A METHODOLOGY FOR

DESIGN OF PEDESTRIAN CROSSING FACILITIES IN SRI LANKA

MASTER OF ENGINEERING IN HIGHWAY & TRAFFIC ENGINEERING

R.A.S.K.Kaluarachchi

Department of Civil Engineering

University of Moratuwa

Sri Lanka

March 2010

LO/DON/214/10

A METHODOLOGY FOR

DESIGN OF PEDESTRIAN CROSSING FACILITIES IN

SRI LANKA

相關 台灣人

By

R.A.S.K.Kaluarachchi

Supervised by Professor A.S.Kumarage

The Dissertation was submitted to the Department of Civil Engineering of the University of Moratuwa in partial fulfillment of the requirement for the Degree of Master of Engineering in Highway & Traffic Engineering.

Department of Civil Engineering

University of Moratuwa

Sri Lanka

March 2010

University of Moratuwa

624 "10" 325+656(

THI

95719

CONTENTS

DECLARATION	V
ABSTRACT	VI
ACKNOWLEDGEMENT	VII
CHAPTER 1 INTRODUCTION	1
1.1 GENERAL	
1.2 PROBLEM STATEMENT	1
1.3 OBJECTIVE OF THE STUDY	כ ד
1.4 THESIS OUTLINE	7
CHAPTER ? LITERATURE SUDVEN	/
A LA	8
2.1 INTRODUCTION	8
2.2 TYPE OF PEDESTRIAN CROSSINGS	8
2.3 CLASSIFICATION OF PEDESTRIAN FACILITIES FOR CROSSING ROADS	14
2.4 CURRENT PRACTICES	16
2.5 WALKING SPEED	20
2.6 AVERAGE CROSSING TIME AND DIFFICULTY OF CROSSING	21
2.7 PEDESTRIAN SPEED, DENSITY, FLOW AND SPACE RELATIONSHIPS	21
2.8 PEDESTRIAN CAPACITY	22
2.9 DESIGN CONSIDERATIONS	24
2.10 STUDY ON RAISED CROSSINGS	29
2.11 APPROACH SPEEDS SURVEY	32
2.12 PEDESTRIAN DELAY AND EXPOSURE	33
2.13 PEDESTRIAN SAFETY: EXPOSURE AND CONFLICT	34
CHAPTER 3 DATA COLLECTION	35
3.1 INTRODUCTION	35
3.2 SELECTION OF LOCATIONS	35
3.3 DESCRIPTION OF LOCATIONS	35
3.4 LIST OF PARAMETERS	37
3.5 SURVEY METHODOLOGY	37
	51

i

(

СНА	PTER 4 STUDY METHODOLOGY	39
СНА	PTER 5 ANALYSIS	41
5.1	INTRODUCTION	41
5.2	SELECTION OF MOST APPROPRIATE PEDESTRIAN CROSSING DEVICE	41
5.3	WARRANTS FOR INSTALLATION OF PEDESTRIAN CROSSING	42
5.4	REQUIREMENTS TO INSTALLATION OF PEDESTRIAN CROSSING	42
5.5	CALCULATION OF STOPPING SIGHT DISTANCE AND CROSSING SIGHT DISTA	NCE.
		44
5.6	LEVEL OF SERVICE ON CROSSINGS	46
5.7	PEDESTRIAN DELAY AND EXPOSURE	50
5.8	CROSSWALK ANALYSIS FOR SIGNALIZED INTERSECTION PEDESTRIAN CROS	SING
		50
СНАР	PTER 6 CONCLUSION AND RECOMMENDATION	60
6.1	INTRODUCTION	60
6.2	CONCLUSION	60
6.3	RECOMMENDATIONS	61
REFE	RENCES	63
ANNE	X A – TRAFFIC & PEDESTRIAN VOLUME DATA	66
ANN	JEX A1- PEDESTRIAN COUNTS – KEGALLE INTERSECTION	66
ANN	JEX A2- TRAFFIC COUNTS – KEGALLE INTERSECTION	(7

1

LIST OF TABLES

Table 1.1 Fatalities, Registered Motor Vehicles and Population of Sri Lanka	
from 1980 to 2000	2
Table 1.2 Fatalities, Registered Motor Vehicles and Population of Sri Lanka	
from 2001 to 2009	3
Table 1.3 No. of Persons Killed in Road Accidents in Sri Lanka by Type of Person,	,
2000 - 2003	5
Table 2.1 Classification of Pedestrian Facilities for Crossing Roads	15
Table 2.2 Selection of Most Appropriate Pedestrian Crossing Device	16
Table 2.3 Warrants for Installation of Pedestrian Crossing Facility	19
Table 2.4 Walking Speeds for Senior Pedestrians	20
Table 2.5 Sri Lankan Pedestrians Level of Service.	24
Table 2.6 Approach Sight Distance	27
Table 2.7 Stopping Sight Distance	27
Table 2.8 Minimum Distance Required for Drivers' Visibility.	27
Table 2.9 Percentage Reduction in Accidents after Installation of Raised Crossings	32
Table 5.1 Selection of most appropriate pedestrian crossing device	42
Table 5.2 Warrants to Installation of Pedestrian Crossing	43
Table 5.3 Requirements to Installation of Pedestrian Crossing	44
Table 5.4 Crossing Sight Distance Vs Speed	45
Table 5.5 Level of Service Standards in Different Countries	46
Table 5.6 Level of Service Calculation for the Selected Intersection - Kegalle	48
Table 5.7 Pedestrian Crossings LOS - Final Summary of Results.	49
Table 5.8 Crosswalk Analysis of the Kegalle intersection	52
Table 5.9 Crosswalk analysis for signalized intersection pedestrian crossings	56
Table 5.10 The decrement to crosswalk LOS due to Left turning vehicle	58
Table 5.11 Identified Best Option/Options for the selected Intersections	59

TABLE OF FIGURES

Figure 1.1 Fatality rate in Sri Lanka-1980 to 2009	4
Figure 1.2 Percentage fatalities of road users in Sri Lanka - 1980 to 2000	4
Figure 2.1 Zebra crossing close to the intersection	10
Figure 2.2 Puffin facilities at junction traffic signals	13
Figure 2.3 UK warrants for pedestrian crossing facilities.	18
Figure 2.4 Relationship between pedestrian flow and space	21
Figure 2.5 Illustration of walkway level of service	22
Figure 2.6 Sight distance at pedestrian crossings	26
Figure 2.7 Pedestrian flows before and after safety measures.	30
Figure 2.8 Proposed design/markings for alerting and raised crossing humps	31
Figure 2.9 Approach speeds in different sites.	33
Figure 3.1 Location of selected sites	38
Figure 4.1 Pedestrian crossing study procedure	1
Figure 5.1 Crossing sight distance –CSD (m) Vs speed (Km/hr)	46
Figure 5.2 Selected intersection layout	47
Figure 5.3 Pedestrian crossings flow – space curve	49
Figure 5.4 Typical pedestrian crossing layout	50
Figure 5.5 Intersection data	1

/

DECLARATION

" I certify that this thesis does not incorporate without acknowledgement any material previously submitted for a degree or diploma in any University to the best of my knowledge and belief it does not contain any material previously published, written or orally communicated by another person or myself except where due reference is made in the text. I also hereby give consent for my dissertation, if accepted, to be made available for photocopying and for interlibrary loans, and for the title and summary to be made available to outside organizations"

S. Kah .

Signature of the Candidate

31/03/2010

Date

To the best of my knowledge, the above particulars are correct.

UOM Verified Signature

Supervisor

81/3/2010

ABSTRACT

Pedestrian accommodation should be an integral part of the design of any transport infrastructure project. It can be defined as walkways and pedestrian crossings. Pedestrian have a right to cross roads safely. Therefore road designers have a professional responsibility to plan, design and provide safe walking and crossing facilities.

Recent accident studies identified that pedestrian comprise a significant proportion of serious injuries and fatalities while they were crossing the road without using a marked pedestrian crossing. As the majority of pedestrian accident occur while crossing a road, the need of safe and efficient pedestrian crossing facilities could be the most important pedestrian safety factor.

Sight distance, Level of Service and delay to pedestrian are major terms to be considered with warrants prior to installation of pedestrian crossing at a location of road being considered.

Some time there would be additional delay and hazard by introducing crossing where it is not needed or is not suitable.

Pedestrian characteristics and travel behaviour in the form of relationships among parameters such as speed, density, flow and space of pedestrian need to be identified by conducting further pedestrian surveys such as flow and travel time etc.

Design of a pedestrian crossing requires a basic understanding of related human characteristics and carabilities which are dependent on age, physical and mental condition of pedectrians, who are expected to use the crossing at that particular location.

So the main aim of this study is to develop a guideline to assist in determining the appropriate crossing facility for a given location of a road based on the sight distance, Level of Service, delay to pedestrians and vehicles, pedestrian speed, density, flow and space in addition to the warrants.

ACKNOWLEDGEMENT

I would like to express my sincere gratitude to Prof. Amal S. Kumarage, for his excellent guidance and constant support extended to me to make this project a success. Prof. Kumarage has been supportive as a supervisor and without his help; this work would not be possible.

My gratitude is extended to Prof. J.M.S.J.Bandara and Dr. W.K.Mampe Arachchi for their valuable support given during the study period and also special thank to Mr. J. A. G. R. Jayalath for the support given to prepare this report.

My special thanks to the University of Moratuwa for the services provided and also many thanks to the Road Development Authority for granting me financial assistance and leave to following this course.

Finally I would like to extend my grateful thank to all those who had given a support either directly or indirectly for the successful completion of this report.

1