ANALYSIS OF IMPACT ON GREENHOUSE GAS EMISSIONS OF COMMERCIAL BUILDINGS BY IMPLEMENTING ENERGY-EFFICIENT BUILDING CODES IN SRI LANKA

Udukumburage Koliya Dhanuddhara Perera

(178256R)

Degree of Master of Engineering

Department of Mechanical Engineering

University of Moratuwa

Sri Lanka

May 2023

ANALYSIS OF IMPACT ON GREENHOUSE GAS EMISSIONS OF COMMERCIAL BUILDINGS BY IMPLEMENTING ENERGY EFFICIENT BUILDING CODES IN SRI LANKA

Udukumburage Koliya Dhanuddhara Perera

(178256R)

Thesis submitted in partial fulfilment of the requirements for the degree Master of Engineering in Energy Technology

Department of Mechanical Engineering

University of Moratuwa

Sri Lanka

May 2023

Declaration

I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to the University of Moratuwa the non-exclusive right to reproduce and distribute my thesis/dissertation, in whole or in part in print, electronic or other mediums. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature:

Date: 24.05.2023

The above candidate has carried out research for the Master's thesis under my supervision.

Name of the supervisor: Dr MMID Manthilake

Signature of the supervisor:

Date: 26.05.2023

Abstract

Global warming and climate change, a result of abundant anthropogenic GHG emissions, is the fundamental human development obstacle in the 21st century. In Sri Lanka, buildings and services account for roughly 29.72% of total CO₂ emissions. Energy Efficient Building Codes are one of the key initiatives proposed to reduce emissions in buildings. Sri Lanka is in the process of preparing a mandatory EEBC, and a draft 'Building Code of Sri Lanka 2020' has been released. But its potential impact on energy and GHG emissions reduction has not been properly investigated. The study presents an analysis of a prototype commercial building in Colombo, comparing the energy and GHG emissions impact of EEBC requirements from different codes, namely, Code of Practice for Energy Efficient Buildings in Sri Lanka - 2008 (SLBC 2008), Draft Energy Efficiency Building Code of Sri Lanka - 2020 (SLBC 2020), ASHRAE 90.1 - 2022 and NCC Section J - 2022. The analysis was conducted using a calibrated whole-building energy model of the prototype building created using the DesignBuilder and EnergyPlus software. The results indicate that the draft SLBC 2020 can reduce overall energy use and GHG emissions by 8% compared to a BAU scenario with SLBC 2008, with the biggest improvement in lighting energy. The draft SLBC 2020 can also reduce the HVAC design load by 14.1% compared to a standard design thermal envelope. However, compared to leading EEBCs such as ASHRAE 2022 and NCC 2022, the draft SLBC 2020 lags by 2.5% and 15.6%, respectively. The energy and GHG emissions reduction potential of the draft SLBC 2020 could provide massive energy, foreign currency and GHG emissions savings to Sri Lanka over the coming years. Therefore, implementing the draft SLBC 2020 is seen as a timely solution to achieving the GHG emissions reduction targets of Sri Lanka and addressing the deep economic and energy crisis. Further, the draft SLBC 2020 has the potential for further improvements compared to some of the leading EEBCs, and the implementation of the first mandatory EEBC in Sri Lanka can be challenging.

Keywords: Building Energy Efficiency, Energy Efficient Building Codes, Energy Modelling, GHG emissions

Acknowledgement

It is with great pleasure that I express my heartfelt gratitude to everyone who helped, guided and inspired me to complete this Maters Thesis. Firstly, I would like to offer my utmost gratitude to my supervisor, Dr MMID Manthilake, for her immense guidance, enthusiastic encouragement and prompt responses to all my queries during this journey. Also, I am thankful to the whole academic staff of the Department of Mechanical Engineering, University of Moratuwa, for their advice, guidance and help throughout the journey of my Master of Engineering in Energy Technology degree.

I am also grateful to all my colleagues and friends for their stimulating and beneficial advice, which led to a supportive and friendly environment throughout my master's degree. Furthermore, I am grateful to the industry professionals who helped me during the data collection. Finally, I express a very special thanks to my parents and beloved spouse Udara Ranasinghe who have always offered me immense support and motivation to make this master's degree a reality.

TABLE OF CONTENTS

Declaration	i
Abstract	ii
Acknowledgement	iii
Table of Contents	iv
List of Figures	vii
List of Tables	ix
List of Abbreviations	xi
List of Appendices	xiii
1 Chapter 1 - Introduction	1
1.1 Background	1
1.2 Aim	2
1.2 Objectives	2
	2
2 Chapter 2 – Literature Review	3
2.1 Green House Gas (GHG)	3
2.1.1 What is GHG	3
2.1.2 Evolution of GHG	5
2.1.3 Environmental impact	7
2.1.4 Contribution of buildings to the GHG	10
2.1.5 Sri Lanka's GHG scenario	12
2.2 International agreements	18
2.2.1 History of climate change policy	18
2.2.2 Climate change actions taken by Sri Lanka	23
2.3 Importance of building GHG reduction, codes and regulations	27
2.3.1 Policy and regulatory Instruments	29
2.3.2 Energy-efficient building codes	30
2.4 Building performance modelling options	35

	2.5 S	Summary	37
3	Chapt	er 3 - Methodology	39
	3.1 0	Overview of research methodology	39
	3.1.1	Phase I	39
	3.1.2	Phase II	41
	3.2 H	Energy modelling	42
	3.3 F	Prototype Building Model	42
	3.4 I	Data collection	43
	3.5.1	Building design and building code data	43
	3.5.2	Building energy consumption historical data	54
	3.5 U	Incertainties in building energy modelling	54
	3.6 N	Model calibration	55
4	Chapt	er 4 - Results	61
	4.1 F	Prototype building model	61
	4.1.1	Model geometry	61
	4.1.2	Building constructions	63
	4.1.3	HVAC zoning	63
	4.1.4	HVAC system	64
	4.2 N	Model calibration	66
	4.2.1	Historical energy use analysis	66
	4.2.2	Pre-calibration results	67
	4.2.3	Post-calibration results	68
	4.3 H	Energy estimates for EEBCs	70
	4.4 0	GHG emissions estimate for EEBCs	72
	4.5 7	The implication of selected building code measures	74
	4.5.1	Significance of thermal envelope improvements	74
	4.5.2	Impact of building airtightness	76
	4.5.3	Outdoor air supply	76

5	Cha	pter 5 - Discussion	78
	5.1	Building energy reduction potential	78
	5.2	Building GHG emissions reduction potential	80
	5.3	Further improvements for Sri Lankan Building Code	82
	5.4	Challenges to the implementation of the Sri Lankan Building Code	84
	5.5	Use of building energy modelling in designing future building codes an	nd
buildings			85
6	Con	clusion	87
7	Ref	erences	90
Appendixes A: Thermal performance calculations of fabric elements96			
Appendixes B: Summary of NCC façade Calculator 100			100
Appendixes C: Historical Energy Consumption Data 101			101
A	Appendixes D: Energy modelling results 10		103
A	Appendixes E: GHG emissions estimate 109		

LIST OF FIGURES

Figure 1: Classification of GHG emissions	4
Figure 2: Evolution of GHG emissions	6
Figure 3: GHG emissions in 1.5 pathway	7
Figure 4: Global mean temperature change	8
Figure 5: Global sea surface temperature variation	8
Figure 6: Global average precipitation changes	9
Figure 7: Global averaged sea level change and predictions	10
Figure 8: GHG emissions by economic sectors	11
Figure 9: Total CO2 emission comparison	12
Figure 10: CO ₂ emissions (per capita) comparison	13
Figure 11: GHG emission of Sri Lanka	13
Figure 12: CO ₂ emission of Sri Lanka	14
Figure 13: Per capita CO ₂ emissions in Sri Lanka	14
Figure 14: Per PPP \$ of GDP CO ₂ emissions in Sri Lanka	15
Figure 15: CO ₂ emissions (per PPP \$ of GDP) comparison	16
Figure 16: CO ₂ emission from different sectors (% of total fuel combustion)	17
Figure 17: CO ₂ emission from different sectors (with secondary emissions)	in 2014
	18
Figure 18: The model image of the building from the North-East view	62
Figure 19: The rendered image of the model from the North-East view at 3 p	om, 15 th
July	62
Figure 20: Building model with assigned construction materials	63
Figure 21: Typical floor plan	64
Figure 22: HVAC model of the building	65

Figure 23: Historical monthly total energy consumption	66
Figure 24: Historical annual energy share	67
Figure 25: Pre-calibration model vs historic monthly total energy consumption	67
Figure 26: Post-calibration model vs historical monthly total energy consumption	68
Figure 27: Post-calibration model's annual energy share	69
Figure 28: Modelled typical HVAC temperature control of an office zone from Ma 20 th to 27 th	arch 69
Figure 29: Energy consumption of different end uses for different building c scenarios	ode 70
Figure 30: Cumulative energy consumption for different building code scenarios	72
Figure 31: GHG emissions of different end uses for different building code scena	rios 73
Figure 32: Cumulative GHG emissions for different building code scenarios	74
Figure 33: Cooling load variations for thermal envelope improvements	75
Figure 34: Building airtightness impact on HVAC GHG emissions	76
Figure 35: Outdoor air supply to occupied areas under different building c scenarios	ode: 77
Figure 36: The total R-value/U-value calculation of aluminium clad brick walls	96
Figure 37: The total R-value/U-value calculation of aluminium clad concrete wall	s 96
Figure 38: The total R-value/U-value calculation of aluminium clad plasterboard w	alls/ 97
Figure 39: The total R-value/U-value calculation of below grade walls	97
Figure 40: Summary of NCC façade calculator	100

LIST OF TABLES

Table 1: A list of key activities on climate change	21
Table 2: Summary of actions for building emission reduction, adopted from	29
Table 3: Summary of thermal envelope parameters	44
Table 4: Summary of lighting power densities (LDP) for key areas	47
Table 5: Summary of key HVAC equipment parameters	48
Table 6: Summary of outdoor air supply rates	52
Table 7: Summary of exhaust rates	53
Table 8: Typical office operational schedule	57
Table 9: Modified office operational schedule as per NABERS office buildings	57
Table 10: The total R-value/U-value calculation of exterior metal roof	98
Table 11: The total R-value/U-value calculation of exterior concrete roof	98
Table 12: The total R-value/U-value calculation of exterior suspended floor	98
Table 13: The total R-value/U-value calculation of slab on grade	99
Table 14: Summary of historical energy consumption data	101
Table 15: Energy results for pre-calibration model	103
Table 16: Energy results for post-calibration model	104
Table 17: Energy results for the model when meeting 'Code of practice for en	nergy
efficient buildings in Sri Lanka – 2008'.	105
Table 18: Energy results for the model when meeting draft 'Building Code o	of Sri
Lanka 2020 [°] .	106
Table 19: Energy results for the model when meeting 'NCC 2022'.	107
Table 20: Energy results for the model when meeting 'ASHRAE 2022'.	108
Table 21: GHG emissions estimate of the post-calibration model.	109

Table 22: GHG emissions of the building when meeting 'Code of practice for	energy
efficient buildings in Sri Lanka – 2008'.	110
Table 23: GHG emissions of the building when meeting draft 'Building Code	of Sri
Lanka 2020'.	111
Table 24: GHG emissions of the building when meeting 'NCC 2022'.	112
Table 25: GHG emissions of the building when meeting 'ASHRAE 2022'.	113

LIST OF ABBREVIATIONS

GHG	Greenhouse Gas
EEBC	Energy Efficient Building Code
HVAC	Heating, Ventilation and Air Conditioning
SLBC	Sri Lanka Building Code
ASHRAE	American Society of Heating, Refrigerating and Air-Conditioning Engineers
NCC	National Construction Code (Australia)
NABERS	National Australian Built Environment Rating System
OTTV	Overall Thermal Transfer Value
UN	United Nations
IPCC	Intergovernmental Panel on Climate Change
СОР	Conference of the Parties
GDP	Gross Domestic Product
PPP	Purchasing Power Parity
ODS	Ozone-Depleting Substances
CDM	Clean Development Mechanism
BAU	Business-As-Usual
DSM	Demand Side Management
NDCs	Nationally Determined Contributions
SHGC	Solar Heat Hain Coefficient
VLT	Visual Light Transmission
СОР	Coefficient of Performance
LPD	Lighting Power Density
VRF	Variable Refrigerant Flow

FCU Fan Coil Unit

WWR Window-to-Wall Ration

LIST OF APPENDICES

Appendix A: Thermal Performance Calculations of Fabric Elements	96
Appendix B: Summary of NCC Façade Calculator	100
Appendix C: Historical Energy Consumption Data	101
Appendix D: Energy Modelling Results	103
Appendix E: GHG Emissions Estimate	109