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ABSTRACT 

Flood forecasting is a powerful tool for flood management and early warning, where the 

anticipated flow values are determined by incorporating basin attributes and climatic factors. 

In the field, data-driven models offer beneficial solutions compared to comprehensive physical 

and statistical tools; neural networks have evolved to perform flood forecasting without 

understanding the physical mechanism. However, forecasting efficiency and reliability are 

insufficient due to the augmentation of predictive span and improper data handling strategies. 

In addition, the poor interconnectivity of spatial-temporal resolution influences the accuracy 

of flood forecasting in a dry zone. Thus, the present study aimed to enhance the flood 

forecasting ability of neural network models for a 30-day horizon by learning the daily input 

series of climatic and physiographic factors of the catchment region. Further, the data 

manipulation strategies were adapted to enhance the learning capabilities. In addition, pre-

trained models were developed based on the model performance in the wet zone basin to 

enhance the predictive quality in the dry zone basin.   

The NN models were developed for the Kelani River flood forecasting, where significant flood 

events have frequently destroyed the socio-economic features of the basin. Besides, pre-

trained models were tested on the Maduru Basin flood events, which have encountered 

inundation due to prolonged flood peaks. Thus, climatic and physiographic data were gathered 

for both basins and improved with hydrological and data science-based data manipulation 

strategies. On the other hand, the Box-Cox transformation was employed to redistribute the 

input series into a Gaussian state to enhance the learning ability of NN models.   

Consecutive windows were proposed to consider 30-day daily input to forecast the next 30-

day streamflow values while sampling. Thirteen (13) NN models were compiled, fitted, and 

tested on the Kelani Basin. In addition, grid analysis was adapted to rank the performance of 

models based on statistical tools, where bidirectional models explicated excellent quality in 

flood forecasting. Besides, uncertainty analysis was proposed to investigate the impacts of 

data handling and input combination on flood forecasting. Two hybrid models significantly 

expounded underperformance without box-cox transformation; none of the models illustrated 

excellent performance without box-cox transformation. Moreover, scaling/normalization 

severely influenced the model performance considerably for hybrid models. Besides, 

sensitivity analysis was applied to verify the applicability of model architecture on model 

performance. Unlike the types of optimizers, other sensitivity parameters revealed 

inconclusive results for model performance. None of the modified models delivered more 

excellent performance than the core models. Further, Bidirectional Gated Recurrent Unit (Bi-

GRU), Bidirectional Long- and Short-Term Model (Bi-LSTM), and Attention Based Bi-

LSTM (Att-BiLSTM) expressed 0.98, 0.95, and 0.97 for the wet zone flood forecasting, 

respectively, which were chosen as pre-trained models delivered a similar performance for the 

dry basin.   

In future studies, the consecutive data batches must be determined according to the guiding 

parameters, such as global warming and climate change. Besides, the loss function should be 

replaced with other statistical terms to incorporate an optimizer, and autocorrelation must be 

adapted to control the error propagation. In addition, the core model must be trained for 

extended periods to effectively perform transfer learning on other basins.   

 

Key Words: Box-Cox; Data science; Sensitivity analysis; Sliding window; Uncertainty 

analysis 
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CHAPTER 1: INTRODUCTION 

The background of the study focusing on flood forecasting, the problem statement, the 

objectives of the study, and the scope of the study are discussed in this section.  

1.1 Background  

Flood control and forecasting are the most predominant steps of powerful flood 

management. Flooding can lead to adverse impacts if development activities intercept 

the floodplain of a river system. The river overflows the bank and inundates the nearby 

areas leading to loss of life and property resulting from the negative behaviour of 

extreme flood conditions. The positive correlation between global warming and the 

frequent occurrence of extreme rainfall events resulting in floods has led to several 

research endeavours in flood studies. The intensification of the hydrological cycle 

simulates further concerns about the impacts of future flood events. A flood 

hydrograph is the chronological representation of the flow discharge due to the storm 

over the catchment. In addition, flood peaks are extracted from the hydrograph and 

utilized for the hydrological analysis, and annual peaks are employed to build the 

hydrologic series (Subramanya, 2017).   

The rainfall-runoff relationship is a complex behaviour and is determined by various 

basin and event-specific factors. The most straightforward relationship is simulated by 

correlating annual runoff and rainfall values, where the linear regression coefficients 

validate the model fitness or goodness of fit. However, linear regression is only valid 

for small-range catchments; in addition, exponential or logarithmic mathematical 

transformation is a suitable representation for large catchments. On the other hand, 

synthetic hydrographs are famous for predicting future events with available rainfall 

data, incorporating soil moisture and antecedent rainfall data (Subramanya, 2017).   

The most important forecasting achievement is preparing an adequately lengthy series 

without compromising model performance or accuracy. Previous endeavours in 

hydrology reveal that the hydrographs are a suitable representation to plot the 

catchment response for the rainfall data, which consists of surface runoff, interflow, 

and baseflow. Climatic factors and physiographic factors are the influencing factors in 

the development of hydrographs. Basin characteristics, infiltration characteristics, and 
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channel characteristics are included in the physiographic factors; simultaneously, 

evapotranspiration, storm characteristics, and initial losses are elements of climatic 

factors (Subramanya, 2017). 

In past decades, forecasting models have been developed based on different principles 

incorporating computer technology. Besides, the process-driven models are 

determined based on the physical mechanisms, while the data-driven models are 

constructed based on machine learning. Complex mathematical formulae and a 

considerable amount of hydrological data are required to simulate the process-driven 

models. A deep understanding is crucial for the process-driven models for flood 

forecasting studies. On the other hand, the data-driven models are applied to develop 

statistical models between hydrological variables. However, the physical mechanism 

of hydrology is commonly not considered while performing data-driven modelling. In 

addition, unique advantages are identified for the model, such as solving numerical 

problems, generating non-linear functions, and simulating time series analysis. The 

Neural Network (NN) has recently been in demand for applying data-driven models 

(Xu et al., 2021).   

Timely information gathering and real-time simulation support the essential aspects of 

forecasting; in addition, the NN architecture builds up with approximating a statistic 

non-linear mapping function. Multi-Layer Perceptron (MLP) is the most useful NN, 

consisting of input, hidden, and output layers. Besides, the activation function plays a 

significant role in generating outputs. Forecasting problems are classified into three 

categories such as short-term (days, weeks, months), medium-term (one or two years), 

and long-term (more than two years), where hydrological forecasting is one of the 

short- or medium-term problems. The future pattern of the event is predicted by 

identifying and extrapolating the historical data; therefore, statistical-based 

mathematical models are adequate for the analysis. Besides, deep learning (DL) is 

more reliable than shallow learning; thus, DL is famous for image classification, 

speech recognition, COVID-19 prognostic analysis, rainfall-runoff modelling, and 

streamflow prediction. The accumulated input data series is decomposed into several 

components, where each component involves in the timely prediction. Finally, the 
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outcomes of the forecasted series are added together to generate the final output series 

(Sha et al., 2021).  

The NN models are used to adequately alert the risk of flood occurrence, which locates 

the peak flow rates with sufficient fine-temporal resolution (de la Fuente et al., 2019). 

However, the accuracy vanishes with the increment of predictive span and the 

combination of hydrological parameters. Therefore, the reliability of predictions is not 

appreciable in NN-based monthly flood forecasting models (Sha et al., 2021). Besides, 

NN models cannot simulate the pattern for the catchment region with frequent arid 

weather. Further, the spatial and temporal correlation is insufficient to simulate the 

complex non-linear pattern of hydrological data (Jimeno-Sáez et al., 2018).  

Artificial Neural Network (ANN) is one of the standard Artificial Intelligence (AI) 

vastly used in forecasting, which is performed to predict the future without the 

acknowledgement of the physical characteristics of the basin. However, these models 

are unsuitable for dry weather (Jimeno-Sáez et al., 2018). A Recurrent Neural Network 

(RNN) is another AI typically employed for the sequential data for forecasting. Image 

recognition, internet of things, text translation, and stock prediction are performed with 

the Long-Short Term Memory (LSTM) models of RNN. In addition, affine 

transformation and ease of user memory are the two significant abilities of LSTM cells. 

Besides, the memory capacity supports predicting the event from the present and past 

states; nevertheless, the accuracy of the LSTM models is limited to a short range of 

forecasting spans. In addition, RNN requires a waiting time for the forward pass of 

previous steps. Convolutional Neural Network (CNN) is the next revolution of NN, 

mainly designed for fulfilling computer vision tasks, especially when it extracts high-

level features from the grid topography. 

Temporal Convolutional Network (TCN) is one of the variants of CNN able to produce 

the length of output as same as the input span. In addition, this is better than LSTM in 

stock trend prediction and recognition of sepsis. Recently, the rapid convergence of 

TCN models has built up effective flood forecasting models using rainfall data, 

evaporation data, and Normalized Difference Vegetation Index (NDVI) data (Xu et 

al., 2021). The performance of the hybrid CNN-LSTM is better than the stand-alone 
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models: CNN and LSTM. In addition, the input data processing gives a better solution 

than the original input data sets. Most importantly, non-periodic parameters show 

significant benefits for the data processing methods, where the Complete Ensemble 

Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) is the tool applied 

for this task. The accuracy declines with the increment of predictive steps; however, 

the decaying of the data is restricted by using the CEEMDAN tool (Sha et al., 2021).      

The physical mechanism of hydrology is non-linear; thus, simple prediction techniques 

never appreciate a favorable solution for forecasting. The false-positive warnings 

should be eliminated by enhancing the forecasting quality to respond to both tiny and 

extreme flow events (Jimeno-Sáez et al., 2018). Hydro-meteorological and 

geomorphological variables are employed in the data-driven models. Besides, LSTM 

models are suitable for mountainous and snow-dominated regions which is modified 

by incorporating the Data Integration tool to eliminate the baseflow bias in 

groundwater-dominated basins (Feng et al., 2020). The interdependency of time series 

analysis is impossible to carry out with an ordinary RNN. Therefore, Correlated Time 

series (CTS)– LSTM models count the interconnectivity of multiple time series (Wan 

et al., 2020). Nonlinear Autoregressive Network with Exogenous Input (NARX) is one 

of the dynamic RNNs, which is the best time-series predictive tool for seasonal 

components without significant computational losses (di Nunno & Granata, 2020).  

1.2 Problem Statement  

Flood forecasting and early warning systems requiring long-term hydrologic series are 

effectively simulated with neural network-based models; however, the efficiency and 

accuracy of the predictions are insufficient. The uncertainty occurs with the extension 

of the predictive span. Besides, the combination of input parameters influences the 

performance of the models, which eventually leads to catastrophic malfunctioning of 

NN models. Further, the poor interconnectivity of spatial and temporal resolution 

causes less accurate flood forecasting of dry zone basins.  
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1.3 Main Objective and Specific Objectives  

Main Objective: To address the deficiencies and harness the strengths of the NN 

models developed for a 30-day forecasting horizon by employing available NN models 

in the literature and enhancing accuracy by handling the data manipulation strategies.  

Specific Objectives:  

• To manipulate the data and sampling to enhance better performance of NN 

models. 

• To identify the best NN models by compiling the models on a wet zone river 

basin. 

• To perform uncertainty analysis by handling the input data of the models.  

• To perform sensitivity analysis by altering the architecture of the models.  

• To evaluate the model performance in the dry zone river basin by applying 

transfer learning. 

1.4 Significance of the Study 

The accuracy of NN models is inadequate for monthly forecasting (30 days) with daily 

input series; thus, the reliability is insufficient to appreciate flood forecasting. 

Expected outcomes:  

• Extreme events must be considered with proper data manipulation and sampling 

techniques.  

• The models should be compiled, fitted, and tested on Kelani River Basin (wet 

zone) data. 

• The performance of models must be quantified using grid analysis.  

• The uncertainty and sensitivity analysis must be performed to verify the 

applicability of input handling and the model architecture.  

• Transfer learning must be applied to pre-train the models on Maduru River Basin 

(dry zone) data.  
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1.5 Scope of the Study  

The climatic and physiographic factors of the catchment were gathered and utilized to 

develop thirteen Neural Network models. The Kelani River basin (wet zone) data were 

employed to assess the models. The pre-trained model performance is evaluated in the 

Maduru Oya basin (dry zone). Figure 1-1 illustrates the locations of selected basins on 

the climatic zone map.  

 

Figure 1-1 Climatic Zone Maps and Selected River Basins 
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CHAPTER 2: LITERATURE REVIEW  

The section describes the previous research concepts, neural networks available in the 

literature, data processing, developing NN models for the present study, the selection 

of the best models, uncertainty analysis, sensitivity analysis, and transfer learning.  

2.1 Previous Research Concepts in Forecasting using NN Models    

Flood flow depends on soil properties, land usage, climate, river basin, snowfall, and 

geophysical elements. Forecasting models are based on physical, statistical, and 

computational intelligence or deep learning algorithms. Besides, comprehensive 

physical models are data-intensive and challenging to handle complex non-linear 

problems in flood forecasting. However, the ability has been enhanced by adopting 

advanced simulation and hybrid models. In addition, statistical models are associated 

with historical data to develop the pattern for the future flood, especially Multi Linear 

Regression (MLR), Autoregressive Integrated Moving Average (ARIMA), and Hybrid 

Least Squares Support Vector Machine Regression (LS-SVM) are the standard 

statistical models. However, the models lack to scale well with the increment in size 

and complexity of the data. Computational Intelligence, such as deep learning, handle 

the struggles with scale and complexity without acknowledging basic processes. Deep 

learning models require a minimal number of computational resources, and the 

expected performance is faster than others (Gude, Corns, & Long, 2020). 

Since 1994, NN models have been believed to reflect more efficient solutions for flood 

forecasting than the traditional model. During the initialization of the forecasting work, 

the average rainfall data over the basin scale was used, and the simulation revealed an 

issue in neglecting sub-basin contribution. Certain portions of the basin have received 

rainfall; therefore, its response to rainfall depends on previous events. The time lag 

between rainfall at each rain gauge is examined by understanding the correlation 

between rainfall and water level. Therefore, it is determined by estimating the 

frequency distribution over the database event. On the other hand, calibration and 

validation are essential in the estimation, especially since the training set minimizes 

the error, while the testing set is important to avoid overfitting (Campolo, Andreussi, 

& Soldati, 1999). 
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An ANN is a mathematical structure utilized for computational purposes, where the 

network understands, learns, memorizes, and discloses the relationship among the data 

sets. In addition, the models consider the complex non-linear periodical relationship 

without explicit information on the physical characteristics of watersheds. According 

to the number of layers, it is classified as a single- and multi-layer network. In addition, 

it is divided into two categories according to the direction of passing information: feed-

forward network and recurrent network (Jimeno-Sáez et al., 2018).  

Algorithms and deep learning-related methodologies have been developed because of 

the advancement of water conservancy information based on the Internet of Things 

(IoT). The CNN are capable of complex feature extraction, where the gridding 

technique implements the spatial temporal interconnectivity???? of rainfall data. 

Besides, Digital Elevation Model (DEM), geographical features, and historical 

streamflow features are imported into the model. CNN model for flood forecasting 

proceeds with 24-hr and 36-hr leading times; mainly, the ability to extract features is 

the key reason to apply the model. Further, it is popular for computer vision because 

of its ability to parameter sharing. Besides, the Rectified Linear Units (ReLU) and 

dropouts improve the performance of the model. In addition, it is simulated with a 

smaller kernel than other NN models. A research paper on 'Convolutional Neural 

Networks for Forecasting Flood Process on the Internet of Things Enables Smart City' 

was organized based on the CNN forecasting tool. 

Temporal Convolutional Neural Network (TCN) is currently popular in flood 

forecasting, which combines simple convolution and a 1D Fully Convolutional 

Network (FCN) that supports generating output data of the same length as input. The 

casual convolution ensures that future derivations do not affect the previous 

information. In addition, it provides a better solution than LSTM for flood forecasting. 

A research paper on 'Application of temporal convolutional network for flood 

forecasting' was constructed on a TCN-based flood forecasting model. 

Researchers have paid attention to the RNNs and their variants, such as LSTM and 

GRU, which perform better than the standard RNNs. The models have the best ability 

to deal with high nonlinear interaction among complex hydrological parameters. 
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Besides, Principal Component Analysis (PCA) method is adopted to control 

dimensionality and redundancy within input datasets. RNN model constructed with 

multiple input data forecasts more accurate results than rainfall data alone. This 

method supports the classification of the original data into several comprehensive 

variables. The research paper on 'Daily Runoff Forecasting by Deep Recursive Neural 

Network' was prepared to elaborate on the PCA method adapted for flood forecasting. 

In addition, a research paper on 'An Integrated Approach for Weather Forecasting and 

Disaster Prediction Using Deep Learning Architecture Based on Memory Augmented 

Neural Networks (MANN's)' was developed to explain the MANN architecture as 

LSTM, GRU, and DNN. 

Nonlinear Autoregressive with Exogenous Input Network (NARX) is suitable for the 

time series forecasting problems of seasonal components with more minor 

computational losses, which is a dynamic RNN model based on lagged input-output 

variables and prediction errors. On the other hand, wavelet transformation (WT) is 

developed based on Fourier analysis that simultaneously interprets both temporal and 

spectral information. The model adapted with Monte Carlo Simulation (MCS) 

quantifies the model uncertainty and performs probabilistic water level forecasting, 

and it achieves accurate predictions for short-term forecasting. A research paper on 

‘Flood Forecasting Using an Improved NARX Network Based on Wavelet Analysis 

Coupled with Uncertainty Analysis by Monte Carlo Simulation: A Case Study of 

Taihu Basin, China’ thoroughly explained this hybrid model related to flood 

forecasting. Another research paper on ‘Groundwater Level Prediction in Apulia 

Region (Southern Italy) using NARX Neural Network’ was developed to address the 

performance of the NARX forecasting model. 

The RNN is the best neural network to deal with sequence data by simulating chain-

type structures and internal memory with loops. In addition, the vanishing gradient 

issue is controlled by the LSTM and GRU, which are variants of RNN. The system 

develops through the appreciated performance of the long-term dependencies of the 

model; however, the models fail to handle the missing data. Besides, the research paper 

on 'Stacked bidirectional and unidirectional LSTM recurrent neural network for 
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forecasting network-wide traffic state with missing values' was developed to eliminate 

the issues based on traffic forecasting.   

Correlated Time Series – Oriented - LSTM (CTS-LSTM) is the best forecasting tool 

for analyzing its deficiencies compared to conventional LSTM. It captures the intra-

sequence temporal and inter-sequence spatial dependencies of multiple series. RNN 

understands the temporal correlation among the neurons in the sequential data. 

However, the vanishing gradient causes issues in training the input data. Therefore, 

the model insufficiently handles the long-term dependencies in the sequential data. 

The correlated time series have their own temporal and spatial dependencies in-

between each other. Besides, this unique feature makes forecasting more effective 

through the CTS-LSTM model. A research paper on 'CTS-LSTM: LSTM-Based 

Neural Networks for Correlated Time Series Prediction' on air quality prediction was 

constructed to explain the model structure.  

Spatiotemporal characteristics should be considered to develop multi-time and multi-

site forecasting models. Deep learning is a more powerful tool for developing various 

forecasting systems than the shallow learning mechanism. Therefore, it is famous for 

various fields, such as image recognition, speech identification, and the natural 

language process. Besides, LSTM is the most eligible modelling tool for forecasting. 

In addition, the hybrid models of LSTM give a unique solution to attain the best 

accuracy. CNN-LSTM is one of the excellent solutions for achieving the best accuracy 

in forecasting. Cluster analysis segregates the disordered data into different categories 

with high similarity to estimate the internal patterns to enhance the performance, where 

the generalization ability is achieved in this process to minimize the training period. 

The research paper on ‘multi-hour and multi-site air quality index forecasting in 

Beijing using CNN, LSTM, CNN-LSTM, and spatiotemporal clustering’ powerfully 

explained the CNN-LSTM and the cluster analysis based on air quality forecasting. 

The input data severely dominate forecasting accuracy; further, calculation formulas 

and complicated processes require performing an LSTM-based neural network. In 

addition, the attention-based LSTM addresses, and copes with the dispersion in the 

standard LSTM model. The attention mechanism assigns weights to the features based 
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on the time steps. In contrast, the ordinary LSTM model has a finite ability to extract 

complex features and only depends on weights. 

The hybrid model based on CNN and LSTM ignores the gravity of feature selection; 

therefore, this model requires much redundant information and strict variables. 

Attention-based long and short-term temporal neural network model is assembled with 

the conventional neural network, extended short-term neural network, and attention 

mechanism under the multiple relevant and target variables prediction pattern 

(MRTPP). In addition, the accuracy is enhanced by the MRTPP pattern, which is better 

than the typical input-output pattern. The research paper on ‘Day-ahead hourly 

photovoltaic power forecasting using attention-based CNN-LSTM neural network 

embedded with multiple relevant and target variables prediction pattern’ elaborated on 

the performance excellence of the Attention Based CNN-LSTM models based on 

photovoltaic power forecasting. 

2.2 Neural Network Forecasting Models Available in the Literature  

The neural network models available in the literature are discussed in this section.  

2.2.1 Ordinary Artificial Neural Networks (ANN) 

The ANN is the multilayer perceptron, which consists of the input layer (input 

neurons), output layer (output neuron), and hidden layer.  

 

Figure 2-1 Model Structure of ANN, (de la Fuente et al., 2019) 
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The neuron receives a weighted sum from the neurons in the previous layer; thus, these 

are called feedforward neural networks because the last neuron generates the input for 

every neuron in the same direction.  

In addition, the transfer function governs the activation of a neuron (de la Fuente et 

al., 2019). Figure 2-1 shows the configuration of the ANN model.  

2.2.2 Convolution Neural Network (CNN) 

The CNN extracts the repeating pattern from the time series by eliminating the noisy 

series, and the data set is input for learning weight and understanding bias. Dilated 

convolution solves the long-term dependence in time series, while 2D convolutional 

operation captures the rainfall spatial-temporal features, geographical aspects, and 

trends (Chen et al., 2021).  

In the traditional model, rainfall data is the only input utilized for modeling. Besides, 

the rainfall range is calculated for the whole basin by taking the weighted summation 

of different stations. Therefore, the spatial distribution of the rainfall is difficult to 

attain through the system. In addition, topography details are collected from STRM, 

and the DEM matrix is employed to size the spatial distribution matrix using an 

average pooling operation. The first three layers of the CNN capture the complex 

features of rainfall spatial-temporal data and geographical aspects. Further, a dense 

layer concatenates the feature with the future trend (Chen et al., 2021).  

2.2.3 Deep Recurrent Neural Network (RNN) 

The LSTM consists of gate units and cell states where the memory cell and hidden 

state are updated on the input and output gates. Besides, the forget gate ignores 

irrelevant information. The GRU replaces the hidden blocks of ordinary RNNs with 

two logic gates. In addition, the update gate is employed to capture the long-term 

dependencies of the series. Simultaneously, the reset gate and the candidate hidden 

state are approached to capture the short-term dependencies of the series (Zhang et al., 

2021). Figure 2-2 and Figure 2-3 illustrate the LSTM and GRU with gate units.  

Differential Neural Network (DNN) is associated with the differentiable process of 

updating the memory rows. In addition, Stochastic Gradient Descent (SGD) is suitable 
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for learning algorithms. Besides, LSTM, GRU, and DNN are constructed based on the 

concept of MANN (Satwik & Sundram, 2021). 

 

Figure 2-2  LSTM Model Structure with Forget Gate, 

Input Gate, Cell State and Output Gate, (Zhang et al., 

2021) 

 

Figure 2-3 GRU Blocks with two Logic Gates, 

(Zhang et al., 2021) 

Dropout is a crucial feature of deep RNN because of its high memory ability. Deep 

RNN overfits the results with the high-dimensional input. It is the regulation method 

to control the issues due to overfitting. Adaptation of the dropout technique controls 

the dependency of the output on the units of hidden layers. During the data pre-

processing, the PCA method is applied to reduce the dimensionality of the input. 

Besides, data division is adopted to eliminate overfitting and test the predictive 

capabilities (Zhang et al., 2021).  

2.2.4 Nonlinear Autoregressive with Exogenous Input Network (NARX) 

The principle behind the feedforward neural network (FNN) is the basic concept of 

NARX, where an output of a neuron becomes an input for another neuron, flowing in 

a direction. In addition, Recurrent Neural Networks (RNN) deviate enormously from 

FNN, where the data flows in the forward and backward directions. Figure 2-4 explains 

the skeleton of the NARX model. The reduced number of input parameters is adequate 

to simulate the model. The time delay is evaluated with the cross-correlation function 

between input and output. In addition, Levenberg-Marquart (LeM) is widely employed 

in the model due to its fast and stable convergence. The LeM algorithm is the first 

layer to approximate the Hessian Matrix. Besides, Bayesian Regularization (BR) is the 

second algorithm that uses a Gauss-Newton approximation to control the probability 

of overfitting and the computational overhead. The LeM algorithm is generally faster, 

while the BR algorithm deals with complex problems (di Nunno & Granata, 2020).  
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Figure 2-4 NARX Model Structure, (di Nunno & Granata, 2020) 

2.2.5 Hybrid Model of Discrete Wavelet Transformation – Improved Nonlinear 

Autoregressive with Exogeneous Input Network (DWT-iNARX) 

The NARX approximates all the nonlinear functions, and its memory provides a short 

path to optimize the forward- and backward- propagation of the signals. The behaviour 

destroys the long-term dependency of the model. Besides, the loss of time information 

with the domain causes a significant drawback to the WT model. The long-time 

intervals allow for low-frequency data, while the short-time intervals permit the 

requirement for high-frequency data. The transformation function is chosen according 

to the characteristic of a time interval. In addition, the time series is decomposed into 

subunits using WT. The multiple signals are used as input data sets for the ANN model 

(Jiang et al., 2021). 

2.2.6 Stacked Bidirectional and Unidirectional LSTM Network (SBU-LSTM) 

The model architecture of SBU-LSTM captures both forward and backward temporal 

dependencies with the Bidirectional LSTM structure. In addition, the data imputation 

mechanism is adapted with the model to infer the missing input data because missing 

data sets are one of the crucial reasons for the malfunctioning of forecasting models. 

There are two different models to accomplish imputation and prediction separately in 
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the model. However, the efficiency of the forecasting model is highly questionable 

through this separate system (Cui et al., 2020).  

An ordinary LSTM unit does not adequately pass the information in the backward 

direction. Therefore, backward dependencies should be brought to the system by 

organizing the operation in the negative direction. The predictive performance is 

adequately improved in the temporal series perspective. Bidirectional LSTM already 

has the best ability to function as a backward and forward informative network. 

Besides, the number of layers, the size of model weights, and the spatial dimension of 

input data are the influencing factors in evaluating the performance of the prediction 

(Cui et al., 2020).      

The model architecture of SBU-LSTM is developed as a combination of imputation 

and predictive tools. In addition, the skipping mechanism is the standard imputation 

method, and the dropout feature of RNN is applied to develop the skipping mechanism. 

In addition, regression, spectral analysis, EM algorithm, and matrix factorization are 

other popular imputation methods. The Bayesian temporal matrix factorization is the 

popular method to solve spatiotemporal data. Besides, state-of-the-art prediction 

accuracy is achieved through the matrix factorization method (Cui et al., 2020).  The 

basic units of model architecture are represented in Figure 2-5.   

 

Figure 2-5 LSTM and LSTM-Imputation Units, (Cui et al., 2020) 

Further, LSTMs significantly contribute to the sequence-based long-term dependency 

data analysis, consisting of cell states and three gate units (input, forget, and output). 

The current variable vector, the preceding output, and the initial cell state are the input 

for the LSTM. Besides, memory cells and input gate units are designed to learn the 
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long-term dependency data and allow the essential details to pass through. Forget gate 

makes an effective and scalable sequential data learning analysis (Cui et al., 2020).  

LSTM-Imputation Unit is specially designed to perform prediction and imputation 

simultaneously. Commonly, predefined values, zeros, mean of historical observation, 

or last observation values are filled instead for the missing values; however, these 

approaches are biased in the training process. The separated arrangement of imputation 

(I) units and predictive tools affects forecasting efficiency. Therefore, the LSTM-I unit 

is developed by incorporating LSTM and imputation units to simulate both forecasting 

and imputation simultaneously. In addition, the missing data is identified as missing 

data from cell states and hidden states. The LSTM-I simulates forecasting and infers 

missing data through a single process (Cui et al., 2020).  

Bidirectional LSTM (BDLSTM) deals with forwarding and backward direction with 

separate LSTM hidden layers, where it performs better than unidirectional LSTM. The 

model architecture is illustrated in Figure 2-6.  

 

Figure 2-6 Bidirectional LSTM, (Cui et al., 2020) 

The BDLSTM is designed to capture missing data with imputation units. Moreover, 

backward, and forward access to the architecture helps to infer the lost data efficiently. 

The structure of an un-fold BDLSTM-I layer combines the forward LSTM-I layer and 

backward LSTM-I layer (Cui et al., 2020).  

Stacked bidirectional and unidirectional LSTM consists of several hidden layers of 

LSTM. The structure represents the sequential data. The stacked multi-layer 
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mechanism can feed the sequential hidden layers with the output of previously hidden 

layers. Multiple numbers of BDLSTM-I components are arranged inside the system. 

The SBU-LSTM consumes the sequential data sets. The first and foremost layer is 

designed as the BDLSTM-I layer, and this layer infers the missing data of the 

sequential data sets (Cui et al., 2020).     

2.2.7 Correlated Time Series – Long-term Short-term Memory (CTS-LSTM) 

The correlated time series processes with separate LSTM cells to avoid the loss of 

correlation. Therefore, an LSTM cell is applied to receive the correlated time series as 

an input. After that, the series of information is fused into a representation, and it is 

called fused representation. However, the characteristics of each time series are 

expressed entirely with the fused representation. Moreover, mutual correlation never 

attains through the analysis; consequently, each time series losses its unique features. 

In addition, extracting temporal features from each series distinguish is harder. 

Accordingly, the conventional LSTM model lacks to completely understand the 

spatial-temporal aspects of the time series data (Wan et al., 2020).   

 

Figure 2-7 Structure of CTS-LSTM, (Wan et al., 

2020) 

 

Figure 2-8 The Structure of ST Cell, (Wan et al., 2020) 

The CTS-LSTM forecasting model addresses the issues with three critical units: 

Spatial-temporal cells (ST cells), Spatial-temporal fusion, and external factor module. 

The Spatial-temporal cell contains two channels to capture the intra-sequence temporal 

and inter-sequence spatial dependency. Intra-sequence cell state, Intra-sequence 

hidden state, and three gates are the significant units of the intra-sequence channel, 

and the unique feature of the intra-sequence dependencies of each series is updated 

using this channel. Another channel is applied to understand the pairwise influence 

between correlated series. Therefore, every series build up with the information on all 

the other series.  
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Figure 2-9 Structure of the Fusion Module, (Wan et al., 2020) 

Inter-sequence cell state, inter-sequence hidden state, and three gates are the primary 

units of the channel. In addition, the spatial-temporal fusion consists of a module 

before the last ST cell layer to aggregate information in the two channels. The external 

factor module simulates the inherent time series pattern, regularities, and external 

factors from various domains (Wan et al., 2020). Figure 2-7, Figure 2-8 and Figure 2-

9 illustrate the CTS-LSTM modules.  

2.2.8 A hybrid model of Convolutional Neural Network – Long-term Short-term 

Memory (CNN-LSTM) 

The CNN model effectively extracts the features of grid data, and the LSTM model 

excellently processes the time series analysis. Therefore, the error propagation is 

considerably low in these hybrid models. The input for the model should be arranged 

to face clustering analysis. The mean and standard values of the spatiotemporal data 

are involved in the clustering process. In addition, the spatial distribution is analyzed 

with Kriging Interpolation and Moran’s I Statics. The Kriging mechanism is required 

to determine the semi-variogram model, which is selected based on accuracy, while 

Moran’s I statistics explains the spatial correlation of variables. After the clustering 

analysis, the data are segregated into various classes; therefore, training time 

consumption is expected to be low (Yan et al., 2021).    

Convolution and pooling layers are involved in the feature transformation and 

extraction process. Besides, the convolution layer extracts the features of input 

variables by kernels, where the layers connect the previous data with the current 

neuron. The multiple Kernels extract the features from the input matrix and provide 
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the feature maps. In addition, the pooling layers control the dimension of previous 

feature maps (Yan et al., 2021).  

 

Figure 2-10 Structure of CNN, (Yan et al., 2021) 

 

Figure 2-11 Input Dimension of CNN, (Yan et al., 

2021)  

 

Figure 2-12 The Memory Cell of LSTM, (Yan et al., 

2021)  

 

Figure 2-13 Input Dimension of LSTM, (Yan et al., 

2021) 

 

 

Figure 2-14 Structure of CNN-LSTM, (Yan et al., 2021) 

The LSTM is the best version of RNN, and it has a recurring mechanism in the hidden 

layers. Besides, the input consists of the feature of current and past events, which 

correlates with the contextual information. The nodes of RNN forget with the 

increment of iterations, and due to that, the nodes start to ignore the previous 

information of the sequential data. In addition, the memory cells are applied to hold 

the historical data. The cell state and three gates support the LSTM model architecture 

for properly functioning the tasks. Besides, the cell state transmits sequential 

information, and gates are used to update and discard historical information. The 

hybrid model of CNN-LSTM represents the combined functional behaviour of CNN 

and LSTM (Yan et al., 2021). Figure 2-10 to Figure 2-14 expresses the model 

architecture of CNN-LSTM.  

2.2.9 Attention-Based CNN-LSTM Neural Network Model (ALSM) 

The historical data is commonly non-stationary, dynamic, and non-periodic; therefore, 

it is not practical for a traditional neural network. A unique model should be proposed 
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for forecasting by considering the strength of various neural network techniques. 

Therefore, CNN, which extracts the spatial features; LSTM, which draws the temporal 

features; and the Attention mechanism, which eliminates the flaws of distraction, are 

combined to develop the standard neural network model. Two modules based on 

LSTM and CNN consider the time characteristics to focus short-term and long-term 

periodicity of output. The model extracts the spatial and temporal correlation among 

relevant and target variables. The input-output of Multiple Relevant and Target 

Variables Prediction Patterns (MRTPP) absorbs the historical operation of the relevant 

and target variables. In addition, it converts those absorbed data as input variables to 

the deep learning model (Qu et al., 2021). Figure 2-15 illustrates the model architecture 

of ALSM. 

 

Figure 2-15 Model Architecture of ASLM, (Qu et al., 2021) 

 

Figure 2-16 1D CNN Extracting Features of Short-Term and Long-Term Series Pattern, (Qu et al., 2021) 

The short-term temporal module consumes the short-term time mode with CNN-

LSTM cells to perform predictions, a long-term temporal module takes the long-time 

mode with the Recursive unit of LSTM to perform forecasting, and the attention 

module understands the interconnection among the different time-sequential modules 
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with its feature extraction capability are the crucial components of the ALSM model 

(Qu et al., 2021).  

 

Figure 2-17 The Structure of An Attention Model, (Qu et al., 2021) 

CNN is one of the FFNs; thus, the parameter-sharing properties control the number of 

parameters to be optimized. Therefore, efficiency and scalability are improved through 

the process. The convolution operation takes place in Euclidean space; therefore, time 

series prediction and image classification are the significant advantages of CNN. The 

1D CNN is employed for time series forecasting through the convolution kernel to 

extract features of short- and long-term patterns (Qu et al., 2021). Figure 2-16 

illustrates the fundamentals of CNN-LSTM. 

The vanishing gradient and gradient explosion limit the learning capacity of the cyclic 

neural network. Besides, the relatively long-term memory capacity of the LSTM 

makes the usage broader in forecasting, and the attention mechanism comprises two 

complete connection layers: CNN and LSTM (Qu et al., 2021). Figure 2-17 illustrates 

the procedure.   

2.2.10 Temporal Convolutional Network (TCN) 

Temporal Convolutional Neural Network (TCN) is one of the convolutional neural 

networks, and the application is widely popular in forecasting. Two specific designs 

are used to develop TCN; firstly, 1D Fully Connected Neural Network (FCN) 

generates an output of the same length as the sequential input data. The output data is 

influenced by the present and past information of the sequential data sets. Simple 

convolution varies from standard and is identified with similar issues to traditional 
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CNN. The model should be arranged linearly with a stack of many layers to learn the 

long dependencies among data.  

The TCN consists of a 1D expansion convolution layer to overcome the problem. The 

expansion convolution requires the interval sampling of input. Moreover, the dilation 

factor enhances exponentially with the depth of the network to utilize a more extensive 

adequate input history. Several TCN blocks are connected to increase the performance 

of the model. Besides, multi-step time series forecasting is effectively performed with 

the model. A moving window scheme of TCN is employed to create input and output 

pairs (Xu et al., 2021).  Figure 2-18 explains the model architecture of the TCN unit.  

 

Figure 2-18 TCN Model Structure, (Xu et al., 2021) 

2.3 Data Processing for the Development of the NN Model and Study Area 

Data collection, data processing, and study area were discussed in the section.  

2.3.1 Data Collection and Processing 

The study area is divided into several sectors using Geographic and Hydrological 

features. Topographical data (DEM model, Land Use, Soil Type), Hydro-

meteorological data (River stage, rain stage, radar rainfall), and River bathymetry 

(River cross-section, Manning’s roughness) are considered as input (Hussain et al., 

2021). In addition, the convergence speed is accelerated by scaling the input variables; 

therefore, the training process is simulated effectively. Daily runoff series is collected 

from USGS Hydrological Stations; simultaneously, Daily Meteorological Data is 

accrued from Weather Underground and NOAA. Besides, watershed geomorphology 

is extracted from SRTM with one arc-second resolution. Watershed area, mainstream 
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length, max/min/average elevation, and average slope are accrued as time series data 

from this portal (de la Fuente et al., 2019). 

Further, data pre-processing includes data division and cleaning; the missing data and 

outlaying data are severe issues for accuracy deficiencies. Data cleaning is the method 

adopted to solve the problem, while data division is followed to eliminate overfitting 

and test the predictive capability. Nearly 80% of the data set is considered a training 

sample, while the balance is testing samples (Jiang et al., 2021).  

2.3.2 Physiographic Factors 

Basin shape influences the time consumption for the water to move from the remote 

location to the outlet. In addition, the overland flow is the predominant phase in the 

small catchment, while the channel flow phase is the significant one in the large 

catchment. The area of the catchment influences the peak discharge, while the slope 

of the basin governs the depletion of storage. Generally, the steep slope accelerates the 

depletion of storage; thus, the time base of the hydrograph is smaller. A higher 

drainage density leads to the quick disposal of overland flow. In addition, the 

vegetation cover controls the peak flow, retards the overland flow; the predominant 

impact is significant in a small catchment (less than 150 km2) (Subramanya, 2017).  

Catchment analysis is a denoted procedure to extract physiographic factors which 

significantly influence the hydrological processes. The physiographic factors are size, 

shape, slope, land use and cover, soil type, drainage network, altitude, and geology. 

However, storage factors are negligible for small catchments because drainage density 

governs the rate of water supply to the mainstream, which encourages the channel flow 

to reach the outlet (Vivekanandan, 2019). 

Moreover, the shape of the catchment dominates the rise in flood flow over the 

catchment, where the fast convergence of the flood water is simulated with the 

semicircular catchment compared to the elongated catchment. Therefore, it takes the 

shortest time to attain peak flood. Besides, land slope generates a complex 

interconnection with the hydrograph shape because of its supremacy on infiltration, 

soil moisture content, and vegetation growth rate. The time of concentration is 

grievously affected by the land slope attributes of the catchment. In addition, the 
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overland flow regime is a crucial scenario for small catchments. The time relationship 

and the peak positions have a reverse behavior than large catchments where the 

channel flow is dominant (Vivekanandan, 2019).     

2.3.3 Climatic Factors 

The peak volumes of the runoff are proportional to the rainfall intensity for a given 

duration. For a given rainfall intensity, the storm - duration is directly proportional to 

the peak runoff volume—the swift movement of stormwater results in a quicker flow 

concentration at the outlet. Besides, rainfall intensity influences the small catchment 

equally as the large catchment. Elongated and narrow catchments behave more 

sensitively to the storm movement direction (Subramanya, 2017).       

2.3.4 Study Area 

Flood is the most frequent natural disaster in Sri Lanka due to its unique geographical, 

geomorphological, and climatological conditions; thus, the economic and social status 

is severely hit hard. Sri Lanka, as a tropical country, meets four main rainy seasons: 

First Inter-monsoon (March and April), Southwest monsoon (May to September), 

Second Inter-monsoon (October and November), and Northeast monsoon (December 

to February), most predominantly, 75% of rainfall is received during the Southwest 

and Northeast monsoon. The frequency of floods increased after 1925 and dramatically 

increased after 1989. Recently, Sri Lanka has undergone many flood circumstances 

every two to three years. 

The Kelani River basin, located in the wet zone, is a highly vulnerable region to annual 

flooding, which recently experienced an extreme flood event in 2018 (Manawadu & 

Wijeratne, 2021). It is the fourth-longest river and the second-largest watershed that 

begins near the Adams Peak and Kirigalpotta region (central hills of Sri Lanka) and 

reaches the Colombo outfall. It drains nearly 2,300 km2; location-wise and 

accommodates rich biodiversity and natural resources. The upper basin is 

mountainous, while the lower basin is flat. The average annual rainfall for the region 

is about 2,400 mm, and the peak discharge is nearly 800 – 1,500 m3/s. 

Moreover, the river water is the primary drinking water source for the Greater 

Colombo public. In addition, the industrial and business region depend on water 
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resources; therefore, the zone creates job opportunities for the community. In addition, 

the ecosystem contributes essential support to agriculture, mining, and urban 

development. The most pleasing landscapes inherently offer a massive development 

to the tourist industry. Tea, rubber, grass, and forest are the agricultural land used in 

the upper basin; similarly, the lower basin is highly urbanized (Kottagoda & 

Abeysingha, 2017).  

The Maduru River begins from the Mahiyangana region and reaches the ocean at 

nearly 135 km, situated in the North Central and Eastern Provinces of Sri Lanka. In 

addition, it is included in the Accelerated Mahaweli Development Program and 

Mahaweli Multipurpose Scheme (Mahenthiran & Rajapakse, 2021). According to the 

climatological behaviour and the measure of annual rainfall, Sri Lanka is divided into 

Wet, Dry, and Intermediate zones. The wet zone receives 2,500 mm of annual mean 

rainfall, the intermediate zone receives 1,750 mm to 2,500 mm, and the dry zone 

receives less than 1,750 mm. Most predominately, the eastern dry zone contributes 

25% of paddy production, where the Maduru Oya basin is one of the major river basins 

and the eighth longest river in Sri Lanka (Zuhail et al., 2007). The risk of overflowing 

was reported in 2014 in the Batticaloa district due to the prolonged heavy rainfall in 

the Maduru Oya (Withanage et al., 2018).  

2.4 Time Series Forecasting Using NN Models 

A neural network combines layers, input data, target data, loss functions, and 

optimizers; mainly, this is produced with the integration of layers. Besides, the input 

and the target data are inserted into the model, where the loss function is proposed to 

compare the predicted and targeted values. In addition, loss values are computed to 

acknowledge the optimizer, which updates the weights of input parameters. A layer is 

a data-processing tool that accepts input tensors to derive output tensors; further, this 

is proposed to represent the tensor format. The simplest vector data is stored as a 2D 

tensor of shape (samples, features), which functions well in densely connected layers 

(Fully Connected Layers). Besides, sequence data is stored in the 3D tensor of shape 

(samples, timesteps, features); mostly recurrent layers such as LSTM are preferable 

for these sets (Ketkar & Moolayil, 2021).  
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Developing DL models in Kera is a way of clipping compatible layers to produce 

supporting data transformation. Two-branch networks, multi-head networks, and 

inception blocks are the advanced version of a linear stack of layers that maps an input 

to an output. In-depth, each layer accepts a specific shape of the input tensor and 

returns a particular shape of the output tensor. Besides, the topology of a network is a 

hypothesis space; thus, choosing the exemplary network architecture is an art. The 

gradient descent is applied to learn and update the NN models, which initiates single 

scaler loss; in a multi-loss network, the loss values are combined as single scaler values 

(Ketkar & Moolayil, 2021).  

Classification, regression, and sequence prediction are standard neural network-based 

models. Binary cross entropy is a suitable loss function for a two-class classification, 

while categorical cross entropy is the best for a many-class classification problem. In 

addition, the mean-squared error is an excellent loss (cost) function for regression, 

connectionist temporal classification, and sequence-learning problems (Ketkar & 

Moolayil, 2021). Figure 2-19 indicates the anatomy of the NN algorithm. 

 

Figure 2-19 Anatomy of a Neural Network 
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Deep-Learning Framework for Python: Kera, specially developed for researchers, 

is the deep-learning framework for Python to define and train the models. In addition, 

it mainly targets fast experimentation and provides easy behaviour to prototype DL 

models. The framework has built-in support for convolutional networks, recurrent 

networks, and a combination. The script can be run on CPU or GPU; thus, the user-

friendly API quickly supports a prototype of DL models. 

The permissive MIT license of Kera makes it capable of freely simulating any 

commercial project; in addition, it is compatible with any python version. A 

specialized, well-optimized tensor library is the backbone of the framework; there are 

three existing backend engines of Kera: TensorFlow, Theano, and Microsoft Cognitive 

Toolkit (CNTK). Google has developed TensorFlow to simulate a piece of code with 

Kera without any special considerations. Moreover, it is commonly recommended for 

the user because it is the most widely adopted, scalable, and production-ready version 

(Ketkar & Moolayil, 2021).    

Developing with Kera: The model configuration should be determined by choosing 

a loss function, an optimizer, and metrics monitoring, where the iteration is performed 

on the training data in the final stage. Sequential class and Functional API are the two 

different methods of defining the models. In addition, sequential class is suitable for 

linear stacks of layers, which is the typical architecture in Data Science (Ketkar & 

Moolayil, 2021). 

Jupyter Notebook: Preferred way to run Deep-Learning models: Jupyter notebook 

is editable using the browser. The notebook supports to execution of Python code with 

text-editing capabilities for annotating. In addition, the platform allows for the 

breakdown of the long coding into smaller portions, which leads to executing coding 

independently. Data science and machine-learning communities use this app to 

accomplish this purpose (Ketkar & Moolayil, 2021). 

Regression Problems: Two-classification or binary-classification problems, multi-

classification problems deal with positive-negative targets, unlike regression 

problems. In addition, regression problems are other types of machine-learning 

problems that predict a sequential value instead of a discrete label, such as 
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meteorological and weather prediction problems. The mean absolute error (MAE) is 

proposed in the monitoring metrics. Preprocessing is performed by scaling each feature 

in different ranges to control accuracy deficiencies (Ketkar & Moolayil, 2021).  

Preparing the Data: A box-cox transformation is a one-dimensional conversion 

technique with a parameter called λ, which enhances the Gaussian or normality of data. 

However, the applicability is not viable for all the cases (Blum et al., 2022). Eq 2-1 

and Eq 2-2 illustrate the formulas.  

For λ ≠ 0, 𝑦𝑖 =  
𝑦𝑖

λ−1

λ
 

Eq 2-1 

For λ = 0, 𝑦𝑖 =  ln 𝑦𝑖   Eq 2-2 

  

 

Feeding the neural network with highly deviating-data ranges must create a 

problematic situation in the state of accuracy. In addition, data preprocessing is 

essential to the machine learning model (Ketkar & Moolayil, 2021). Besides, feature-

wise normalization is adapted to handle heterogeneous data, which means they are 

settled as 0 with a unit standard deviation by subtracting the mean from the features 

and dividing by the standard deviation. The Numpy tool powerfully supports 

normalizing the features. 

Feature selection is a task to eliminate non-informative attributes, and feature 

engineering is an appropriate way to discretize continuous features to enhance 

performance. Besides, feature scaling is the process of controlling computational 

losses (Géron, 2019). 

Data Sampling: It mainly deals with Lookback, steps, and delays. Lookback is the 

observation period to be considered while developing the model architecture. Besides, 

steps are considered a period for sampling. In addition, the delay is the target period 

to be predicted. Sampling is essential to control the redundant information of the input. 

Besides, the python generator is a flexible tool for sampling, which can assemble the 

recent data to generate batches and targets. Therefore, the time steps of N samples and 

(N+1) samples have reasonably similar time steps. Alternatively, the samples can be 

moving sets on the original data, which is the most reliable strategy for hydrological 
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data. The generator function is constructed based on data, Lookback, delay, index 

details for validation and test, shuffle (Changing the chronological order is prohibited 

in forecasting problems), batch size, and steps. Moreover, the function can develop 

training, testing, and validation sets as varying temporal segments (Ketkar & Moolayil, 

2021).   

Building the Network: Time series is a sequence of one or more values per time step, 

and univariate time series consists of a single value per time. Simultaneously, 

multivariate time series is known as multiple variables represented at a time. The 

function of the batch-size argument ([batch size, time steps, dimensionality]) is 

involved in time series generation, which returns the sum of two sine waves of fixed 

amplitudes but random frequencies plus a small amount of noise. The dimensionality 

expresses one for univariate time series, while this value is more than one for 

multivariate time series. In addition, a flat list of features is required to perform the 

forecasting. The Mean Square Error (MSE) loss and the Adam optimizer are compiled 

and fitted to the training set for significant epochs; ultimately, the validation set 

evaluates the model (Géron, 2019).  

Two hidden layers, each with 64 units, are adequate to avoid overfitting an NN model 

with the most straightforward model configuration. Besides, a linear layer is generated 

with a single unit without an activation function. These layers play a significant role 

in scalar regression where the predicted values fall between 0 and 1; most 

predominantly, the last layer is proposed with a sigmoid function. MSE loss function 

– Mean Squared Error computes the level of coinciding nature of predictions and 

targets. MAE is a monitoring metric that verifies the training process (Ketkar & 

Moolayil, 2021).  

Window Generator: This technique facilitates a dataset to call consecutive windows 

where the batch and number of windows must be fed as a reference. Input size, target 

size, and shift values should be determined to create consecutive windows without 

shuffling the time series. If it defines as batch(x), then x consecutive windows should 

be considered for the batch. The first batch contains windows 1 to x, and the second 
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consists of x+1 to 2x. Besides, each batch can develop a training, validation, and 

testing set (Hassan & Hassan, 2021). 

Baseline Model (BM): Commonly, common-sense baseline models are constructed 

to ensure the worth of investing further complexity in the model architecture. These 

are cheap and straightforward machine learning models. The fully connected layers 

are proposed for the BM, and the input data must be flattened at the top layers of the 

models before constructing a trainable model.   

Linear Model (LM): The straightforward trainable model is proposed with the linear 

conversion between input and output, where is no interaction between independent 

prediction steps. No activation function is considered for the model; in addition, mean 

squared error and mean absolute error is the most common loss functions. Therefore, 

these models can be categorized as no-memory models. The input features proceed 

with the model independently, without input states. The model is fed with the entire 

sequence; consequently, the single data point is derived throughout its performance.   

2.4.1 Standard Models 

ANN, CNN, RNN: LSTM & GRU, Bi-LSTM, Bi-GRU, and NARX were the standard 

models.  

ANN: It is a stack of dense layers used for the input features without specific features; 

moreover, it is famous for categorical data. Typically, the number of units in the stack 

of dense layers equals the number of values forecasted in the regression problem 

(Ketkar & Moolayil, 2021). 

RNN-LSTM and RNN-GRU:  An internal model supports building from past 

information and constantly updating future information. Keeping the memory of 

previous data is crucial to maintaining a fluid representation in the sequential data 

prediction. Thus, the internal looping ability of RNN discrete the forecasting 

capability. The input is encoded into a 2D tensor with the size of (time steps, input 

features), which elaborates as each time step of looping, the model considers its current 

state at t and input at t of shape (input feature) and associates those into the output at 

t. Keras framework has allocations for other versions of LSTM and GRU. Hochreiter 

and Schmidhuber developed the LSTM algorithm in 1997 to overcome the issues like 
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vanishing gradient. LSTM introduces a way to carry information across the time steps. 

Therefore, it saves data from the last portion and controls vanishing later signals. 

Figure 2-22 and Figure 2-23 illustrate it. Recurrent dropout is the built-in feature of 

the Keras framework, implemented to fight overfitting issues. Stacking recurrent 

layers increase the suggestive potential of the model.  

Chung et al. introduced the GRU modules of RNN in 2014. The function of GRU is 

like the role of LSTM, and its streamlined ability is cheaper to run. However, the 

symbolic power is comparably lower for GRU. Overfitting is identified with the 

visualization of training and validation curves. The training and validation losses begin 

to separate after the significant epochs. The dropout feature helps to break 

happenstance correlations in the training data by introducing this argument before the 

recurrent layer obstructs learning rather than assisting with regularization. Yarin Gal 

introduced the appropriate method for handling dropout units in 2015. Randomly 

proposing dropout features disrupt the signal and propagate error (Ketkar & Moolayil, 

2021). Figure 2-20 illustrates the configuration of the RNN model. 

Bi-LSTM & Bi-GRU: Common RNNs are order-dependent or time-dependent, which 

operate the time steps of the input sequence in order; shuffling the timesteps changes 

the representation. Learning both sides of the sequence is impossible with the 

chronologically ordered RNN. Bidirectional RNNs offer an ideal solution for learning 

from chronological and anti-chronological directions to merge the terms (Ketkar & 

Moolayil, 2021). Figure 2-21 illustrates the configuration of the Bidirectional RNNs. 

CNN: The convolution operation extracts feature from local input patches and 

represents modularity. 1D ConvNets perform faster with less computational cost than 

RNN in simple tasks; in addition, 1D ConvNets with dilated kernels offer a better 

solution. 1D ConvNets understands the pattern in a sequence locally, and input 

transformation is performed on every patch where 1D patches (subsequences) extract 

from the input and deliver the peak output. The layers mentioned above are 2D pooling 

features to prevent the length of 1D input data (Ketkar & Moolayil, 2021). Figure 2-

24 illustrates the configuration of the CNN model. 



 

32 

 

 

NARX: The model is famous for various non-linear dynamic systems. The forecasted 

value is determined from the present and past values and the previous values of the 

target. This parallel architecture is suitable for multi-step-ahead prediction problems 

(Boussaada et al., 2018). Addressing the converging speed and local minima is a 

significant achievement in adapting suitable gradient descent for NARX. The loss 

gradient updates the parameters to accomplish the tasks (Ketkar & Moolayil, 2021). 

Figure 2-25 illustrates the configuration of the NARX model. 

 

 

 

 

 
Figure 2-20 Configuration of RNN Model  

Figure 2-21 Configuration of Bidirectional RNN 

Model 

 

 

Figure 2-22 Function of RNN Model: Flowchart 

 

 

Figure 2-23 Function flowchart: LSTM 

 
Figure 2-24 Configuration of CNN Model 

 

 

 

 

 

 
Figure 2-25 Configuration of NARX Model 
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2.4.2 Hybrid Models  

CNN-LSTM, SBU-LSTM, DCNN, GC-LSTM, TCN, and Att-BiLSTM were the 

hybrid models.  

CNN-LSTM: Temporal features are learnt by LSTM, BiLSTM, and GRU, while 

CNN, CNN-LSTM, and ConvLSTM capture temporal and spatial features. CNN-

LSTM integrates standalone models; both CNN and LSTM capture the temporal and 

spatial patterns separately. Foremost, the processing begins with CNN, and it 

understands the spatial features of the input set. Eventually, the gathered patterns are 

converted into one-dimensional features to feed the LSTM unit (Shen & Lin, 2020). 

Figure 2-26 illustrates the configuration of CNN-LSTM. 

Stacked Bidirectional and Unidirectional LSTM Recurrent Neural Network 

(SBU-LSTM): Deep LSTM with hidden layers supports processing with sequential 

data sets. The architecture generally obeys the feed-forward theories where the 

previous unit of stacked LSTM feeds the following LSTM unit. BiLSTM captures the 

backward and forward dependencies of the data. The feature understands the temporal 

and spatial dependencies. Therefore, BiLSTM is the perfect choice for the initial 

portion, and the LSTM is placed at the bottom layer to learn the forward dependencies. 

The comprehensive learning process is enhanced by adding LSTM/BDLSTM layers 

in the middle of the architecture (Cui et al., 2020).  Figure 2-27 illustrates the 

configuration of SBU-LSTM. 

Dilated Casual CNN Model (DCNN):  The WaveNet Concept is the basic concept of 

the model architecture, which is developed by incorporating a dilated (and casual) 

convolution and a 1 X 1 convolution. Therefore, the model consists of dilated, casual, 

and residual connections. The estimation is restricted to previous values due to the 

sparsely connected network, and the gathered information passes across multiple 

layers (Börjesson & Singull, 2020). Further, the concept introduces maximizing the 

joint probabilities of the series; thus, it encourages considering exogenous input. 

Significantly, the model architecture does not work with softmax activation, unlike 

other WaveNet models (Börjesson & Singull, 2020). Figure 2-28 illustrates the 

configuration of DCNN. 
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Graphical Convolution Network – LSTM (GC-LSTM): Graphical convolution 

(GC) unit extracts the interconnection features of the data set, and the LSTM unit is 

applied to perform with the matrix data set, which is created using Boolean adjacency 

of input features. GC converts the spatial data into a concise form for further analysis. 

Besides, the feature expression efficiency improves the simulation of the model. In 

addition, LSTM is applied to solve the issues related to long-term and short-term 

dependencies where the data dependence of samples is sorted out by the adaption (Yu, 

2021). Figure 2-29 illustrates the configuration of GC-LSTM. 

Temporal Convolution Network (TCN): The 1D convolution network is the basic 

module of the TCN Encoder Decoder (TCN-ED), where the simple convolution of 

TCN influences the outputs with present and past input data. Besides, dilated 

convolutions support the receptive fields with less computation cost. In addition, TCN 

produces residual connections to combine the previous input and the results of the 

convolutions. Firstly, the encoder module is fed with information encoded into context 

value. Secondly, the decoder module decodes the context value into the output 

sequence. Finally, the Encoder-Decoder architecture is introduced to compress the 

input features into a definite-length vector to make the tensor flow more stable (Shen 

& Lin, 2020). Figure 2-30 illustrates the configuration of TCN. 

Attention -Based Bidirectional LSTM (Att-BiLSTM): Input series data is applied 

to the bidirectional LSTM layer to learn the input dependency features, which layer 

acts like an encoder structure for the input series. Thus, it understands the weight 

dependence of the input series in both forward and backward directions. After 

encoding the input, a new series is received and inserted into the attention mechanism. 

Finally, an additional layer is allocated at the bottom level to decode the series as 

output  (Lee et al., 2022). Figure 2-31 illustrates the configuration of Att-BiLSTM. 

2.5 Identification of the Best Models 

The compile () method specifies the loss function and the optimizer, which argument 

proceeds with training and evaluation. Besides, the fit () function is proposed to pass 

the input features, targeted classes, and epochs for training the models. The loss and 

monitoring metrics are provided for each epoch to indicate the forecasting quality. In 
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addition, overfitting is grasped by understanding loss growth on training and validation 

sets; additionally, the early stopping argument of the callbacks module 

(tf.keras.callbacks.EarlyStopping) supports avoiding overfitting. The command helps 

detect the position where the validation loss is no longer improving. Further, 

EarlyStopping callbacks interrupt the training iteration once a monitoring metric fails 

to show further improvement for a fixed epoch (Géron, 2019).     

The analysis is estimated by evaluating the performance using four statistical tools: 

Residual Mean Maximum (RM), Nash-Sutcliffe Efficiency (NSE) / Coefficient 

Determination (R2), Mean Absolute Error (MAE), and Root Mean Square (RMSE) 

(Jiang et al., 2021). NSE is the standard application to explain the linearity of observed 

and predicted values, and R2 similarly indicates the collinearity between predicted and 

observed data. RM describes the mean tendency of predicted and observed values to 

understand the deviation. Finally, RMSE and MAE measure the performance of NN 

models directly (Jimeno-Sáez et al., 2018). Table 2-1 illustrates the statistical tools to 

measure the performance of forecasting models. 

In regression neural network analysis, Mean Squared Error and Mean Absolute Error 

play a significant role in comparing observed and predicted values. Because these two 

are fed to the compile and fit procedure of the NN model. 

 

 

 

 

 

 

 

 
Figure 2-26 Configuration of CNN-LSTM Model 

 
Figure 2-27 Configuration of SBU-LSTM Model 
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Figure 2-28 Configuration of DCNN Model 

 

 

 

 
Figure 2-29 Configuration of GC-LSTM Model 

 

 

 

 

 

 

 

 

 
Figure 2-30 Configuration of TCN Model 

 
Figure 2-31 Configuration of Att- Bi LSTM Model 

 

The flow duration curve is a cumulative frequency curve expressing the percentage of 

time specified flow rate equalled or exceeded during a given period. Without 

understanding the sequence of occurrence, FDC incorporates into a single graph to 

explain the flow characteristics of the stream, and Figure 2-32 illustrates the 

components of FDC. 

Table 2-1 Statistical Model for Evaluation of Performance, Jimeno-Sáez et al., 2018 

Equations Range 

R2 = NSE = 1 - 
∑ (𝑂𝑖−𝐸𝑖)2𝑛

𝑖=1

∑ (𝑂𝑖−𝑂̅)2𝑛
𝑖=1  

  [0, 1] 

RM = max |(𝑂𝑖 − 𝐸𝑖)| [0, ∞) 

MAE = 
∑ |(𝑂𝑖−𝐸𝑖)|𝑛

𝑖=1

𝑛
 [0, ∞) 

RMSE = √
∑ (𝑂𝑖−𝐸𝑖)2𝑛

𝑖=1

𝑛
 

[0, ∞) 
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Figure 2-32 Flow Duration Curve and Flow Characteristics 

The high flow range of FDC explains the dynamic response of the catchment; most 

significantly, it contains information on catchment characteristics. Therefore, 

evaluation points (EPs) are chosen from the FDC to compare observed and predicted 

values. Two different practices are available for EP selection: discharge method and 

volume method. The discharge method mainly targets the high flow range; in contrast, 

the volume method is appropriate for water balance problems which give attention to 

both high and low flows. Therefore, the volume method is suitable for comparing 

actual and forecasted FDCs (Westerberg et al., 2011).  

Step 1: The area under the FDC is divided into 20 equal classes/volume increments of 

5% (Rescaling the total volume into small volume portions).  

Step 2:  The observed flow rate is placed into each interval, and the upper and lower 

boundaries of the strips are noted. 

Step 3: The scaled scores of the predicted values are calculated using the triangular 

weighting function. 

Step 4: Performance is measured using Eq 2-3.  

For λ ≠ 0, 𝑦𝑖
λ =  

𝑦𝑖
λ−1

λ
 

Eq 2-3 
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Figure 2-33 graphically illustrates the steps. Hydrological data generally consists of 

noise and missing information. It deviates due to the complex and non-linear nature of 

hydrological processes. Significantly, it affects the forecasting abilities of data-driven 

models. The performance of models is expressed by comparing the model performance 

using statistical models (Hassan & Hassan, 2021).  

 

Figure 2-33 Behavioral Error Estimation 

2.6 Uncertainty Analysis 

The uncertainty analysis is a perfect tool to investigate the reliability of NN forecasting 

models, where the analysis is conducted using statistical measures. In addition, the 

uncertainty measures of the models are expressed as the fraction of core model 

performance. Besides, data-driven forecasting models deal with various uncertainty 

sources, such as the importance of data handling and input combinations 

(Shamshirband et al., 2019). Table 2-2 illustrates the uncertainty parameters and 

description.  
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Table 2- 2 Uncertainty Analysis and Parameters 

Parameters Characteristics  Description  

Input 

Handling  

Without Box-Cox Transformation  It determines the influences of 

extremities location and 

computational losses.  

Without Box-Cox Transformation 

and Normalization 

Input 

Distribution  

Rainfall only It illustrates the importance of 

input parameters considered for 

the study.  

Rainfall & NDVI 

Rainfall & Evaporation  

Rainfall & Relative Humidity  

 

2.7 Sensitivity Analysis  

A sensitivity analysis among artificial neural networks provides an opportunity to 

assess the importance of model architecture that contributes to the functionality of NN.  

Table 2-3 Sensitivity Analysis and Parameters 

Sensitivity 

Parameters 

Model 

Characteristics 

Description 

Learning Rate 

0.001 It influences the time length of convergence. 

For instance, a high rate contributes to fast 

convergence, while a low rate provides slow 

convergence. 

0.1 

0.01 

0.0001 

Optimizers 

Adam 

It combines the momentum and RMSProp, 

which monitors an exponentially declining 

mean of past squared gradients. 

Nadam 

Adam optimization and Nesterove trick 

produce this optimizer. Thus, it is faster 

converging than Adam. 

SGD 
It is a momentum optimizer that considers the 

previous gradients at each iteration. 

RMSProp 
It fixes the issue related to fast convergence 

without reaching a global optimum. 

Input 

Climatic & 

Physiographic 
Dimensionality reduction is the way to 

control the complexity of forecasting. 
Climatic only 

Physiographic 

only 

Sensitivity 

Parameters 

Model 

Characteristics 

Description 

Lead Time 

Span 

30 Days 
Lead time and span length are significant in 

assessing the model performance. 
15 Days 

45 Days 
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In addition, it can be expressed based on the primary model quality (Song et al., 2020); 

therefore, the R2 values represent the performance (Mrzygłód et al., 2020). The 

architecture of the models (learning rates, optimizers), input parameters, and lead time 

play a significant role in a sensitivity analysis. Table 2-3 illustrates the parameters and 

characteristics.  

2.8 Transfer Learning Technique 

Reusing the pre-trained layer is a practical way to avoid rebuilding the NN models 

from scratch, which can be proceeded with transfer learning techniques. Generally, 

transfer learning offers favorable results for the inputs with similar features to core 

models that should express an accuracy greater than 90%. The bottom layer of the 

existing model must be restored with a new layer suitable for a new task. An exact 

number of reusable layers must be determined based on the freezing and unfreezing 

layers. In addition, the weights of reusable layers can be kept constant by freezing 

those layers (Géron, 2019).  Figure 2-34 visualizes the theory behind the transfer 

learning technique.  

 

Figure 2- 34 Theory of Transfer Learning
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CHAPTER 3: METHODOLOGY  

The methodology flowchart, study area, data checking, developing NN models, the 

identification of the best models, uncertainty analysis, sensitivity analysis, and pre-

trained models are discussed in this section.  

3.1 Methodology Flowchart  

Daily rainfall and evaporation data were collected from the Meteorological 

Department of Sri Lanka, while streamflow data were gathered from the Irrigation 

Department of Sri Lanka. Wind speed, temperature, relative humidity, and solar 

irradiance were acquired from NASA's Power Data Access Viewer website, which are 

the influencing factors of transpiration. The soil wetness index was derived to 

represent the initial losses, like infiltration losses, gathered from the same source. 

Hydrological cleansing was applied to the streamflow and rainfall, while the missing 

values in the evaporation data were filled with data science techniques. Box-cox 

transformation was adapted to bring gaussian distribution on input data sets. Besides, 

scaling and normalization were applied in the final stages to control computational 

losses. 

Thirteen NN models, including standard and hybrid models, were developed with 

Python Jupyter notebook to compile, fit, and test the Kelani Basin data. First, grid 

analysis was developed using statistical tools such as the determination of coefficient 

(R2), root mean square error (RMSE), mean absolute error (MAE), and flow duration 

curve error (FDC-Q). Next, uncertainty analysis was proposed to investigate the input 

characteristics, such as input combination and input-handling techniques. Besides, 

sensitivity analysis was applied to verify the model architecture, such as types of 

optimizers, lengths of the horizon, input parameters, and learning rates. Finally, the 

NN models with R2 of more than 0.9 were implemented to develop pre-trained models 

on the Maduru Oya Basin. Figure 3-1 expresses the methodology flowchart adapted 

for the study.  
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Figure 3-1 Methodology Flowchart 

3.2 Study Area 

For the present study, Kelani River Basin and Maduru River Basin were selected to 

develop flood forecasting models.  

Kelani River Basin: The entire catchment is situated in the wet zone of Sri Lanka, 

where the average rainfall varies from 5,700 mm in the upper stream to 2,300 mm in 

the lower stream. Consequently, the lower basin is frequently subjected to extreme 

flood conditions; the minor floods have not led to severe damages because of the 

retardation structures. Figure 3-2 illustrates the Kelani River Basin and its river 

network. The confluence point is identified at Hanwella; therefore, the streamflow 

station was chosen as Hanwella for flood forecasting (Hettiarachchi, 2020).  

Maduru Oya Basin: The catchment is in the dry zone of Sri Lanka, which receives 

3,060 million m3 of rainfall annually for a 1,541 km2 catchment area (Mahenthiran & 

Rajapakse, 2021). Natural vegetation and cultivated lands are the effective land use 

and land cover patterns of the basin, which is severely affected by heavy inundation 
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due to a prolonged peak flood (Withanage et al., 2018). Figure 3-3 illustrates the 

Maduru Oya basin and river network. 

 

Figure 3-2 Location Map (Kelani River Basin) with DEM 

 

Figure 3-3 Location Map (Maduru Oya) with DEM 
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3.3 Data and Data Checking  

Climatic and physiographic data checking was conducted in the section.  

3.3.1 Data Source and Resolution: Climatic Data 

Daily streamflow data of the Hanwella and Padiyathalawa river gauges were collected 

from the Department of Irrigation; In contrast, daily rainfall data for every three 

stations of Kelani and Maduru Oya were collected from the Meteorological 

Department, Sri Lanka. In addition, the evaporation data sets were obtained from the 

Meteorological Department, Sri Lanka. Unfortunately, no sources are available to 

collect the transpiration data set directly. Therefore, the most impactful factors: wind 

speed, temperature, relative humidity, and solar irradiance, were gathered to handle 

the absence of transpiration data. Like, transpiration data, initial loss data was another 

vulnerable data set to acquire straight away from the literature. Therefore, the soil 

wetness index was gathered to represent this parameter. Table 3-1 shows the data types 

and those resolutions. Thiessen rainfall and evaporation stations are tabulated in Table 

3-2 for Kelani and Maduru.              

Table 3-1 Data Type and Data Resolution 

Data Type Temporal 

Resolution 

Data Period Data Source 

Rainfall Daily 
Oct 2008 – Sep 

2015 

Department of 

Meteorology 

Streamflow Daily 
Oct 2008 – Sep 

2015 

Department of 

Irrigation 

Evaporation  Daily 
Oct 2008 – Sep 

2015 

Department of 

Meteorology 

Transpiration 

(Wind Speed, 

Temperature, 

Relative 

Humidity, Solar 

Irradiance) 

Daily 
Oct 2008 – Sep 

2015 

Power Data Access 

Viewer Website, NASA 

Initial Losses 

(Soil Wetness 

Index) 

Daily 
Oct 2008 – Sep 

2015 

Power Data Access 

Viewer Website, NASA 
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Visual Data Checking: Rainfall-Runoff  

Visual data checking was carried out to identify the abnormalities of the hydrological 

series, which is elaborated by plotting the response of streamflow and rainfall for 

stations to verify the patterns. The visual checking is attached in Appendix A and 

Appendix D. Besides, the abnormalities in the data set were considerably low 

according to the visual checking. 

Table 3-2 Comparing the Area of Stations with WMO Standards 

Kelani River Basin 

No Rainfall Stations Area WMO Standards, 

(Subramanya, 2008) 

1 Hanwella 357 km2 600 km2 – 900 km2 

2 Pasyala 084 km2 600 km2 – 900 km2 

3 Weweltalawa 083 km2 600 km2 – 900 km2 

No Evaporation Station No of Stations WMO Standards  

1 Colombo 01 A Station for every 50, 000 km2 

Maduru River Basin 

No Rainfall Stations Co-ordinates WMO Standards, 

(Subramanya, 2008) 

1 Padiyathalawa 093 km2 600 km2 – 900 km2 

2 Tissapura 014 km2 600 km2 – 900 km2 

3 Bible Agri 069 km2 600 km2 – 900 km2 

No Evaporation Station No of Stations WMO Standards 

1 Girandurukotte 01 A Station for every 50, 000 km2 

 

Annual Water Balance: Rainfall-Runoff  

Table 3-3 illustrates the annual runoff coefficient values; Figure 3-4 and Figure 3-6 

shows the graphical representation of the table. Simultaneously, Figure 3-5 and Figure 

3-7 express the annual rainfall and streamflow patterns.  
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Table 3-3 Annual Runoff Coefficient and Annual Evaporation 

Kelani River Basin 

Year Annual Rainfall 

(mm/year) 

Annual 

Streamflow 

(mm/year) 

Annual 

Evaporation 

(mm/year) 

Annual 

Runoff 

Coefficient 

2008/2009 3,777.9 1,265.4 1,278.3 0.335 

2009/2010 4,043.8 1,661.0 1,205.6 0.411 

2010/2011 4,579.9 1,960.1 1,171.1 0.428 

2011/2012 2,516.2 630.9 1,269.8 0.251 

2012/2013 4,648.6 2,133.2 1,207.2 0.459 

2013/2014 3,367.9 1,154.0 1,317.9 0.343 

2014/2015 3,379.3 1,523.1 1,209.8 0.451 

Average 3,759.1 1,475.4 1,246.4 0.400 

Madhuru River Basin 

Year Annual Rainfall 

(mm/year) 

Annual 

Streamflow 

(mm/year) 

Annual 

Evaporation 

(mm/year) 

Annual 

Runoff 

Coefficient 

2008/2009 3,386.78 443.12 390.67 0.131 

2009/2010 4,467.43 844.39 744.44 0.189 

2010/2011 7,636.30 5,017.89 4,423.94 0.657 

2011/2012 3,087.71 1,586.46 1,398.68 0.514 

2012/2013 7,065.16 2,729.86 802.25 0.386 

2013/2014 1,674.08 336.99 99.03 0.201 

2014/2015 7,679.95 3,439.39 1,010.76 0.448 

Average 4,999.63 2,056.87 1,267.11 0.360 

 

The runoff coefficients of Kelani Basin vary from 0.34 to 0.46, where the water year 

2011/12 shows a considerable deviation. In contrast, the values of Maduru Basin fall 

from 0.19 to 0.66, where the water year 2010/11 illustrates a significant variation.  
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Figure 3-4 Annual Water Balance – Kelani 

 

Figure 3-5 Annual Rainfall and Annual Streamflow - Kelani 

Due to missing values in the rainfall and evaporation, the data expressed disagreements 

at a few points. However, those values were filled using the data-cleaning process of 

machine learning.  

 

Figure 3-6 Annual Water Balance – Maduru Oya 
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Figure 3-7 Annual Rainfall and Annual Streamflow - Maduru Oya 

Thiessen Average Rainfall 

The average rainfall was calculated by multiplying the rainfall values and the 

respective Thiessen weights. Table 3-4 illustrates the Thiessen weights of Kelani and 

Maduru rainfall stations.  

Table 3-4 Thiessen Weights of Stations 

Kelani River Basin 

No Rainfall Stations Co-ordinates Thiessen Weights  

1 Hanwella 80.117o E, 6.883o N 0.19 

2 Pasyala 80.133o E, 7.150o N 0.10 

3 Weweltalawa 80.383o E, 7.050o N 0.38 

4 Laxapana 80.520o E, 6.900o N 0.20 

5 Annfield 80.633o E, 6.867o N 0.13 

No Streamflow Station Co-ordinates  

1 Hanwella 80.117o E, 6.883o N  

No Evaporation Station Co-ordinates  

1 Colombo 79.861o E, 6.927o N  

Maduru River Basin 

No Rainfall Stations Co-ordinates Thiessen Weights  

1 Padiyathalawa 81.175o E, 7.396o N 0.53 

2 Tissapura 81.089o E, 7.457o N 0.08 

3 Bible Agri 81.220o E, 7.150o N 0.39 

No Streamflow Station Co-ordinates  

1 Padiyathalawa 81.175o E, 7.396o N  

No Evaporation Station Co-ordinates  

1 Girandurukotte 81.018o E, 7.463o N  

 

Visual data-checking strategies were applied again on streamflow, and Thiessen 

averaged rainfall to visualize the overall response. The graphs are attached in 
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Appendix B and Appendix E. Figure 3-8 and Figure 3-9 illustrate the Thiessen 

polygons of the Kelani and Maduru River Basins.  

 

Figure 3-8 Thiessen Polygon of Kelani River Basin 

 

Figure 3-9 Thiessen Polygon of Maduru Oya Basin 
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Single Mass Curve: Rainfall  

The missing data destroys the continuity of the rainfall record due to the damage to the 

rainfall gauges. Therefore, the perioding trends are considered for testing the impact 

of missing values. In addition, the closet station patching method is the appropriate 

hydrological imputation method using a single mass curve, where the slope values of 

each station were computed to fill in the missing values (Subramanya, 2017).  Figure 

3-10 and Figure 3-11 shows the single mass curves of Kelani and Maduru Oya, 

respectively. 

 

Figure 3-10 Single Mass Curve – Kelani 

 

Figure 3-11 Single Mass Curve - Maduru Oya 

Double Mass Curve: Rainfall  

The hydrological behaviour is compared with the other station by plotting a double 

mass curve, where inconsistency in the trend induces due to shifting gauges, 
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environmental circumstances, and observational errors. Besides, the perfect linearity 

of the double mass curve indicates the best relationship (Subramanya, 2017). Figure 

3-12 and Figure 3-13 represent the double mass curves of Kelani and Maduru Oya, 

respectively. 

 

Figure 3-12 Double Mass Curve of Stations - Kelani 

R2 = 0.9935, R = 0.996  

 

Figure 3-13 Double Mass Curve of Stations - Maduru Oya 

R2 = 0.9979, R = 0.9989 

The perfect linearity was expressed on the double mass curves of the stations. The 

graphs are attached in Appendix C and Appendix F. 

Data Checking: NASA Power Access Data (Transpiration & Initial Losses)  

The previous research on evaluating the quality of NASA POWER reanalysis product 

was concluded with the following findings, which illustrates in Table 3-5.  
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Table 3-5 Comparing the quality of NASA POWER ACCESS data. 

Data Type Quality of Data 

Temperature Identified with high accuracy 

Solar Irradiance Identified with high accuracy 

Wind Speed Required local bias correction 

Relative Humidity Required local bias correction 

Soil wetness Index Required local bias correction 

  

However, the source is a beneficial source of data for the regions identified with 

missing or unavailable ground weather stations (Rodrigues & Braga, 2021).  

3.3.2 Data Source and Resolution: Physiographic Data 

Google Earth Engine (GEE) and Data Collection: GEE is a portal that allows the 

user to perform geospatial analysis. A considerable amount of physiographic data is 

available on the GEE cloud, which appreciates its cloud computing features (Nashwan 

et al., 2019).  

Runoff Coefficient: Dynamic Land Use Land Cover (MCD12Q1.006 Modis LULC), 

rainfall (Climatic Hazards Group InfraRed Precipitation (CHIRPS)), Global Soil Data 

(Open Land Map), and Soil Conservation Service Curve Number (SCS CN) model are 

required to derive the model. Eq 3-1 to Eq 3-8 represent the computation steps of the 

SCS CN model. The CN method is a perfect tool to develop a rainfall-runoff model 

for small or medium catchments. . 

MODIS Landcover type (MCD12Q1.006) provides land-cover maps at yearly 

temporal and 0.050 spatial resolution in geographic latitude/longitude projection from 

2001 to the present. In addition, the layers categorized in the International Geosphere-

Biosphere Program (IGBP) classification scheme provide labels for Landsat-based 

land cover. Table 3-6 illustrates the MODIS land cover details.   

Further, Open Land Map soil texture class (USDA system) provides soil texture 

classes for six different depth conditions at 250 m resolution; significantly, soil texture 

details at 0 cm depth are imposed for formal analysis. Table 3-7 illustrates the soil type 

details of the USDA system.  
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Filter functions were involved in shortlisting the data sets from the image collections. 

In addition, the soil texture map was converted to a four-class hydrological soil using 

the ternary operator in the GEE platform, which was added as a second band to the 

downscaled LULC MODIS data. CN(II) was prepared by considering 17 LULC 

classes and four soil texture classes. Besides, CN(I) and CN(III) were estimated by 

CN(II), which was considered along with AMC to create S images. Daily AMC images 

were gathered using rainfall data to receive the sum of the previous five days. In 

addition, surface runoff values were estimated using the SCS CN method (Jain et al., 

2021). Figure 3-14 and Figure 3-15 illustrate the runoff coefficient values. 

P = Ia + F + Q ……………………………………………………………………… Eq 3-1 

𝑄

𝑃− 𝐼𝑎 
 = 

𝐹

𝑆
 …….……………………………………………………………………… Eq 3-2 

Ia = λS ……………………………………………………………………………… Eq 3-3 

Q = 
(𝑃−𝐼𝑎)2

𝑃− 𝐼𝑎 +𝑆 
  for P >/= Ia , Q = 0 for P </= Ia ………………………………………. 

Eq 3-4 

S = 25.4( 
1000

𝐶𝑁
− 10) ………………………………………………………………… Eq 3-5 

CN(I) =  
𝐶𝑁(𝐼𝐼)

2.281+0.0128𝐶𝑁(𝐼𝐼)
…………………………………………………………… Eq 3-6 

CN(III) =  
𝐶𝑁(𝐼𝐼)

0.427+0.00573𝐶𝑁(𝐼𝐼)
………………………………………………………… Eq 3-7 

𝑄

𝑃
=  

(1−
𝜆𝑆

𝑃
)

2

(1+
(1−𝜆)𝑆

𝑃
)
  , 

𝑄

𝑃
 is used to represent the 

𝑆

𝑃
 ………………………………………… 

Eq 3-8 

Where, P: Daily Rainfall, Ia: Initial Abstraction, F: Actual Retention, λ: Initial Abstraction 

Coefficient, Q: Direct Runoff, S: Potential Maximum Retention, AMC: Antecedent Moisture 

Condition  

CN(I): AMC < 13 mm  

CN (II): 13 mm =/< AMC < 28 mm  

CN(III): AMC >/= 28 mm 
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Table 3-6 MODIS Landcover type (MCD12Q1.006) 

Class Name Description Group 

Evergreen Need 

leaf Forest  

Evergreen conifer trees (canopy >2m); Tree Region 

>60% 

1 

Evergreen 

Broadleaf Forest 

Evergreen broadleaf and palmate trees (canopy 

>2m); Tree Region >60%. 

2 

Deciduous Need 

leaf Forest 

Deciduous needle leaf (larch) trees (canopy >2m); 

Tree Region >60%. 

3 

Deciduous 

Broadleaf Forest 

Deciduous broadleaf trees (canopy >2m); Tree 

Region >60%. 

4 

Mixed Forest  Neither deciduous nor evergreen (40-60% of each) 

trees (canopy >2m); Tree Region >60%. 

5 

Closed Shrublands  Woody perennials (1-2m height) Region >60%  6 

Open Shrublands Woody perennials (1-2m in height) Region 10%-

60% 

7 

Woody Savannas  Tree Region 30%-60% (canopy >2m). 8 

Savannas Tree Region 10%-30% (canopy >2m). 9 

Grasslands  Herbaceous annuals (<2m). 10 

Permanent 

Wetlands  

Permanently inundated lands with 30-60% water 

region and >10% vegetated region 

11 

Croplands Cultivated cropland (>60%). 12 

Urban and Built-

up lands  

Impervious surface (building materials, asphalt, and 

vehicles) (>30%)  

13 

Cropland/Natural 

Vegetation  

Mosaics of small-scale cultivation 40-60% (natural 

tree, shrub, or herbaceous vegetation) 

14 

Permanent Snow 

and Ice  

Snow and ice (>60%) for at least ten months. 15 

Barren  Non-vegetated barren (>60%) [sand, rock, soil areas 

with less than 10% vegetation] 

16 

Water Bodies  Permanent water bodies (>60%) 17 

Unclassified  Missing inputs. 0 
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Table 3-7 Open Land Map soil texture class (USDA system) 

Values Soil type Group 

1 Clay 1 

2 Silty clay 

2 3 Sandy clay 

4 Clay loam 

5 Silty clay loam 

3 

6 Sandy clay loam 

7 Loam 

8 Silty loam 

9 Sandy loam 

10 Silt 

11 Loamy sand 
4 

12 Sand 

 

 

Figure 3-14 Rainfall - Runoff Coefficient 2008 – 2015 (Kelani Basin) 

 

Figure 3-15 Rainfall - Runoff Coefficient 2008 – 2015 (Maduru Oya Basin) 
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Normalized Difference Water Index (MNDWI): The time series were collected 

using Landsat 7 and 8 top atmosphere reflectance using a specific data processing 

method to extract the NDVI, NDWI, and MNDWI indices. Landsat 7 collection 2 Tier 

1 calibrated top–of–atmosphere (TOA) reflectance is applied to extract with 30 m 

resolution bands. Table 3.8 represents the band type involved in the computation of 

indices. Eq 3.9 to Eq 3.12 illustrate the method to calculate the indices. Figure 3-16 to 

Figure 3-21 illustrate series data. 

Table 3-8 Landsat Band type and description 

Band Name Description 

B3 Green 

B4 Red 

B5 Near Infrared (NIR) 

B6 Shortwave infrared (SWIR) 

 

NDVI values indicate negative values for the regions with no vegetation cover, like 

bare land, dessert, glaciers, or water bodies, while it provides positive values for 

regions with vegetation cover.   

𝑁𝐷𝑉𝐼 =  
(𝑁𝐼𝑅−𝑅𝐸𝐷)

(𝑁𝐼𝑅+𝑅𝐸𝐷)
……………………………………………………………… Eq 3-9 

 {NIR and RED: The reflectance in bands 5 and 4 of Landsat 7} 

NDWI values represent the water content of plant sensitiveness to the urban land, 

which is essential to calculate the water content status of plants using remote sensing. 

𝑁𝐷𝑊𝐼 =  
(𝑁𝐼𝑅−𝑆𝑊𝐼𝑅)

(𝑁𝐼𝑅+𝑆𝑊𝐼𝑅)
……………………………………………………… Eq 3-10 

 {NIR and SWIR: The reflectance in bands 5 and 6 of Landsat 7} 

NDBI values are applied to emphasize built-up regions of a watershed. 

𝑁𝐷𝐵𝐼 =  
(𝑆𝑊𝐼𝑅−𝑁𝐼𝑅)

(𝑁𝐼𝑅+𝑆𝑊𝐼𝑅)
=  −𝑁𝐷𝑊𝐼 ………………………………………… Eq 3-11 

 MNDWI values express the enhancement of open water features by diminishing built-

up features (Ashok et al., 2021).  

𝑀𝑁𝐷𝑊𝐼 =  
(𝐺𝑟𝑒𝑒𝑛−𝑆𝑊𝐼𝑅)

(𝐺𝑟𝑒𝑒𝑛+𝑆𝑊𝐼𝑅)
……………………………………………………… Eq 3-12 
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Figure 3-16 NDVI time series data (2008 – 2015) – Kelani 

 

Figure 3-17 NDVI time series data (2008 – 2015) - Maduru 

 

Figure 3-18 MNDWI time series data (2008 – 2015) – Kelani 

 

Figure 3-19 MNDWI time series data (2008 – 2015) - Maduru 

 

Figure 3-20 NDBI time series data (2008 – 2015) – Kelani 

 

Figure 3-21 NDBI time series data (2008 – 2015) - Maduru 
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Table 3-9 Google Earth Engine Links 

Physiographic 

Factors 

Basin Google Earth Engine 

Runoff 

Coefficient  

Kelani https://code.earthengine.google.com/e31cc4eec31dc738d2c631fa

7c476ec6 

Maduru https://code.earthengine.google.com/4bcc3b53a0a7b7ba53da728e

1105faea 

NDVI Kelani https://code.earthengine.google.com/2d964ae418fe3e3ff411ba048

9e39f39 

Maduru https://code.earthengine.google.com/d45aabb27a9caf0bfec03af82

4c4288d 

NDWI / NDBI Kelani https://code.earthengine.google.com/2766cb636c34d420c9edbc7d

3fc28d42 

Maduru https://code.earthengine.google.com/74730f57e55de9a56204f765

e335e488) 

MNDWI Kelani https://code.earthengine.google.com/12cb7d0d74f2ad7e48f89e83

39602cd6 

Maduru https://code.earthengine.google.com/fd99907482adeb499f8f44b0

5fbbec23 

 

Table 3-9 represents the Java Script used for data collection. 

Date Checking: Physiographic Data  

Radar data are calibrated and orthorectified by data preprocessing. Besides, In 

Sentinel-1 data collection, various instrument configurations, resolutions, and band 

combinations are involved; the heterogeneity problem affects the data extraction 

process. Therefore, morphological filters and speckle noise elimination are significant 

aspects of data calibration. The backscatter coefficient is developed to represent the 

backscattering area (radar cross-section) per unit of ground area, which is severely 

influenced by terrain-physical aspects, geometry, and electromagnetic behaviors. 

Filter preprocessing was employed during the extraction of physiographic data using 

GEE. 

Data Preprocessing using Data Science  

The hydrological data filling was employed for data imputation, and data science 

techniques were applied for the other input data sets. The ‘Not Available (N A)’ 

locations were delignated and replaced with the appropriate ways by grouping the 

https://code.earthengine.google.com/e31cc4eec31dc738d2c631fa7c476ec6
https://code.earthengine.google.com/e31cc4eec31dc738d2c631fa7c476ec6
https://code.earthengine.google.com/4bcc3b53a0a7b7ba53da728e1105faea
https://code.earthengine.google.com/4bcc3b53a0a7b7ba53da728e1105faea
https://code.earthengine.google.com/2d964ae418fe3e3ff411ba0489e39f39
https://code.earthengine.google.com/2d964ae418fe3e3ff411ba0489e39f39
https://code.earthengine.google.com/d45aabb27a9caf0bfec03af824c4288d
https://code.earthengine.google.com/d45aabb27a9caf0bfec03af824c4288d
https://code.earthengine.google.com/2766cb636c34d420c9edbc7d3fc28d42
https://code.earthengine.google.com/2766cb636c34d420c9edbc7d3fc28d42
https://code.earthengine.google.com/74730f57e55de9a56204f765e335e488
https://code.earthengine.google.com/74730f57e55de9a56204f765e335e488
https://code.earthengine.google.com/12cb7d0d74f2ad7e48f89e8339602cd6
https://code.earthengine.google.com/12cb7d0d74f2ad7e48f89e8339602cd6
https://code.earthengine.google.com/fd99907482adeb499f8f44b05fbbec23
https://code.earthengine.google.com/fd99907482adeb499f8f44b05fbbec23
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column details. As a result, the evaporation data were identified with ‘N A’ 

distributions; however, the percentile was considerably low. In addition, inappropriate 

values such as -0.05/-99.9 were replaced entirely with the ‘N A’ category to maintain 

uniformity throughout the data. 

Inappropriate data types, such as text instead of numerical types, were converted into 

float values to encourage data cleaning. By employing data science cleansing, the 

unknown rows were filled using interpolation techniques based on timely information. 

Besides, the column data distribution was inspected using descriptive statistical 

analysis. Box-Cox transformation was incorporated to develop the Gaussian 

distribution (normal distribution) on the input parameters. Further, normalization was 

proposed for scaling techniques which control the computational losses.   

3.4 Developing Neural Network Forecasting Models 

After the Data Processing, the data set was invited as data frame structures to the 

Jupyter Notebook (or Google Colab). The data were divided into training, validation, 

and testing sets by 70%, 20%, and 10%, respectively. Moreover, random shuffling was 

avoided entirely during the dividing process to ensure the chopping of consecutive 

samples and deliver more realistic results for validation and testing. Scaling, such as 

normalization, is crucial to avoid the high computational losses in the NN model. The 

mean and standard deviation of training data sets were used to rescale the data between 

0 and 1.  

The window generator task was implemented to develop the required data sets for the 

analysis, which argument was designed to receive the input width (the number of time 

events should be considered from the previous data set), label width (the number of 

time events should be predicted in the future), shift (the number of steps to be 

considered in the sampling process) and label columns (the column that is relevant to 

the prediction scenario). The argument was proposed with thirty days of previous 

events to predict thirty days in the future, and the step was taken as one day. In 

addition, the entire climatic and physiographic data columns were chosen as input to 

the model to forecast the daily streamflow events. Figure 3-22 illustrates the sliding 

window sampling.  
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Then, the split window function was developed to define the input and target(/label) 

tensors where the outermost index indicates the batch dimension, the middle represents 

the time or space (width/height), and the innermost indices are the features. The 

window splits into two sets: a batch of 30-time step 16 features and a batch of 30-time 

step 1 feature label. The Data frame is converted to a tf.data.Dataset of (input_window, 

label_window) pairs, and the window supports iterating training, validation, and 

testing sets over batches. 

Common-sense Baseline Models (BM) are cheap and straightforward machine 

learning models to ensure the worth of investing further complexity in the model 

architecture. It was developed to compare with the later, more complicated models. 

Figure 3-23 illustrates the configuration of BM. However, the effectiveness of the 

Baseline model declines by increasing the number of predictions. The Linear Model 

(LM) - the simplest trainable model is proposed with the linear transformation between 

input and output, where is no interaction between independent prediction steps. 

Besides, no activation function is considered in the model architecture. Therefore, 

these are labelled as no-memory models.  Figure 3-24 shows the configuration of LM.  

3.4.1 Basic Forecasting Models 

Artificial Neural Network (ANN): Its architecture is like the linear model but 

intensely performed more strongly. Single-step models are not capable of 

understanding the correlation between input features. The model needs access to 

multiple time steps to address the issues. In addition, the model accepts the multiple 

time steps as input to deliver a single output, which is executed on the input window 

of the exact shape of the model. A dense layer with a ReLu function was proposed to 

build the model. The output layer was proposed as a dense layer with a single unit. 

Figure 3-25 illustrates the configuration of ANN.  

CNN Model: The model architecture is like Dense ANN; here, the dense layer 

arguments were replaced with tf.keras.layers.Conv1D. Reshape argument is not 

essential for CNN because the model keeps the time axis in the output. A convolution 

layer with a kernel size of three was proposed with a ReLu activation function. A dense 
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layer with a ReLu function was attached additionally to the model, and the last layer 

was proposed as a dense layer. Figure 3-26 illustrates the configuration of CNN. 

RNN Model (LSTM and GRU): A tf.keras.layer.LSTM was applied to build up the 

model. Return sequence argument was paid special attention for two main reasons: by 

addressing with false, the layer returns the output of the final step and offers the model 

to warm up its internal state before making a prediction, and by addressing true, it 

produces the output for each input. Therefore, it is instrumental in stacking the RNN 

layer and simultaneously training the model on multiple time steps. In addition, the 

architecture was proposed with return_sequences to generate the NN. Like the LSTM 

model, the GRU model was developed using a tf.keras.layer.GRU. Figure 3-27 

illustrates the configuration of RNN. 

Bidirectional LSTM and GRU: A tf.keras.model.Bidirectional LSTM was added to 

prepare the forecasting model where the return sequence argument was fixed as True. 

By replacing the LSTM with GRU, the Bidirectional GRU was developed on the 

window to develop the forecasting model. The architecture was proposed with 

bidirectional LSTM and GRU layers with return_sequences to initiate the 

performance. Figure 3-28 illustrates the configuration of the Bidirectional Model. 

NARX Model: A tf.keras.Model was used to develop the NARX unit from the basic 

principles. The model was constructed to consider the present inputs and the 

previously predicted values. NARX layer, dense layer with Tanh activation and dense 

layer with linear activation were involved in developing the model architecture. Figure 

3-29 illustrates the configuration of NARX. 

3.4.2 Hybrid NN Models 

CNN-LSTM: Data set was passed through the units; after extracting the sequential 

features, those features were inserted into the Fully Connected Dense Layers (FCN). 

A Conv1D layer with a kernel size of five was proposed as the first layer. Then, LSTM 

layers with return_sequences were introduced, dense layers with ReLu activation 

followed the previous layer, and the dense layer was proposed as the last layer. Figure 

3-30 illustrates the configuration of CNN-LSTM. 
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SBU-LSTM Model: A bidirectional layer with lstm_cells with return_state was 

introduced to develop the model architecture. Deep LSTM NN added a fully connected 

deep neural network to boost the model. According to the preference, the 

BiLSTM/LSTM was introduced in the model architecture for better accuracy. Figure 

3-31 illustrates the configuration of SBU-LSTM. 

Dilated Casual CNN Model (DCNN): For time series analysis, the filter was one-

dimensional, and an activation function was selected as ReLu to avoid vanishing 

gradient issues. A dropout factor of 0.2 was introduced to prevent overfitting issues of 

the model. At last, a dense layer was introduced to the model architecture. Figure 3-32 

illustrates the configuration of DCNN.  

Graphical Convolution – LSTM (GC-LSTM): Sliding window techniques and the 

model architecture were adjusted before running the NN. The graph convolution layer 

was organized to build the adjacency matrix, while LSTM was arranged to understand 

the input series nature. Both layers were combined to generate the output series. The 

GC was incorporated into the model architecture without activation function. The 

LSTM with the ReLu activation function was additionally introduced to the 

architecture. The last unit was proposed as a dense layer. Figure 3-33 illustrates the 

configuration of GC-LSTM. 

Temporal Convolution Network (TCN): Casual padding and kernel size of two were 

adapted to the model architecture. The dilation rate began at one and reached 128. A 

dense layer with a ReLu activation function was introduced with a 0.2 dropout rate to 

control overfitting. Besides, the Tanh activation was arranged at last. The encoder and 

decoder module handled the input before sending it through the model architecture. 

Figure 3-34 illustrates the configuration of TCN. 
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Table 3-10 Jupyter Notebook and Details 

Title Jupyter Notebook 

Kelani Basin 

Climatic 

Data  

https://colab.research.google.com/drive/1x8RH6bsSXdYroHdkHOcWRKS08lhhw

ozz?usp=sharing  

Physiograp

hic Data  

https://colab.research.google.com/drive/1IZZm_7n7itJMai1UhDO7OU4trHd87cyI?

usp=sharing  

Data 

Cleaning  

https://colab.research.google.com/drive/1hxerL4OjxpQiDfdJwa9M-

fAFXUcS14Ud?usp=sharing  

Maduru Basin  

Climatic 

Data 

https://colab.research.google.com/drive/1SbdVFlR18Te9wg-

kKFHuw5yejtos6sOZ?usp=sharing  

Physiograp

hic Data  

https://colab.research.google.com/drive/1hRoYXK6uZ0ybNcoEBJbWyk0bhxS1Kb

E_?usp=sharing  

Data 

Cleaning  

https://colab.research.google.com/drive/1Vil6uxFh2LeZaxCLG6SmPwdAd1Mc1R

ex?usp=sharing  

Box-Cox https://colab.research.google.com/drive/16SNyt4ZaudP_ni7XUVoVTKco3YM70m

Oh?usp=sharing  

Kelani Basin  

NN Models https://colab.research.google.com/drive/1APN-

XaGY7LEppD6HMWX5KzAfzCYly-de?usp=sharing  

Sensitivity https://colab.research.google.com/drive/1kgsoNHA20bYLh4OOrMcmJlayOnsNUL

mB?usp=sharing  

Sensitivity- 

Parameter  

https://colab.research.google.com/drive/11gInbTFZMvLZLUQr8G-787A-

8gBqiFlM?usp=sharing  

Sensitivity- 

Time Span  

https://colab.research.google.com/drive/1C-6whhdkIVeQNI5WWr5Ie0iPv4ZaU-

mY?usp=sharing  

Sensitivity- 

Learning 

Rate  

https://colab.research.google.com/drive/13rlb564q8MWWg4C94Y2AK4AXjz49L

w2r?usp=sharing  

Maduru Basin 

NN Models https://colab.research.google.com/drive/1hJWnCUS7HiJD8eEhMBPGhQD766m0

Kq6a?usp=sharing  

 

 

https://colab.research.google.com/drive/1x8RH6bsSXdYroHdkHOcWRKS08lhhwozz?usp=sharing
https://colab.research.google.com/drive/1x8RH6bsSXdYroHdkHOcWRKS08lhhwozz?usp=sharing
https://colab.research.google.com/drive/1IZZm_7n7itJMai1UhDO7OU4trHd87cyI?usp=sharing
https://colab.research.google.com/drive/1IZZm_7n7itJMai1UhDO7OU4trHd87cyI?usp=sharing
https://colab.research.google.com/drive/1hxerL4OjxpQiDfdJwa9M-fAFXUcS14Ud?usp=sharing
https://colab.research.google.com/drive/1hxerL4OjxpQiDfdJwa9M-fAFXUcS14Ud?usp=sharing
https://colab.research.google.com/drive/1SbdVFlR18Te9wg-kKFHuw5yejtos6sOZ?usp=sharing
https://colab.research.google.com/drive/1SbdVFlR18Te9wg-kKFHuw5yejtos6sOZ?usp=sharing
https://colab.research.google.com/drive/1hRoYXK6uZ0ybNcoEBJbWyk0bhxS1KbE_?usp=sharing
https://colab.research.google.com/drive/1hRoYXK6uZ0ybNcoEBJbWyk0bhxS1KbE_?usp=sharing
https://colab.research.google.com/drive/1Vil6uxFh2LeZaxCLG6SmPwdAd1Mc1Rex?usp=sharing
https://colab.research.google.com/drive/1Vil6uxFh2LeZaxCLG6SmPwdAd1Mc1Rex?usp=sharing
https://colab.research.google.com/drive/16SNyt4ZaudP_ni7XUVoVTKco3YM70mOh?usp=sharing
https://colab.research.google.com/drive/16SNyt4ZaudP_ni7XUVoVTKco3YM70mOh?usp=sharing
https://colab.research.google.com/drive/1APN-XaGY7LEppD6HMWX5KzAfzCYly-de?usp=sharing
https://colab.research.google.com/drive/1APN-XaGY7LEppD6HMWX5KzAfzCYly-de?usp=sharing
https://colab.research.google.com/drive/1kgsoNHA20bYLh4OOrMcmJlayOnsNULmB?usp=sharing
https://colab.research.google.com/drive/1kgsoNHA20bYLh4OOrMcmJlayOnsNULmB?usp=sharing
https://colab.research.google.com/drive/11gInbTFZMvLZLUQr8G-787A-8gBqiFlM?usp=sharing
https://colab.research.google.com/drive/11gInbTFZMvLZLUQr8G-787A-8gBqiFlM?usp=sharing
https://colab.research.google.com/drive/1C-6whhdkIVeQNI5WWr5Ie0iPv4ZaU-mY?usp=sharing
https://colab.research.google.com/drive/1C-6whhdkIVeQNI5WWr5Ie0iPv4ZaU-mY?usp=sharing
https://colab.research.google.com/drive/13rlb564q8MWWg4C94Y2AK4AXjz49Lw2r?usp=sharing
https://colab.research.google.com/drive/13rlb564q8MWWg4C94Y2AK4AXjz49Lw2r?usp=sharing
https://colab.research.google.com/drive/1hJWnCUS7HiJD8eEhMBPGhQD766m0Kq6a?usp=sharing
https://colab.research.google.com/drive/1hJWnCUS7HiJD8eEhMBPGhQD766m0Kq6a?usp=sharing
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Figure 3-22 Configuration of Window Sampling 

 

 

 

 
Figure 3-23 Configuration of Baseline Model 

 

 
Figure 3-24 Configuration of Linear Model 

 
Figure 3-25 Configuration of ANN Model 

 
Figure 3-26 Configuration of CNN Model 

 

 

 
Figure 3-27  Configuration of RNN Model 

 

 
Figure 3-28  Configuration of Bidirectional Model 

 
Figure 3-29  Configuration of NARX Model 

 
 

 
Figure 3-30 Configuration of CNN-LSTM 
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Figure 3-31 Configuration of SBU-LSTM 

 

 

 

 

 

 
Figure 3-32 Configuration of DCNN 

 
Figure 3-33 Configuration of GC-LSTM 

 

 

 

 

 
Figure 3-34 Configuration of TCN 

 
 

Figure 3-35  Configuration of Att-BiLSTM 
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Attention-Based Bidirectional LSTM: The data was passed through the encoder 

(BiLSTM) and decoder (Dense layer) modules. BiLSTM and the attention layer with 

return sequence, which was generated with SoftMax and Tanh activation functions, 

deal with generating the model architecture. A 0.5 dropout rate was considered, and 

the output layer was proposed with the dense module. Figure 3-35 illustrates the 

configuration of Att-BiLSTM.  

All the models were compiled and fitted with Adam optimizer, RMSE loss function, 

and MAE monitoring metrics. Table 3-10 illustrates the Jupyter Notebook for the 

studies. 

3.5 Selecting the Best NN Models  

Analytic Hierarchy Process (AHP) analysis was proposed to identify the weights of 

decision-making factors such as R2, RE, RFDC, MAE, and RMSE. First, grid analysis 

was employed to select the best models where higher rank values were assigned for 

the worst performance in each criterion. Then, the overall weight for each model was 

computed by multiplying weights and ranks.  

Table 3-11 Importance of Factors 

Factors  Reason for Influence on Decision-Making  

R2 

It is used to express the fitness of both observed and forecasted values, which is 

the appropriate statistical tool for the performance. Therefore, it was assigned a 

higher value. 

RE 
It measures the scattered deviation of predicted values from the observed values. 

Therefore, it was assigned the second highest value. 

RFDC 

This tool expresses the behavioural error of observed and forecasted FDC. FDC 

greatly explicates the catchment characteristics. Therefore, it was assigned a fair 

value. 

MAE 
It was the monitoring metrics of the NN models. Therefore, it was assigned a low 

value. 

RMSE 
It was the loss function considered for the model compiling and fitting. Therefore, 

it was considered the lowest value. 

 

Table 3-10 describes the values of decision-making factors, and Table 3-11 illustrates 

the AHP analysis. Grid analysis was employed to select the best models where higher 

rank values were assigned for the worst performance in each criterion. In contrast, 
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lower rank values were proposed for the best performance. The overall weight for each 

model was computed by multiplying weights and ranks. 

Table 3-12 AHP Analysis and Weights 

 R2 RE RFDC MAE RMSE Weights 

R2 1 2 3 4 5 0.44 

RE 1/2 1 3/2 2 5/2 0.22 

RFDC 1/3  2/3 1 4/3 5/3 0.15 

MAE 1/4 2/4 3/4 1 5/4 0.11 

RMSE 1/5 2/5 3/5 4/5 1 0.09 

Total 2.28 4.57 6.85 9.13 11.42 1.00 

 

Grid analysis was performed with the derived weights of decision-making factors. In 

addition, rank values based on the statistical measure were considered as a, b, c, d, and 

e in the column of R2, RE, R­­FDC, MAE and RMSE, respectively. Table 3-12 

expresses the AHP analysis to quantify the weights. Table 3-13 illustrates the sample 

calculation for Grid Analysis.  

3.6 Uncertainty Analysis  

Uncertainty analysis of data-driven forecasting models expresses the reliability of 

anticipating values based on the input parameters (Shamshirband et al., 2019). The 

performance is expressed as the performance of the core model. Table 3-14 expresses 

the uncertainty parameters and their importance.  

3.7 Sensitivity Analysis  

A sensitivity analysis among artificial neural networks provides an opportunity to 

assess the importance of impactful factors that contribute to the functionality of neural 

networks. It can be expressed based on the primary model quality (Song et al., 2020).  

The architecture of the models (learning rates, optimizers), input parameters, and lead 

time play a significant role in a sensitivity analysis. The performance of models was 

checked with the base model performance as in equation Eq 3-13 (R2: R-Sq).  

Table 3-15 illustrates the sensitivity parameters and their importance.  
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𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝐹𝑎𝑐𝑡𝑜𝑟 =  
𝐸𝑖

𝐸𝑏
⁄ ……………………………………… Eq 3-13 

Table 3-13 Grid Analysis (Sample Sheet) 

 R2 RE RFDC MAE RMSE Weight * Rank 

Weights 0.44 0.22 0.15 0.11 0.09 1 

BL       

LM       

ANN a b c d e 0.44 a + 0.22 b + 0.15 c + 0.11 d + 

0.09 e 

CNN       

LSTM       

GRU       

NARX       

Bi-LSTM       

Bi-GRU       

CNN-

LSTM 

      

SBU-

LSTM 

      

DCNN       

GC-

LSTM 

      

TCN       

Att-

BiLSTM 
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Table 3- 14 Uncertainty Parameters and Description  

Parameters Characteristics  Description  

Input 

Handling  

Without Box-Cox Transformation  It determines the influences of 

extremities location and 

computational losses.  Without Box-Cox Transformation 

and Normalization 

Input 

Distribution  

Rainfall only It illustrates the importance of 

input parameters considered for 

the study.  
Rainfall & NDVI 

Rainfall & Evaporation  

Rainfall & Relative Humidity  

 

Table 3-15 Sensitivity Parameters and Description 

Parameters Characteristics Description 

Learning Rate 

0.001 
The learning rate influences the time length of 

convergence. For instance, a high rate contributes 

to fast convergence, while a low rate provides 

slow convergence. 

0.1 

0.01 

0.0001 

Optimizers 

Adam 

It combines the momentum and RMSProp, which 

keeps track of an exponentially decaying average 

of past squared gradients. 

Nadam 

Adam optimization and Nesterove trick produce 

this optimizer. Thus, it is faster converging than 

Adam. 

SGD 
It is a momentum optimizer that considers the 

previous gradients at each iteration. 

RMSProp 
It fixes the issue related to fast convergence 

without reaching a global optimum. 

Input 

Climatic & 

Physiographic 
Dimensionality reduction is the way to control 

the complexity of forecasting. 
Climatic only 

Physiographic 

only 

Lead Time Span 

30 Days 
Lead time and span length are significant in 

assessing the model performance. 
15 Days 

45 Days 
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3.8 Evaluating the NN Model Performance (Wet Zone) on Dry Zone Basin 

Reusing the pre-trained layer is a practical way to avoid rebuilding the NN models 

from scratch, which can be proceeded with transfer learning techniques. Generally, it 

offers favorable results for the inputs with similar features to core models that should 

express an accuracy greater than 90%. The output layer of the existing model must be 

replaced with a new layer suitable for a new task. An exact number of reusable layers 

must be determined based on the freezing and unfreezing layers, which change the 

state of weights (Géron, 2019). Pre-training models were developed based on the 

models identified with R2 of more than 90%. The models fixed the output layer as a 

dense layer with one unit, and the uppermost layers were locked to control gradient 

descent effects. Those four statistical tools were employed to explain the performance 

of the newly developed models. Figure 3-36 illustrates the model architecture of the 

pre-training model.  

 

Figure 3-36 Skeleton of Transfer Learning 
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CHAPTER 4: RESULTS AND DISCUSSION  

The results of model performance, the best model selection, uncertainty analysis, 

sensitivity analysis, and comparison with existing models are discussed in this section. 

Finally, the hydrographs and FDCs were plotted for 2015 to visually represent the 

actual and forecasted values from Figure 4-6 to Figure 4-31.  

4.1 Performance of NN Models  

RMSE and MAE measured the performance of NN models; most significantly, these 

two were the controlling parameters of NN models. TCN and GC-LSTM expressed 

the worst performance in forecasting; however, bidirectional models illustrated 

outstanding performance. Figure 4-1 and Figure 4-2 illustrate the performance.  

 

Figure 4-1 RMSE Values - NN Models 

 

Figure 4-2 MAE Values - NN Models 
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The R2 and FDC-Q values were computed to quantify the model performance. Bi-

GRU, Att-BiLSTM, and Bi-GRU expressed 0.98, 0.97, and 0.95, respectively. In 

addition, Bi-GRU and Att-BiLSTM forecasted lower and higher values with similar 

accuracy; nevertheless, Bi-LSTM lacked to predict the higher values than lower 

values.   The FDC-Q values were observed as 0.99 for all three models. Figure 4-3 and 

Figure 4-4 illustrate the R2 and FDC-Q values, respectively.  

RNN-GRU, CNN, and RNN-LSTM expressed 0.81, 0.79, and 0.78, respectively. Both 

RNN-GRU and CNN failed to predict the higher values than the lower values. 

However, RNN-LSTM forecasted both higher and lower values with adequate 

accuracy. The FDC-Q values were 1, 0.98, and 0.98 for RNN-GRU, CNN, and RNN-

LSTM, respectively. 

 

Figure 4-3 R2 Values - NN Models 

ANN and NARX indicated 0.78, while SBU-LSTM expressed 0.77 for R2. ANN 

imperfectly forecasted the higher streamflow. NARX correctly predicted the lower 

values; nevertheless, the prediction quality seems acceptable for the higher values. 

SBU-LSTM was obtained with an irregular pattern for predictive capability on lower 

and higher values; nevertheless, the deviation was low. The FDC-Q values revealed 

0.99, 0.97, and 1 for ANN, NARX, and SBU-LSTM, respectively. 
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Figure 4-4 FDC-Q Values - NN Models 

DCNN, CNN-LSTM, TCN, and GC-LSTM explicated 0.77, 0.75, 0.53, and 0 for R2, 

respectively. According to the FDCs, DCNN excellently predicted both lower and 

higher values. CNN-LSTM almost perfectly predicted the lower and higher values; 

nevertheless, it could not forecast the intermediate values. TCN expressed the worst 

performance on predicting higher and lower values. In addition, GC-LSTM expressed 

repulsive performance compared to other models in forecasting streamflow values. 

DCNN and CNN-LSTM were identified with 0.99 for FDC-Q, while TCN and GC-

LSTM expounded 1.  

4.2 Selection of the Best Models  

Bi-GRU, Bi-LSTM, Att-Bi-LSTM, RNN-GRU, ANN, CNN, DCNN, and SBU-LSTM 

were explicated excellent performance than both BM and LM models. On the other 

hand, RNN-LSTM, CNN-LSTM, and NARX expounded an intermediate level of 

performance, while TCN and GC-LSTM were appalling poor performance for 

forecasting. The deviation between forecasted and actual values was lower for the 

models: Bi-LSTM, Bi-GRU and Att-Bi-LSTM; nevertheless, the FDC-Q values, 

which elaborate the behavioral errors, revealed that TCN and GC-LSTM were 

excellent models. On the other hand, RNN-GRU and SBU-LSTM explicated the best 

results for FDC-Q and moderate values for RM. Figure 4-5 illustrates the RM values 

of NN Models.  
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Figure 4-5 RM Values - NN Models 

Except for GC-LSTM and TCN, other models delivered an excellent performance for 

the loss function and monitoring metrics which directly represents the performance of 

NN models. Overall, Bi-GRU, Bi-LSTM, and Att-Bi-LSTM were the top best models, 

while GC-LSTM and TCN were identified as the low worst models. RNN-LSTM, 

CNN-LSTM, and NARX moderately performed according to the grid analysis. On the 

other hand, other models expressed excellent behaviour for forecasting. Table 4-1 

illustrates the grid analysis and the ranks of the models.  
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Figure 4-6 Hydrograph for Kelani (Bi-GRU) 

 
Figure 4-7 FDC for Kelani (Bi-GRU) 

 
Figure 4-8 Hydrograph for Kelani (Att-Bi-LSTM) 

 
Figure 4-9 FDC for Kelani (Att-Bi-LSTM) 

 
Figure 4-10 Hydrograph for Kelani (Bi-LSTM) 

 
Figure 4-11 FDC for Kelani (Bi-LSTM) 
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Figure 4-12 Hydrograph for Kelani (RNN-GRU) 

 
Figure 4-13 FDC for Kelani (RNN-GRU) 

 
Figure 4-14 Hydrograph for Kelani (CNN) 

 
Figure 4-15 FDC for Kelani (CNN) 

 
Figure 4-16 Hydrograph for Kelani (RNN-LSTM) 

 
Figure 4-17 FDC for Kelani (RNN-LSTM) 
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Figure 4-18 Hydrograph for Kelani (ANN) 

 
Figure 4-19 FDC for Kelani (ANN) 

 
Figure 4-20 Hydrograph for Kelani (NARX) 

 
Figure 4-21 FDC for Kelani (NARX) 

 
Figure 4-22 Hydrograph for Kelani (SBU-LSTM) 

 
Figure 4-23 FDC for Kelani (SBU-LSTM) 
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Figure 4-24 Hydrograph for Kelani (DCNN) 

 
Figure 4-25 FDC for Kelani (DCNN) 

 
Figure 4-26 Hydrograph for Kelani (CNN-LSTM) 

 
Figure 4-27 FDC for Kelani (CNN-LSTM) 

 
Figure 4-28 Hydrograph for Kelani (TCN) 

 
Figure 4-29 FDC for Kelani (TCN) 
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Figure 4-30 Hydrograph for Kelani (GC-LSTM) 

 
Figure 4-31 FDC for Kelani (GC-LSTM) 
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Table 4-1 Grid Analysis for Uncertainty Analysis 

Weights 0.4 0.2 0.1 0.1 0.1 Weighted 

Rank 

Ranking the 

Models NN R2 Ranks RM Ranks FDC-Q Ranks MAE Ranks RMSE Ranks 

BL 0.74 10.5 0.22 3.5 1.00 6.0 0.04 8.0 0.06 9.5 7.9 9.0 

LM 0.74 11.5 0.46 12.0 1.00 1.0 0.04 11.0 0.06 11.0 10.0 10.0 

ANN 0.77 7.0 0.25 5.0 0.99 8.0 0.04 7.5 0.05 7.5 6.8 5.0 

CNN 0.78 4.5 0.44 9.0 0.98 14.0 0.04 4.5 0.05 5.5 7.0 6.0 

LSTM 0.72 10.5 0.30 8.5 0.98 13.0 0.04 9.0 0.06 9.0 10.1 11.0 

GRU 0.82 4.5 0.42 9.0 1.00 1.0 0.04 5.5 0.05 5.5 5.2 4.0 

Bi-LSTM 0.96 2.5 0.14 1.5 0.99 9.0 0.02 3.0 0.02 2.5 3.3 2.0 

Bi-GRU 0.98 1.0 0.15 2.0 0.99 10.0 0.01 1.0 0.02 1.0 2.5 1.0 

NARX 0.74 10.5 0.47 12.0 0.97 15.0 0.04 8.5 0.06 10.5 11.3 13.0 

CNN-LSTM 0.72 10.5 0.38 10.0 0.99 12.0 0.04 10.5 0.06 10.0 10.6 12.0 

SBU-LSTM 0.76 8.5 0.37 8.5 1.00 1.0 0.04 11.0 0.06 8.0 7.6 8.0 

DCNN 0.77 7.0 0.40 8.0 0.99 7.0 0.04 8.5 0.06 8.0 7.5 7.0 

TCN 0.32 14.5 0.61 13.0 1.00 1.0 0.11 14.5 0.14 14.5 12.2 14.0 

GC-LSTM 0.19 14.5 0.59 14.5 1.00 1.0 0.09 14.5 0.11 14.5 12.5 15.0 

Att-BiLSTM 0.96 2.5 0.23 3.5 0.99 11.0 0.02 2.0 0.03 2.5 3.9 3.0 

*Red: Worst models *Green: Good Models *Blue: Excellent models *Yellow: Indicators 
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4.3 Uncertainty Analysis  

None of the models explicated excellent performance than the models with box-cox 

transformation; however, SBU-LSTM and GC-LSTM expounded underperformance 

without box-cox transformation. Normalization severely influenced the model 

performance based on the analysis; except for CNN-LSTM, the performance of hybrid 

models significantly deteriorated without scaling the data. The modelling performed 

with rainfall data improved the performance of GC-LSTM; nevertheless, except for 

TCN, other models explicated similar performance to the core models. TCN and GC-

LSTM expounded the worst performance for the data set with rainfall and NDVI. TCN 

expressed worst performance for the data combination considered for the analysis than 

the core models. Figure 4-32 expresses the performance of NN models based on 

uncertainty analysis.  

 

Figure 4-32 Uncertainty Analysis and the Scaled Values 

4.4 Sensitivity Analysis   

The SBU-LSTM expounded outstanding performance and was slightly higher for both 

semi-monthly and monthly spans, which was better in weekly spans than other models. 

In addition, GC-LSTM performed exceptionally for the seme-monthly span. LSTM 
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derived great results for both input parameters, such as climatic and physiographic 

data, where LSTM was one of the best models developed for climatic data sets. In 

addition, no models were identified with considerably more excellent performance 

than the core models. LSTM was observed with perfect results for both learning rates: 

0.01 and 0.0001, which were the most incredible models for a 0.0001 learning rate. 

Simultaneously, SBU-LSTM was identified with noticeable results for a 0.01 learning 

rate. Nadam entirely improved the model performance compared to SGD, while 

RMSProp considerably supported to gain more performance than RNN-based models 

and TCN. Unlike the optimizers, other sensitivity parameters explicated inconclusive 

results on model performance. Figure 4-33 graphically expresses the sensitivity 

analysis.  

 

Figure 4-33 Sensitivity Analysis and the Scaled Values  

4.5 Evaluating the Wet Zone Models on Dry Zone     

The Bi-GRU, Bi-LSTM, and Att-Bi-LSTM were developed for the dry zone basin, 

and models were identified with greater ability in the wet zone basin. Newly prepared 

models represented quite similar performance to the core models. The R2 values 

expressed 0.97, 0.98, and 0.94 for Bi-GRU, Bi-LSTM, and Att-Bi-LSTM, 
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respectively. Figure 4-34 to Figure 4-36 illustrates the hydrographs and FDCs of the 

Maduru River Basin for 2010/2011. 

 

Figure 4-34 Hydrograph for Att-Bi-LSTM 

 

Figure 4-35 Hydrograph for Bi-LSTM 

 

Figure 4-36 Hydrograph for Bi-GRU 

4.6 Comparing the Present Study Model Performance with Existing Models 

The present study was compared with the models gathered from the most recent 

literature; the NSE values were also derived from comparing with the R2. However, 
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the literature and the present study; this is a significant limitation. Figure 4-37 

illustrates the comparison of R2 values. Besides, Table 4-2 shows the models available 

in the literature.  

 

Figure 4-37 Comparison of NN Models (Blue: Models available in the literature, Orange: Models in the study) 

Bi-LSTM, Bi-GRU, and Att-Bi-LSTM expressed a competitive manner with the 

models available in the literature, where the forecasting horizon of the available 

models differed from the present study. RNN-GRU explicated a performance like GA-

LSTM, SSA-CNN, and Bi-LSTM available in the literature. Dense ANN, CNN, RNN-

LSTM, NARX, CNN-LSTM, SBU-LSTM, and DCNN expressed a similar 

performance to the TCN model available in the literature. However, the TCN model 

in the present study could have performed better than other models. In contrast, the 

NARX model of the present study was well-performed than the NARX available in 

the literature. GC-LSTM expounded worse performance than both models of present 

and previous studies.  

Table 4-2 NN Models in the Literature 

NN Models Linearity Characteristics of the Analysis Research Paper 

TCN 0.76 

Forecasting Horizon: 12 hrs 

Data (Hourly): Rainfall (19), 

Discharge, NDVI 

Input Series: 1971 – 2013 

(Xu et al., 2021) 

LSTM 0.99 

Forecasting Horizon: 2 Days 

Data (Daily): Streamflow 

Input Series: 1995 – 2014 

 

(Le et al., 2021) 
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NN Models Linearity Characteristics of the Analysis Research Paper 

Bi-LSTM 0.89 

Forecasting Horizon: 30 min 

Data (Hourly): Water Level, 

Rainfall 

Input Series: 2013 - 2020 

(Won et al., 

2022) 

GRU 0.95 

Forecasting Horizon: 1 Day 

Data (5 – 10 Days): Daily Runoff, 

Rainfall 

Input Series: 2007 - 2014 

(Wang et al., 

2020) 

NARX 0.35 

Forecasting Horizon: 2 Months 

Data (Monthly): River Flow, 

Weighted Rainfall, Average 

Evaporation 

Input Series: 1998 - 2016 

(Hayder et al., 

2022) 

Stacked LSTM (STA-

LSTM) 
0.96 

Forecasting Horizon: 6 hrs 

Data (12 hrs): Hourly Flowrate, 

Rainfall 

Input Series: 1981 - 2007 

(Ding et al., 

2020) 

Biased 

Wavelet Neural Network 

(BWNN) 

 

1.00 

Forecasting Horizon: 3 Days 

Data (7 Days): Daily Streamflow 

Input Series: 1931 – 2015 

(Saraiva et al., 

2021) 

Feed Forward Neural 

Network (FF-LSTM) 
0.98 

Forecasting Horizon: 1 hr 

Data: (1-10 hrs) Daily Streamflow, 

(1-7 hrs) Daily Rainfall 

Input Series: 1980 - 2016 

(Lin et al., 2021) 

Grey Wolf Algorithm 

Based GRU (GWO-GRU) 
0.91 

Forecasting Horizon: 1 Day 

Data: Daily Flowrate 

Input Series: 2000 - 2009 

(Kilinc & 

Yurtsever, 2022) 

Genetic Algorithm (GA-

LSTM) 
0.87 

Forecasting Horizon: 1 Day 

Data: Daily Flowrate 

Input Series: 2000 - 2009 

(Kilinc & 

Haznedar, 2022) 

Semantic Self-Attention 

CNN (SSA-CNN) 
0.83 

Forecasting Horizon: 1 Day 

Data: Antecedent Streamflow, 

Precipitation, Relative Humidity 

Input Series: 1996 - 2016 

(Apaydin et al., 

2021) 

CNN-LSTM 0.99 

Forecasting Horizon: 1 Month 

Data (Hourly): Streamflow 

Input Series: 1996 - 2016 

(Ghimire et al., 

2021) 
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CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS 

The conclusions and limitations of the present study and recommendations for future 

studies are discussed in this section.  

5.1 Conclusions   

The Box-Cox transformation was applied to control the anomalies of the input data 

sets, which generated Gaussian distribution to handle the extremities. Normalization 

was employed in the final data set to minimize the computational losses. In addition, 

the sliding window concept was adapted to slice the time series data into the required 

horizons. Except for TCN and GC-LSTM, the other eleven NN models expressed 

excellent performance for 30-day forecasting; mainly, all three bidirectional models, 

including the attention-based model, delivered an extraordinary performance to 

forecast streamflow values. On the other hand, Feedforward models such as ANN, 

SBU-LSTM, and NARX explicated underperformance more than bidirectional and 

other RNN models. CNN models such as standard CNN and DCNN expounded better 

performance than the LSTM model; nevertheless, those performances were almost 

equal to the SBU-LSTM model. CNN-LSTM was the only hybrid model that 

expressed a performance like the LSTM model; however, the performance was 

observed as poor compared to other RNN variants. Grid analysis perfectly notified the 

bidirectional model as the best among other NN models. Bi-GRU, Att-Bi-LSTM, 

RNN-LSTM, NARX, and DCNN followed the defined behaviour of FDC; however, 

TCN and GC-LSTM expounded an outstanding result for behavioural FDC-Q. In 

contrast, TCN and GC-LSTM were identified with disappointing results for other 

categories of grid analysis.  

The influence of Normalization was considerably higher than the box-cox 

transformation based on the uncertainty analysis. The DCNN model achieved 

noticeable results for all the sensitivity parameters, including for the SGD optimizer. 

Newly developed pre-trained models for dry zone basins interpreted outstanding 

results for forecasting. Thirteen NN models were compared with the models available 

in the previous studies, and the present study expressed a remarkable achievement 

even with the 30-days forecasting horizon. Especially, bidirectional models such as 
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BiGRU, Att-BiLSTM, and BiGRU revealed outstanding values for R2 as 0.98, 0.97, 

and 0.95, respectively.          

5.2 Limitations   

Satellite data platforms lend a helping hand to gathering poorly accessible data for the 

NN model preparation. Input series were collected from various satellite products 

besides rainfall intensity and streamflow data. GEE was primarily implemented to sort 

out the lack of data issues. Generally, it provides excellent access to remote sensing 

products through the cloud platform. However, the platform needs missing data 

handling tools (Shelestov et al., 2017). Since the excellency of NN models effectively 

handles the missing data by imposing timely interpolation strategies.   

The cloud system supports a limited number of training and validation samples in case 

of large-scale data collection. Commonly, the high-resolution platform does not 

support SAR data. The derived data sets using GEE must combine with monitoring 

and management decisions to improve modeling quality (Zhao et al., 2021). Climatic 

data sets such as rainfall and streamflow were cleansed with hydrological terms to 

enhance the data quality. Nevertheless, other data sets were not manipulated with 

hydrological cleaning strategies. 

Literature has not defined any systematic scheme to address the input handling for NN 

models and those architecture characteristics. In addition, there needs to be adequate 

clarity on neglecting trend and seasonal components. There is neither empirical nor 

theoretical methodology to choose the suitable NN models among the alternatives 

(Andrea Sánchez-Sánchez et al., 2020). This research used grid analysis and AHP 

analysis to identify the best models. 

5.3 Recommendations   

Solar irradiance influences global warming, one of the factors considered for NN 

model preparation. In most parts of the world, global warming severely influences 

flood magnitudes and frequencies. Recent studies denote that the 50-year return period 

of river flow increases from 2% to 2.4% at 1.5oC and 5.4 % at 4oC of global warming 
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(He et al., 2022). Batches for sliding window assignment must be regarded as based 

on the global warming pattern, which is expected to reveal a reliable input handling. 

The loss function is adapted to find the optimum error and update the weights and bias. 

The present study is proposed using a statistical tool, RMSE, to develop a relationship 

between target and predicted values. Forecasting problems are expected to coincide 

predicted with observed data sets. Therefore, the applicability of other statistical tools 

must be checked as loss functions. The gradient descent and the loss function must be 

assembled from the fundamental strategies to achieve this task. On the other hand, 

FDC curves and the relevant theory can be implemented to reconstruct the errors 

between observed and forecasted values. The viability of this application must be 

tested on the extended studies in the above area. 

Autocorrelation, which means the inter-dependency of errors, is a popular term in time 

series data sets. The temporal nature of the data generally supports enabling the 

autocorrelation ability on error distribution (Sun et al., 2021). Therefore, the 

autocorrelation ability should be verified, and the newly developed error must be 

adapted to control the scattering of forecasted values.   

The core model must be prepared for extended periods to facilitate addressing transfer 

learning effectively on other basins. In addition, the model must be evaluated on 

another wet zone basin to ensure its authenticity.  
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APPENDICES  

Appendix A: Visual Checking of Streamflow and Rainfall of each station for Water Year (2008-2015) – Kelani River Basin 
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*According to the visual checking, the abnormalities and inconsistencies of the hydrological data are negligible. It was indicated with a 

red color box.  
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Appendix B: Visual Checking of Streamflow and Thiessen Averaged Rainfall for Water Year (2008-2015) – Kelani River Basin 
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* The response of average rainfall and streamflow shows a good visual appearance.    

 

0.0

50.0

100.0

150.0

200.00

10

20

30

40

50

60
Water Year

R
a

in
fa

ll
 I

n
te

n
si

ty
 (

m
m

/d
)

S
tr

e
a

m
fl

o
w

 (
m

m
/d

)

Rainfall Intensity Streamflow

0.0
20.0
40.0
60.0
80.0
100.0
120.0
140.00

10

20

30

40

50
Water Year

R
a

in
fa

ll
 I

n
te

n
si

ty
 (

m
m

/d
)

S
tr

e
a

m
fl

o
w

 (
m

m
/d

)

Rainfall Intensity Streamflow

0.0

20.0

40.0

60.0

80.0

100.00

10

20

30

40

50
Water Year

R
a

in
fa

ll
 I

n
te

n
si

ty
 (

m
m

/d
)

S
tr

e
a

m
fl

o
w

 (
m

m
/d

)

Rainfall Intensity Streamflow



 

108 

 

 

Appendix C: Double Mass Curve for the Rainfall Stations – Kelani River Basin 
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Appendix D: Visual Checking of Streamflow and Rainfall of each station for Water Year (2008-2015) – Maduru Oya Basin 
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*According to the visual checking, the abnormalities and inconsistencies of the hydrological data are negligible. It was indicated with a 

red color box.  
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Appendix E: Visual Checking of Streamflow and Thiessen Averaged Rainfall for Water Year (2008-2015) – Maduru River Basin 

  

  

0

10

20

30

40

500

5

10

15

20

25

30

35

40

R
a

in
fa

ll
 (

m
m

/d
)

S
tr

e
a

m
fl

o
w

 (
m

m
/d

)

Days

Rainfall (mm/d)

0

10

20

30

40

500

10

20

30

40

50

R
a

in
fa

ll
 (

m
m

/d
)

S
tr

e
a

m
fl

o
w

 (
m

m
/d

)

Days

Rainfall (mm/d)

0

50

100

150

2000

200

400

600

800

1000

1200

R
a

in
fa

ll
 (

m
m

/d
)

S
tr

e
a

m
fl

o
w

 (
m

m
/d

)

Days

Rainfall (mm/d)

0

10

20

30

40

500

10

20

30

40

50

60

70

80

R
a

in
fa

ll
 (

m
m

/d
)

S
tr

e
a

m
fl

o
w

 (
m

m
/d

)

Days

Rainfall (mm/d)



 

116 

 

 

  

 

 

 

* The response of average rainfall and streamflow shows a good visual appearance.    
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Appendix F: Double Mass Curve for the Rainfall Stations – Maduru River Basin 
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