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Abstract—— Large-scale wind power integration to power 

systems has been significantly increasing since the last decade. 

However, the reliability of power systems tends to degrade due 

to the intermittency and uncontrollability of wind power. Future 

wind power generation forecasts can be used to reduce the 

impacts of intermittency and uncontrollability of wind power on 

the reliability of power systems.  This paper proposes a Markov 

chain-based model for the short-term forecasting of wind power. 

The first-order and second-order Markov chain principles are 

used as they require lesser memory and have lower complexities. 

Seasonal variation is also incorporated into the proposed model 

to further improve the accuracy. Results obtained from both 

Markov models are validated with real wind power output data 

and evaluated using evaluation metrics such as Mean Square 

Error and Root Mean Square Error. The results show that the 

accuracy of the first-order and second-order Markov models for 

a high wind regime is 81.33% and 82.61%, respectively and for 

a low wind regime is 83.50% and 89.27% respectively. 

Keywords——wind power forecast, Markov chain, short-term 

forecast, wind power 

I. INTRODUCTION  

Renewable power integration, especially wind and solar 
integration to the power grids has been increasing due to the 
devastating impacts of fossil fuels and technological 
advancements in renewable generation. With the shifting of 
interest of most of the countries from fossil fuels to renewable 
energy sources, significant attention is paid to wind power 
generation. As of 2018, the share of wind power generation in 
the world is accounted for 4.8% amounting to 1,264.84 TWh 
[1]. Global installed wind generation capacity has increased 
by 75% in the last 20 years and accounts for 16% of the total 
electricity generated by renewables [2]. However, large-scale 
wind power integration tends to reduce the controllability and 
reliability of the system. This is due to the intermittency and 
uncontrollability of wind power generation. Unexpected 
variations in wind power generation may unnecessarily 
increase the reserve requirement and operating costs, 
especially when the proportion of wind power in the power 
grid is large.  

The technology related to wind power generation is 
expanding rapidly to solve the prevailing issues with the 
integration of wind power into power grids. Wind power 
forecasting is one such area that can be developed to address 
the issues of intermittency by predicting the wind power in a 
very short-term horizon. 

Errors in wind power forecasts can result in committing of 
more costly conventional generators. On the other hand, when 
the actual wind generation is higher than the forecasted value, 
the reserving cost of other high-cost generators is a wastage. 
Therefore, it is necessary to utilize an accurate model for wind 
power forecasting. 

 Several wind power forecasting methods can be found in 
the literature [3-9]. These methods are classified as physical, 
statistical and hybrid approaches. The physical approach is 
based on Numerical Weather Prediction (NWP) which is the 
base source of data. They provide seemingly accurate 
predictions for very long time horizons. The statistical 
approach is based on the historical wind data and the hybrid 
approach combines physical and statistical approaches. In this 
work, the main emphasis is given to statistical wind power 
forecasting models. 

Wind power can be statistically forecasted using either 
historical wind speed data in the region or historical wind 
power generation data of the wind farms. The feasibility 
studies of future wind farms are carried out using the regional 
wind profiles and historical wind power forecasting is useful 
for managing the generator dispatches and ancillary 
requirements. When the forecasted wind speeds are used to 
forecast the wind power output of a power plant, the 
forecasting errors in wind speed are magnified due to non-
linear wind speed to power mapping. Wind speed data 
obtained from meteorological sources may differ from the 
actual wind speed at the turbines due to vague scenarios which 
may result in major errors in wind speed predictions and 
thereby result in errors in power output prediction. 
Additionally, according to Betz’s law, only 59.3% of the 
kinetic energy present in the wind can be theoretically 
converted to mechanical power by the turbine. Therefore, 
wind power forecasts based on historical wind power data are 
more accurate and useful for system control applications and 
economic dispatch [3]. 

Statistical approaches use the relationships of historical 
values of wind power measurements together with 
metrological variables to adjust the parameters of the wind 
power forecasting methods. In a very short time horizon, the 
correlation between wind speed and wind power generation is 
high. Therefore, statistical approaches can be accurately used 
in very short-term wind power forecasting. These approaches 
can produce deterministic predictions in the form of a single 
point forecast for some future time or can produce 
probabilistic predictions in the form of a probability 
distribution at the future time. A wind power prediction model 
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based on a deep-learning method called long short-term 
memory model which has the advantages of generalization of 
mass data is proposed in [4]. In [5], the Kalman filter-based 
time series prediction method is proposed. The results show 
that the addition of the Kalman filter significantly reduces the 
forecast errors. A wind power forecasting model based on 
Least Square Support Vector Mechanism (LS-SVM) is 
proposed in [6] and the results are compared with classical 
ARIMA and ANN models. The accuracy of LS-SVM method 
is higher than that of ARIMA and ANN. In [8], the authors 
have used principles of nested Markov chains to generate an 
artificial wind time series that can realistically present a 
possible chain of events. However, the frequency of obtained 
wind data is 1 Hz which is not feasible in the practical 
scenario. Therefore, there is a significant amount of errors in 
the artificially generated wind time series. Furthermore, SVM 
enhanced Markov model proposed in [9] does not consider the 
seasonality and diurnal non-stationarity and only considers 
normal fluctuations of wind generations. It can be observed 
that most of the prevailing studies do not take seasonal wind 
variations into the account [4-9]. 

In this study, a Markov chain-based probabilistic wind 
power forecasting model is proposed for very short-term i.e. 
1~24 hours ahead wind forecasting. The forecasting model is 
implemented using the python programming language. Due 
to the simplicity, fast computing, high precision and low 
memory requirements of Markov chains [7], authors have 
utilized first and second-order Markov chain models for wind 
power forecasting. Seasonal variation of wind power is 
incorporated into the proposed wind forecasting model. Point 
power outputs of a wind farm with 15-minute resolution are 
used to implement the Markov models. Performance 
measures such as Mean Squared Error (MSE) and Root Mean 
Squared Error (RMSE) are used to evaluate the proposed 
wind power prediction models. Furthermore, the predicted 
and actual wind power generations are compared to identify 
the accuracy of the proposed wind power forecasting model. 

The paper is organized as follows. An overview of the 
Markov chain principles is presented in section II. In section 
III, the implementation of the first and second-order Markov 
chain models is discussed considering mathematical 
modeling, prediction, and validation methodologies. Section 
IV describes the model evaluation metrics. The results are 
discussed in section V. Section VI concludes the paper. 

II. INTRODUCTION TO MARKOV CHAIN THEORY 

Markov chain or Markov model is a special type of 
discrete model in which the probability of an event occurring 
only depends on the immediately previous event. The 
underlying assumption is that the ‘future is independent of the 
past, given the present.’  Markov chains can be defined by a 
set of states and the respective transition probabilities between 
each of the states. The transition probability is defined as the 
probability of transition from one state to another [10]. 

 The states of the Markov chain model are defined based 
on discrete data. Each state must cover a certain predefined 
range of values that the physical process can undertake. At 
each instance, the value of the physical process can then be 
allocated to the relevant state. 

A. First-Order Markov Chain Theory 

The First-Order Markov Chain theory is the basic 
implementation of the Markov chain model. In a random 
process where the physical data range is divided into m 
number of states represented by [1,2, … , m], the first-order 
Markov chain theory claims that if the process transitions from 
state 𝑖 to state 𝑗 at time 𝑡, the probability of this transition only 
depends on the state at time 𝑡 = 𝑡 − 1 . The general 
mathematical representation of a discrete-time first-order 
Markov chain model is shown in (1) [11] 

The element 𝑝𝑖𝑗  denotes the probability of transitioning to 

state 𝑗 at time 𝑡 = 𝑡 when the system was at states 𝑖 at time 
𝑡 = 𝑡 − 1. 

An 𝑚 𝑥 𝑚 transition matrix can now be obtained as in Fig. 
1. The depictions of the number of transitions and the 
probability are shown in Fig. 2 and please note that this figure 
is obtained from [12].   

B. Higher-Order Markov Chain Theory  

In the first-order Markov model, only the first lag was 
considered when obtaining the probability of the next step. In 
higher-order Markov chains, the last 𝑛  observations are 
considered which results in an nth order Markov chain. This 
can be mathematically represented by (2). 

 

 

The element 𝑝𝑖𝑛𝑖𝑛−1…𝑖1𝑗  denotes the probability of 

transitioning to state 𝑗 at time 𝑡 = 𝑡 when the system was at 

states 𝑖𝑘  at time 𝑡 = 𝑡 − 𝑘 , ∀ 𝑘 ∈  [1, 𝑛] . The transition 
matrix is multi-dimensional with mn+1 dimensions for an nth 
order Markov chain model. Each dimension corresponds to a 
previous state of the process and the last dimension 
corresponds to the next possible state.  

When the order of the Markov chain model increases, the 
number of parameters to calculate the transition matrix 
increases, and hence,  the complexity increases. On the other 
hand, the accuracy of the prediction increases with the 
increase in the order of the Markov chain model. Therefore, a 
trade-off between complexity and accuracy must be 
considered when implementing the Markov chain model for 
wind power forecasting. 

III. IMPLEMENTATION OF THE MARKOV CHAIN THEORY 

In this work, the Markov chain theory is utilized to forecast 
the wind power output for a look ahead time at 15-minute 
intervals. The states for the Markov model are a set of discrete 

𝑃(𝑋𝑡 = 𝑗 | 𝑋𝑡−1 = 𝑖) =  𝑝𝑖𝑗 (1) 

𝑃(𝑋𝑡 = 𝑗 |𝑋𝑡−1 = 𝑖1,  𝑋𝑡−2 = 𝑖2, … ,  𝑋𝑡−𝑛 = 𝑖𝑛) 
=  𝑝𝑖𝑛𝑖𝑛−1…𝑖1𝑗 (2) 

 

Fig. 1. m x m transition matrix 
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wind power generation values. The number of states is 
determined by the range of the power output available, and the 
range of power outputs covered by each state. This is denoted 
using N in the stated mathematical models. Subsections A and 
B describe the implementation of the first-order and second-
order Markov chain models respectively. Subsection C 
explains the methodology of using Markov models for wind 
power forecasting.  

A. First Order Markov Model (FOMC) 

 The initial state matrix 𝐴(𝑡) is a matrix that includes the 
state probability vectors at time 𝑡 = 𝑡 as given by (3). 

At the initial forecasting point, all the elements of the 
initial state matrix are zero except for the element 
corresponding to the state at time t, which is set to 1 [13]. 
Once, the initial state matrix is initialized, the transition 
probability matrix (PFO) is developed according to the Markov 
chain mathematical model expressed by (1). 

 Each row of the matrix represents the current state, and 
each column represents the next state (i.e., one of the N states 
of state variables) as shown in Fig. 3.  The sum of elements of 
each row must be equal to unity as in (4) because it 
corresponds to the probabilities of transitioning from one state 
to the next state. 

The individual elements of the first-order transition 
matrix can be calculated by (5) where 𝑛𝑖𝑗 represents the 

number of transitions from state i to j. 

B. Second-Order Markov Model (SOMC) 

It is required to define composite states for the 
implementation of the second-order Markov chain model. For 
a system with N number of states, the composite states are 

defined as {11, 12, 13, … , 𝑁1, 𝑁2, … , (𝑁 − 1)𝑁, 𝑁𝑁 }. 
For e.g., the state ‘12’ represents the instance where the state 
at time 𝑡 = (𝑡 − 1) is 1 and the state at time 𝑡 = 𝑡 is 2. 

As in the first-order Markov chain model, the initial state 
matrix 𝐵(𝑡) must be obtained and it can be represented by (6). 

However, an initial matrix cannot be obtained 
straightforwardly as in the first-order Markov chain model. 
The initial matrix of the second-order Markov model is 

obtained by (7). 

 

where 𝑖 = 1, 2, … 𝑁 and 

Fig. 1. (a). Number of transitions (b). Transition probabilities [12] 

𝐴(𝑡) = [𝐴1 𝐴2 𝐴3  ⋯ 𝐴𝑁−1 𝐴𝑁] 

 

(3) 

∑ 𝑝𝑖𝑗

𝑗

= 1 

 

(4) 

𝑝𝑖𝑗 =  
𝑛𝑖𝑗

∑ 𝑛𝑖𝑗
𝑁
𝑗=1

 

 

(5) 

𝐵𝑖(𝑡) =  ∑ 𝐵𝑙𝑖(𝑡 − 1, 𝑡)

𝑁

𝑙=1

 

 

(7) 

𝐵(𝑡) = [𝐵1 𝐵2 𝐵3  ⋯ 𝐵𝑁−1 𝐵𝑁] 

 
(6) 

𝐵𝑙𝑖(𝑡 − 1, 𝑡) = 𝑃(𝑋𝑡−1 = 𝑙, 𝑋𝑡 = 𝑖) ∀ 𝑙, 𝑖 
 

(8) 

Fig. 2. Transition matrix of first order Markov model 
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In the second-order Markov chain model, the subsequent 
step of a stochastic model depends on two of its immediately 
previous states. This can be mathematically presented as in 
(9). 

Where 𝑝𝑖𝑗𝑙  refers to the probability of the system being in 

state j at time t =  t + 1 given that the system is in state 𝑖 at 
time t =  t and in state 𝑙 at time t =  (t − 1).  

Considering the data of the sliding window, a 'one-step 
transition probability matrix' (PSO) is developed. This one-step 
transition probability matrix has an advantage. As can be seen 
in the 3-state transition matrix shown in Fig. 4, many elements 
of one-step transition probability matrices are zeros and this 
results in easy computation. 

As in the first-order Markov chain implementation, the 
sum of elements of the last dimension of the matrix should be 
equal to 1 as shown in (10). 

The individual elements of the one step transition probability 
matrix can be calculated by (11). 

C. Wind Power Forecasting 

For the first-order Markov chain implementation, the 
prediction for the state at time 𝑡 = 𝑡 + 1 is obtained by the 

estimated state matrix 𝐴(𝑡 + 1) given by (12). 

Thus, for the first-order Markov chain model, point power 
forecasts for a look-ahead time can be obtained by (13). 

When considering the second-order Markov chain model, 
once the transition matrix is obtained, the predictions can be 
obtained.  The predictions for the states at time 𝑡 =  𝑡 +  1 
can be obtained by the estimated state matrix 𝐵(𝑡, 𝑡 + 1)  by 
using (14). 

Where 𝑃𝑆𝑂  is the transition matrix of the second-order 
Markov model, and 𝐵(𝑡 − 1, 𝑡)  is the auxiliary state 
probability vector.  In the auxiliary state probability vector, all 
the elements are zero except for the element corresponding to 
the state at time 𝑡 and 𝑡 − 1, which is set to 1.  

However, in this work, it is required to obtain the state 
probability vector 𝐵(𝑡 + 1) as follows (15). 

Where 𝑗 = 1, 2, … 𝑁 and  

The state probability vector 𝐵(𝑡 + 𝑘) is used to obtain the 
predictions at time 𝑡 = 𝑡 + 𝑘 as shown in (17). 

where 𝑗 = 1, 2, … 𝑁. 
 

From the Markov chain theory and (16), we can derive (18) 

to obtain point power forecasts for a look-ahead time. 

Once the point power forecasts are obtained, wind power 
generation in the considered look-ahead time can be 
estimated. In order to formulate conditional point predictors, 
the mean values of the forecasts are calculated by (19). 

 

Where 𝐶(𝑡 + 𝑘) is the point power forecasts obtained for 
the FOMC model by using (13) and for SOMC model by using 
(18) for the second-order Markov model. 𝑠𝑖  refers to the ith 
state. 

IV. EVALUATION METRICS 

Performance measures can be used to quantify the 
accuracy of the proposed Markov models. The model 
prediction error can be defined as the difference between the 
measured values of the wind power output and the predicted 
values of the same. In this work, the model prediction error is 
calculated using two metrics, namely MSE and RMSE[14]. 

𝑃(𝑋𝑡+1 = 𝑗 | 𝑋𝑡 = 𝑖, 𝑋𝑡−1 = 𝑙) =  𝑝𝑖𝑗𝑙 

 
(9) 

𝐴(𝑡 + 1) = 𝐴(𝑡) × 𝑃𝐹𝑂  (12) 

𝐴(𝑡 + 𝑘) = 𝐴(𝑡) × 𝑃𝐹𝑂
𝑘

 (13) 

𝐵(𝑡, 𝑡 + 1) = 𝐵(𝑡 − 1, 𝑡) × 𝑃𝑆𝑂 (14) 

𝐵𝑗(𝑡 + 1) =  ∑ 𝐵𝑖𝑗(𝑡, 𝑡 + 1)

𝑁

𝑖=1

 (15) 

𝐵𝑖𝑗(𝑡, 𝑡 + 1) = 𝑃(𝑋𝑡 = 𝑖, 𝑋𝑡+1 = 𝑗) ∀ 𝑗, 𝑖 

(16) 

𝐵𝑗(𝑡 + 𝑘) =  ∑ 𝐵𝑖𝑗(𝑡 + 𝑘 − 1, 𝑡 + 𝑘)

𝑁

𝑖=1

 
(17) 

𝐵𝑖𝑗(𝑡 + 𝑘 − 1, 𝑡 + 𝑘) = 𝐵(𝑡 − 1, 𝑡) × 𝑃𝑆𝑂
𝑘

 

(18) 

𝑀𝑒𝑎𝑛 =  ∑ 𝑠𝑖 ∗ 𝐶(𝑡 + 𝑘)

𝑁

𝑖=1

 (19) 

∑ 𝑝𝑖𝑛𝑖𝑛−1…𝑖1𝑗

𝑗

= 1 
(10) 

𝑝𝑙𝑖,𝑖𝑗 =  
𝑛𝑙𝑖,𝑖𝑗

∑ 𝑛𝑙𝑖,𝑖𝑗
𝑁
𝑗=1

 
(11) 

Fig. 3. One step transition matrix of second order Markov model 

𝑃(𝑋𝑡+1 = 𝑗 | 𝑋𝑡 = 𝑖, 𝑋𝑡−1 = 𝑙) =  𝑝𝑖𝑗𝑙 

 
(9) 
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Table I shows the equations of the aforementioned 
performance measures.  

V. APPLICATION STUDY AND DISCUSSION 

The wind power generation dataset used in this work is 
obtained from [16]. The dataset consists of wind generation 
data in a 15-minute resolution with an accuracy of 0.1 scale. 
The data in the period starting from 1st January 2013 to 31st 
January 2013 is considered as the training range for high wind 
regime and the data from 1st July 2013 to 31st July 2013 is 
taken as the training range for the low wind regime. This 
accounts for 2976 data points as the sliding window of each 
scenario. The higher the data points, the higher the accuracy. 
However, a trade-off between accuracy and complexity exists 
and hence the sliding window has to be compromised. The 
range of the wind power output in the selected period is from 
0 to 931 MW. Therefore, the states of the Markov model were 
defined as integer values between 0 and 931. Then this dataset 
is used to forecast the wind power as can be seen in the block 
diagram of the model is shown in Fig. 5. 

The seasonality of the region is also considered in this 
application study. Separate Markov chains are used for 
different wind seasons to get a better accuracy. 

The proposed models are validated as follows. Forecasted 
point power values obtained from the FOMC model and the 
SOMC model are compared with the actual output of the wind 
farm. The wind power forecasts for a 25-hour look-ahead 
period are obtained from developed models. Fig. 6 shows the 
wind power predicted by first-order and second-order Markov 
models and the actual power output of the wind farm. 
Moreover, the performance measures are tabulated in Table II 
for the predictions of the aforementioned Markov chain 
models. 

When comparing the error metrics of the two Markov 
chain models developed in this work, it can be seen that the 

error metrics are low for the second-order model. Therefore, 
the results show that the forecasting accuracy of the model 
increases as the order of the Markov chain increases and this 
is compatible with [17].  

The accuracy of the predictions of low wind regime is 
higher than that of the high wind regime. Forecast error 
depends on the variability of the wind speed. Variability is 
large in high wind regimes compared to low wind regimes  and 
that is the reason for getting a low forecast error in the low 
wind regime.  

The results show that the proposed wind power forecasting 
models can be used to predict the wind power generation with 
an accuracy higher than 80%.  

VI. CONCLUSION 

In this work, a wind power forecasting algorithm is 
proposed using Markov chain principles. Historical wind 
power data for 62 days in two different seasons are used to 
forecast the wind power output for 25 hours at a 15-minute 
resolution. Seasonal variations at the location of the wind farm 
are incorporated into the algorithm via a manual clustering 
system. The results show that the accuracy of the proposed 
Markov models is over 80% with respect to actual power 

TABLE I.  EVALUATION METRICS 

Metric Equation 

Mean Squared Error (MSE) 
1

𝑛
∑(𝑌𝑖 − 𝑌𝑖̂)

2

𝑛

𝑖=1

 

Root Mean Square Error (RMSE) 
√

∑ (𝑌𝑖 − 𝑌𝑖̂)
2𝑛

𝑖=1

𝑛
 

 

 

Fig. 5. Block diagram for application of Markov models for wind power 

forecasting 

(b) 

Fig. 4. Forecasts of  the First order Markov Chain (FOMC) model and the 
Second Order Markov Chain(SOMC) model and the actual wind power output 

for (a) high wind regime. (b) low wind regime 

(a) 
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generation data used for both models in high wind and low 
wind regimes.  

The proposed model would support the power system 
operators to solve the issues that occur due to the intermittency 
of wind power generation under high levels of wind 
penetration by predicting the wind power output with high 
accuracy. In the future, it may be possible to further increase 
the accuracy of the proposed wind forecasting model by using 
clustering algorithms to cluster the historical wind power data. 
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TABLE II.  ERROR MATRICS OF THE MODELS 

Metric 

High wind regime Low wind regime 

First-order 

model 

Second-

order 

model  

First-

order 

model 

Second-

order 

model  

Mean Squared 
Error (MSE) 

38.76 22.46 23.47 11.41 

Root Mean 

Square Error 
(RMSE) 

18.67 17.39 16.50 10.73 
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