	0.08	0.12	67.89	13.4	0.5	0.27	0.112
64	RDB1A/T0400	3.74	0.08	0.12	67.42	12.2	0.5	0.27	0.114
65	RDB2B/T0400	4.43	0.08	0.17	68.82	18.6	0.5	0.37	0.146
66	RDB2A/T0400	4.34	0.09	0.17	66.05	11.3	0.5	0.37	0.131
67	RDB3B/T0400	4.01	0.10	0.22	68.41	16.2	0.5	0.46	0.128
68	RDB3A/T0400	3.68	0.11	0.22	67.76	13.2	0.5	0.46	0.113
69	TAB1B/T0400	5.01	0.10	0.33	69.52	21.7	0.8	0.62	0.175
70	TAB1A/T0400	4.10	0.11	0.33	68.52	15.7	0.8	0.62	0.133
71	FWB1B/T0200		0.12	0.18	69.21	18.8	0.8	0.35	0.149
72	RLB10200	4.46	0.09	0.21	68.00	15.9	0.8	0.40	0.143
73	RLB20200	6.79	0.07	0.16	71.00	32.0	0.8	0.32	0.269
74	FCB11199	5.79	0.09	0.11	67.00	16.5	0.8	0.21	0.187
75	FCB2B/T1199	6.28	0.08	0.13	67.34	19.0	0.8	0.26	0.209
76	FCB2A/T1199	5.24	0.09	0.13	67.59 Sri		0.8	0.26	0.169
77	TLB10499	4.28	0.13	0.33	66.37	13.4	0.8	0.55	0.133
78	ТКВ10500	5.62	0.09	0.38	67.36	18.5	0.8	0.62	0.184
79	ТКВ20500	3.97	0.10	0.37	67.46	13.7	0.8	0.61	0.123
80	TNB1B/T0500	7.82	0.12	0.94	66.10	21.9	0.8	1.50	0.272
81	TNB1A/T0500	7.15	0.12	0.94	66.05	19.8	0.8	1.50	0.242
82	TNB2B/T0500	7.19	0.11	0.83	66.62	21.6	0.8	1.26	0.248
83	TNB2A/T0500	6.78	0.11	0.83	66.46	19.9	0.8	1.26	0.228
84	CSB10800	5.87	0.13	0.34	76.53	20.4	0.6	0.63	0.204
85	CSB20800	6.12	0.15	0.17	67.83	· 18.9	0.6	0.32	0.207
86	CSB10201	5.04	0.20	0.34	67.38	17.0	0.6	0.63	0.168
87	CSB20201	8.27	0.14	0.17	67.41	24.2	0.6	0.32	0.300
88	CSB30201	5.82	0.17	0.19	69.42	24.2	0.6	0.36	0.208
89	THB1B/T0201	5.61	0.09	0.06	68.09	17.8	0.6	0.13	0.187
90	THB1A/T0201	4.53	0.09	0.06	68.02	13.7	0.6	0.13	0.143
91	THB20201	4.42	0.10	0.06	68.73	16.1	0.6	0.13	0.144
92	THB3B/T0201	5.31	0.10	0.05	67.92	16.4	0.6	0.12	0.174
93	THB3A/T0201	5.21	0.10	0.05	67.65	15.2	0.6	0.12	0.168
94	TSB10500	6.03	0.09	0.50	68.05	20.8	0.8	0.96	0.207
95	TSB20500	4.70	0.11	0.44	67.58	15.2	0.8	0.91	0.151
96	TSB30500	6.20	0.09	0.41	66.97	17.6	0.8	0.78	0.205
97	PNB10500	4.65	0.10	0.07	70.73	18.3	0.8	0.86	0.164

Description of boiler idntification number

Symbol	Identification
First two charactor	Organization
Third character and first digit	Organizational serial number of the boiler
A/T or B/T	After tuning or Before tuning
Next two digit	The month measurements taken
Final two digit	The year measurements taken

132

APPENDIX C IDEAL GAS ENTHALPIES, ENTROPIES AND STANDARD MOLAR CHEMICAL EXERGIES OF COMBUSTION PRODUCTS

Þ

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Temperature,	co	C01	H	он	Н,	N	NO	NO,	N ₂	N ₂ O	0	O,	SO,	Γ
200 240 260 280 298.15	-2858 -1692 -1110 -529 0	-3414 -2079 -1383 -665 0	-2040 -1209 -793 -377 0	-2976 -1756 -1150 -546 0	-2774 -1656 -1091 -522 0	-2040 -1209 -793 -378 0	-2951 -1743 -1142 -543 0	-3495 -2104 -1392 -672 0	-2857 -1692 -1110 -528 0	-3553 -2164 -1438 -692 0	-2186 -1285 -840 -396 0	-2868 -1703 -1118 -533	-3736 -2258 -1496 -718	
300 * 320 340 360 380	54 638 1221 1805 2389	69 823 1594 2382 3184	38 454 870 1285 1701	55 654 1251 1847 2442	53 630 1209 1791 2373	38 454 870 1286 1701	55 652 1248 1845 2442	68 816 1571 2347 3130	54 636 1219 1802 2386	72 854 1654 2470 3302	41 478 913 1346 1777	0 54 643 1234 1828 2425	0 74 881 1702 2538 3387	
400	2975	4003	2117	3035	2959	2117	3040	3927	2971	4149	2207	3025	4250	
420	3563	4835	2532	3627	3544	2533	3638	4735	3557	5010	2635	3629	5126	
440	4153	5683	2948	4219	4131	2949	4240	5557	4143	5884	3063	4236	6015	
460	4643	6544	3364	4810	4715	3364	4844	6392	4731	6771	3490	4847	6917	
480	5335	7416	3779	5401	5298	3780	5450	7239	5320	7670	3918	5463	7831	
500	5931	8305	4196	5992	5882	4196	6059	8099	5911	8580	4343	6084	8758	
550	7428	10572	5235	7385	6760	5235	7592	10340	7395	10897	5402	7653	11123	
600	8942	12907	6274	8943	8811	6274	9144	12555	8894	13295	6462	9244	13544	
650	10477	15303	7314	10423	10278	7314	10716	14882	10407	15744	7515	10859	16022	
700	12023	17754	8353	11902	11749	8353	12307	17250	11937	18243	8570	12499	18548	
750	13592	20260	9392	13391	13223	9329	13919	19671	13481	20791	9620	14158	21117	
800	15177	22806	10431	14880	14702	10431	15548	22136	15046	23383	10671	15835	23721	
850	16781	25398	11471	16384	16186	11471	17195	24641	16624	26014	11718	17531	26369	
900	18401	28030	12510	17888	17676	12510	18858	27179	18223	28681	12767	19241	29023	
950	20031	30689	13550	19412	19175	13550	20537	29749	19834	31381	13812	20965	31714	
1000	21690	33397	14589	20935	20680	14589	22229	32344	21463	34110	14860	22703	34428	
1100	25035	38884	16667	24024	23719	16667	25653	37605	24760	39647	16950	26212	39914	
1200	28430	44473	18746	27160	26797	18746	29120	42946	28109	45274	19039	29761	45464	
1300	31868	50148	20824	30342	29918	20824	32626	48351	31503	50976	21126	33344	51069	
1400	35343	55896	22903	33569	33082	22903	36164	53808	34936	56740	23212	36957	56718	
1500	38850	61705	24982	36839	36290	24982	39729	59309	38405	62557	25296	40599	62404	
1600	42385	67569	27060	40151	39541	27060	43319	64846	41904	68420	27381	44266	68123	
1700	45945	73480	29139	43502	42935	29139	46929	70414	45429	74320	29464	47958	73870	
1800	49526	79431	31217	46889	46169	31218	50557	76007	48978	80254	31547	51673	79642	
1900	53126	85419	33296	50310	49541	33296	54201	81624	52548	86216	33630	55413	85436	
2000	56744	91439	35375	53762	52951	35375	57859	87259	56137	92203	35713	59175	91250	
2100	60376	97488	37453	57243	56397	37454	61530	92911	59742	98212	37796	62961	97081	
2200	64021	103562	39532	60752	59876	39534	65212	98577	63361	104240	39878	66769	102929	
2300	67683	109660	41610	64285	63387	41614	68904	104257	66995	110284	41962	70600	108792	
2400	71324	115779	43689	67541	66928	43695	72606	109947	70640	116344	44045	74453	114669	
2500	74985	121917	45768	71419	70498	45777	76316	115648	74296	122417	46130	78328	120559	
2600	78673	128073	47846	75017	74096	47860	80034	121357	77963	128501	48216	82224	126462	
2700	82369	134246	49925	78633	77720	49945	83759	127075	81639	134596	50303	86141	132376	
2800	86074	140433	52004	82267	81369	52033	87491	132799	85323	140701	52391	90079	138302	
2900	89786	146636	54082	85918	85043	54124	91229	138530	89015	146814	54481	94036	144238	
3000 3500 4000 4500	93504 112185 130989 149895	152552 154109 215622 247354	56161 66554 75947	89584 108119 126939	58740 107555 126874	56218 66769 77532	94973 113768 132671	144267 173020 201859	92715 111306 130027	152935 183636 214453	56574 67079 77675	98013 118165	150184 180057 210145	

Table 01

Canal and an and a contraction

1

Ta	ble	02
----	-----	----

Ideal gas entropies s⁰ (kJ / kg mol.K) of combustion products

					```	-0		. ,	omous	non pr	ounces			
inperature, K	3	CO,	н	ОН.	щ	N	NO	NO _t	N,	N _t O	o	O,	SO,	н
200	186.0	200.0	106.4	171.6	119.4	145.0	198.7	225.9	180.0	205.6	152.2	193.5	233.0	17
240	1011	206.0	110.1	177 1	124.5	148.7				200.6	132.2	180.0		1 1
	101.3	20110	110.1	177.1 179.5	124.5	140.7	204.1	232.2	185.2	211.9	156.2	198.7	239.9	18
260	193.7	208.8	111.8	179.5	126.8	150.4	206.6	235.0	187.6	214.8 217.5	158.0	201.1	239.9 242.8	18
280	195.3	211.5	113.3	181.8	129.2	151.9	208.8	237.7	189.8	217.5	159.7	203.3	245.8	18
298,15	193.7 195.3 197.7	213.8	114.7	183.7	130.7	153.3	210.8	240.0	191.6	220.0	161.1	205.1	248.2	18
300 320	197.8	214.0	114.8 116.2	183.9	130.9	153.4	210.9	240.3	101.8	220.2	161.2	205.3	040 C	I
390	199.7	216.5	116.2	185.9 187.7	132.8	154.8	0120	240.5	191.8 193.7			200.5	248.5	18
0.40	201.5		110.2	100.0	1320	134.0	212.9	242.7	180.7	222.7	162.6	207.2	251.1	19
340 360	201.5	218.8	117.4	187.7	134.5	156.0	212.9 214.7	245.0	195.5	225.2	163.9	209.0	253.6	19
360	203.2	221.0	118.6	189.4	136.2	157.2	216.4	247.2	197.2	227.5	165.2	210.7	256.0	[ 19
380	204.7	223.2	119.7	191.0	137.7	158.3	218.0	249.3	198.7	229.7	166.3	212.5	258.2	1
400	206.2	225.3	120.8	192.5	139.2	159.4	219.5	251.3	200.2	231.9	167.4	213.8	260.4	1
420	907 7	227.3	121.8	194.0	140.6	160.4	001.0	253.2	201.5			213.0		
440	200.0	000.3	122.8	195.3	141.9		221.0	253.2	201.5	234.0	168.4	215.3	262.5	2
420 440 460	207.7 209.0 210.4	229.3 231.2	123.7	155.5	Tera	161.4	222.3	255.1	202.9	236.0	169.4	216.7	264.6	2
400	210.4	231.2	123.7	196.6	143.2	162.3	223.7	257.0	204.2	238.0	170.4	218.0	266.6	1 2
480	211.6	233.1	124.6	197.9	144.5	163.1	221.0 222.3 223.7 225.0	258.8	205.5	239.9	171.3	219.4	268.5	2
500 550 600 650 700	212.8	234.9	125.5	199.1	145.7	164.0	226.3	260.6	206.7	241.8	172.2	220.7	270.5	2
550	215.7	239.2	127.5	201.8	148.6	166.0	229.1	264.7	209.4	246.2	174.2	223.7	274.9	2
600	215.7 218.3	243.3	129.3	204.4	151.1	167.8	229.1 231.9	268.8	212.2	250.4	176.1	226.5	279.2	1 5
650	220.8	247.1	131.0	206.8	153.4	169.4	234.4		0146	200.4		220.0		2
700	223.1	250.8	132.5	209.0	155.6	171.0	204.4	272.6	214.6	254.3	177.7	229.1	283.1	2
			}	203.0	135.0	1/1.0	236.8	276.0	216.9	258.0	179.3	231.5	286.9	2
750 800	225.2	255.4	133.9	211.1	157.6	172.5	239.0	279.3	219.0	261.5	180.7	233.7	290.4	2
800	227.3	257.5	135.2	213.0	159.5	173.8	241.1	282.5	221.0	264.8	182.1	235.9	293.8	1 5
850	227.3 229.2	260.6	136.4	213.0 214.8 216.5	161.4	175.1	243.0	285.5	223.0	268.0	183.4	237.9	297.0	2
900	231.1	263.6	137.7	216.5	163.1	176.3	245.0	288.4	224.8	271.1	184.6	237.5	297.0	l ž
900 950	232.8	266.5	138.8	218.1	164.7	CF177.4	246.8	291.3	224.0	274.0	185.7	239.9 241.8	300.1 303.0	2
	2215	200.2		100	1) Elec	tronic The	ses & Di	sertations		}		1		1
1000	234.5	269.3	139.9	219.7	166.2	178.5	248.4	293.9	228,2	276.8	186.8	243.6	305.8	2
1100	237.7	274.5	141.9	222.7	169.1	180.4	251.8	298.9	231.3	282.1	188.8	246.9	311.0	1 5
1000 1100 1200	234.5 237.7 240.7	279.4	141.9 143.7	225.4	171.8	182.2	254.8	303.6	234.2	287.0	190.6	250.0	315.8	2 2 2
1300	243.4	283.9	145.3	228.0	174.3	183.9	257.6	307.9	236.9			200.0		
1400	246.0	288.2	146.9	230.3	176.6			307.9	230.9	291.5	192.3	252.9	320.3	2
			1	2.347.3	170.0	185.4	260.2	311.9	239.5	295.8	193.8	255.6	324.5	2
1500	248.4	292.2	148.3	:232.6	178.8	186.9	262.7	315.7	241.9	299.8	195.3	258.1	328.4	2
1600 1700	250.7	296.0	149.6	1234.7	150.9	188.2	265.0	319.3	244.1	303.6	196.6	260.4	332.1	
1700	252.9	299.6	150.9	236.8	182.9	189.5	265.0 267.2	322.7	246.3	307.2	197.9	262.7	335.6	
1800	254.9	303.0	152.1	238.7	184.8	190.7	269.3	325.9	2.19.2	310.6	199.1	264.8	338.9	2
1900	256.8	306.2	153.2	240.6	186.7	191.8	271.3	325.9	248.3 250.2	313.8	200.2	264.8	338.9	
9000	258.7	300.1	1549	242.0	]		]			j	ļ	l	]	1
2000 2100	200.1	309.3	154.3	242.3	188.4	192.9	273.1	331.8	252.1	316.9	201.3	268.7	345.0	2
2100	260.5	312.2	155.3	244.0	190.1	193.9	274.9	334.5	253.8	319.8	202.3	270.6	347.9	1 5
2200	262.2	315.1	156.3	245.7	191.7	194.8	276.6	337.2	255.5	322.6	203.2	272.4	350.6	2
2300	263.8	317.8	157.2	247.2	193.3	195.8	278.3	339.7	257.1	325.3	204.2	272.9		1 4
2400	265.4	320.4	158.1	248.7	194.8	196.7	279.8	342.1	257.1	327.9	204.2	274.1 275.7	353.2 355.7	2
7500	266.9	322.9	1540	250.2	i	•			i			ł	Ì	
2500 2600			158.9	250.2	196.2	197.5	281.4	344.5	260.2	330.4	205.9	277.3	358.1	2
2017/	268.3	325.3	159.7	251.6	197.7	198.3	282.8	346.7	261.6	332.7	206.7	278.8	360.4	2
2700	269.7	327.6	160.5	253.0	199.0	199.1	282.8 284.2	348.9	263.0	335.0	207.5	278.8 280.3	360.4 362.6	3
2800	271.0	329.9	161.3	254.3	200.3	199.9	285.6	350.9	264.3	337.3	208.3	281.7	364.8	2
2800 2900	272.3	332.1	162.0	255.6	201.6	200.6	286.9	352.9	265.6	339.4	209.0	283.1	366.9	
3000	273.6	334.2	162.7	256.8	202.0	201.2	344.5	•			1		Ì	
3500	279.4	343.8	165.0	200.4	202.9	201.3	288.2	354.9	266.9	341.5	209.7	284.4	368.9 378.1 386.1	1 2
	213.4	352.2	165.9 168.7	262.5 267.6	208.7	204.6	294.0	363.8	272.6	350.9	212.9	290.7	378.1	23
				176-6	1 JIJ M	0071	1 200 A	1 371 6	1	0.000	1 310 0	1 200 2	1	1 7
4000	284.4	3-32.2	100.1	201.0	213.4	207.4	299.0	371.5	1 211.0	359.2	215.8	296.2	386.1	
	284.4 288.8 292.8	359.7	171.1	272.1	213.5 218.5 222.8	210.1	303.5	378.3	277.6	359.2 366.5	215.8 218.3	296.2 301.1	386.1	

## Table 03

Substance	Formula	Model I*	Model II ^b
Nitrogen	N ₂ (g)	640	720
Oxygen .	$O_2(g)$	3,950	3,970
Carbon dioxide	CO ₂ (g)	14,175	19,870
Water	$H_2O(g)$	8,635	9,500
Water	H ₂ O(1)	45	900
Carbon (graphite)	C(s)	404,590	410,260
Hydrogen	$H_2(g)$	235,250	236,100
Sulfur	S(s)	598,160	609,600
Carbon monoxide	CO(g)	269,410	275,100
Sulfur dioxide	$SO_2(g)$	301,940	313,400
Nitrogen monoxide	NO(g)	88,850	88,900
Nitrogen dioxide	$NO_2(g)$	55,565	55,600
Hydrogen sulfide	$H_2S(g)$	. 799,890	812,000
Ammonia	NH _J (g)	336,685	337,900
Methane	CH ₄ (g)	824,350	831,650
Ethane	$C_2H_6(g)$	1,482,035	1,495,840
Methanol	CH ₃ OH(g)	715,070	722,300
Methanol	CH ₃ OH(I)	Sri Lanka 710,745	718,000
Ethyl alcohol 🛛 🖉	C ₂ H ₃ OH(g)	1,348,330	1,363,900
Ethyl alcohol	$C_2H_3OH(1)$	1,342,085	1,357,700

Standard Molar Chemical Availability,  $\vec{a}^{ch}$  (kJ/kmol), of Various Substances at 298 K and  $p_0$ 

* J. Ahrendts, "Die Exergie Chemisch Reaktionsfähiger Systeme," VDI-Forschungsheft, VDI-Verlag, Dusseldorf, 579, 1977. Also see "Reference States," Energy—The International Journal, 5: 667-677, 1980. In Model I,  $p_0 = 1.019$  atm. This model attempts to impose a criterion that the reference environment be in equilibrium. The reference substances are determined assuming restricted chemical equilibrium for nitric acid and nitrates and unrestricted thermodynamic equilibrium for all other chemical components of the atmosphere, the oceans, and a portion of the Earth's crust. The chemical composition of the gas phase of this model approximates the composition of the natural atmosphere.

* J. Szargut, D. R. Morris, and F. R. Steward, Exergy Analysis of Thermal, Chemical, and Metallurgical Processes, Hemisphere, New York, 1983. In Model II,  $p_5 = 1.0$  atm. In developing this model a reference substance is selected for each chemical element from among substances that contain the element being considered and that are abundantly present in the natural environment, even though the substances are not in completely mutual stable equilibrium. An underlying rationale for this approach is that substances found abundantly in nature have little sconomic value. On an overall basis, the chemical composition of the availability reference environment of Model II is closer than Model I to the composition of the natural environment, but the equilibrium criterion is not always satisfied.

