
^7 31
m-Q.

megratiortrwith SAT-Analyzer
I. D. Rubasinghe, D. A. Meedeniya, I. Perera
Department of Computer Science and Engineering,

University of Moratuwa, Sri Lanka
ireshar@cse.mrt.ac.Ik, dulanim@cse.mrt.ac.lk, indika@cse.mrt.ac.lk

ABSTRACT Software artefacts are the intermediate by-products used in each
phase of the software development life cycle (SDLC) towards the
intended software product. Changes in software artefacts are the
primary motivation in software evolution (l|. It is crucial to
maintain the consistency between the software artefacts, with the
increasing scope of a software system. This is due to the rapid
generation of information across a large information space Thus,
there is a requirement of the ability to describe and follow the
artefact lifecycle. Without a well-defined traceability
management between the software artefacts the consequences of
different evolutions may result in expensive overheads in SDLC
Further, improper traceability management may lead to failures
of a product. Therefore, traceability of software artefacts is
important for the software evolution process It strengthens the
testability, maintainability and helps for system acceptance by
providing consistent documentation [3| The improper
management and outdated artefacts can lead to inconsistency
among artefacts, synchronization issues and lack of trust in
artefacts by stakeholders. Thus, it is significant to maintain the
traceability throughout the SDLC.

The concept of DcvOps (Development-Operations) represents
the integration of development environment and the operational
environment that encourages developing systems rather than
mere programs. DevOps ease the project management with
communication, understandability. integration and bridging the
gap between the development teams and operational teams. It
increases the rate of change and deploys features into production
faster [4]. There is a strong relationship between the quality of
the software developed and the agility of the organization to the
DevOps practices of software development [5]. Therefore,
DevOps practices contribute to enhance these software quality
attributes within continuous integration process.

SAT-Analyzer (Software Artefacts Traceability Analyzer) is a
prototype tool developed previously, with the intension of
traceability management [6] (7] [S]. It includes a core engine for
traceability establishment and visualization. However, it mainly
considers software artefacts such as natural language based
requirements, UML class diagrams, and Java source code for
traceability management as of nowr; the integration of DevOps
practices along with continuous integration is explored. This
paper mainly explores extensive related research and proposes an
optimised framework for traceability management with
continuous integration.

The paper is organized as follow's: Section 2 presents related
approaches in traceability management including change
detection, impact analysis, change propagation and consistency
management. Section 3 evaluates the literature and the proposed
framework is elaborated in Section 4. Finally, Section 5
concludes the paper with future research directions.

Software system engineering is rapidly growing to larger scales
and software maintenance tends to be complex. The number of
involving software artefacts increases with the growth of
software systems Thus, different software development
methodologies, processes and practices are getting introduced to
ease the software management Consequently, the management
of excessive software artefacts is also important towards a
successful maintenance. Therefore, the notion of traceability
management of software artefacts is given prominence along
with continuous integration. This paper explores the existing
traceability management approaches to propose an optimized
framework that overcomes current limitations. Hence, the
previous work of this research. SAT-Analyzer. which is a
prototype tool, is extended to support continuous integration with
DevOps practices.

CCS Concepts
• Softw'are and its engineering —> Software creation and
management —► Software post-development issues —*
Software evolution.

Keywords
Traceability management; continuous integration; change
detection; impact analysis, DevOps.

1. INTRODUCTION
Software systems, in today’s context, arc considered as critical
business assets. Change of a software system is inevitable and
required to be updated continuously in order to maintain the
value of these assets. Hence, software evolution is preferred over
building completely new software systems due to the cost and
time benefits [I], Generally, software evolution occurs in a
software system life cycle at a stage where it is in active
operation and is evolving due to new requirements. The software
evolution mainly depends on the type of software being
maintained; involved in the development processes and continues
within the software system lifecycle. The evolution is highly
coupled with the components that arc affected by the change;
hence the cost and change impact can be estimated [2],

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies arc
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
Request permissions from Pcrmissions@acm.org.
ICCIP'17, November 24 -26.2017. Tokyo, Japan
O 2017 Association for Computing Machinery.
ACM ISBN 978-1 -4503-5365-6/17/11. 5.15.00
DOI: https://doi.org/10.1145/3162957.3162985

77

mailto:ireshar@cse.mrt.ac.Ik
mailto:dulanim@cse.mrt.ac.lk
mailto:indika@cse.mrt.ac.lk
mailto:Pcrmissions@acm.org
https://doi.org/10.1145/3162957.3162985

32
The event-based approaches use the events occurring during
software development activities to maintain traceability links
Accordingly, the deletion of an artefact can be made as a trigger
to delete all'the connected traceability links to it. Many related
work has achieved this using similar conceptual techniques such
as publish and subscribe mechanism for connecting traceability
maintenance tasks to particular events [12] The requirements
and source code arc classified as mandatory inputs to the
hypertext-based traceability maintenance approaches, whereas
conformance analysis is identified as complementary inputs [3],
This has used XML and the types of software artefacts are
viewed as constraints on one another. A set of constraints are
provided in the constraint-based approaches that must not be
violated by any traceability link [13] The traceability links that
are not clearly referenced in any constraint are considered to be
consistent by default The transformation-based approaches have
shown that artefacts generated through model transformations

be enriched to generate traceability links [12], However, it is
still found to be contradictory in practice. Furthermore, graph-
transformation based methodologies are involved in to define,
identify and maintain the traceability links in this domain [14],

Alternatively, Design Decision Tree (DDT) provides ability to
connect requirements to aicliilecluie decision and design
elements under traceability establishment. There is a model
named ‘Architecture Rationale and Elements Linkage (AREL)’
that has targeted traceability in the design rationale modeling
using the conceptual UML notations [15], It can be used to
capture relationships between only the two entities: architecture
rationale and architecture elements.

2. TRACEABILITY APPROACHES
2.1 Terminology
A range of software artefacts is involved throughout the SDLC.
Some of the early stage artefacts are Software Requirement
Specification (SRS), design diagrams, architectural documents
and quality attributes or the non-functional requirements reports
and source code. Test scripts, walkthroughs, inspections, bug
reports, build logs and test reports, configuration files, user
manuals are important artefacts present in the latter stage 'of
SDLC. Nevertheless, there is a relationship between the primary
artefacts witli the final deliverables of the software product Thus
the consistent management of software artefacts contains
significant importance in fine-tuning the software products.

1
I■
] Software artefact traceability, which is a key notion in the

software evolution, refers to the ability of building and tracking
the relationships among'artcfacts b'otli backward arid forward [3]
Traceability of different software artefacts can be among
homogeneous, or heterogeneous such as requirement to design
traceability and design to source code traceability, for example.
Requirement traceability shows the dependencies between
requirements and among the requirements and design/ code of a
software system. Thus, the artefact management is essential to
maintain adequate consistency in approaching towards a software
product. Hence, the notion of software artefact traceability
facilitates to overcome the inconsistencies in software artefacts

DcvOps concept motivates, towards the reduction of the gap
between development and operations teams' [9].' In a DevOps
environment, significant software artefact changes arc expected
rapidly. Thus, there is a requirement of determining and
analysing the resulted impact of the traceability to make accurate
change acceptance decisions in a DevOps environment [5].

2.2 Traceability Management
The major challenges in tracing software artefacts arc due to
different formats, abstraction levels and lack of defined data
format for artefacts [10]. Extracting relcvarit'data arid analyzing
the content of the artefact is one of the primary techniques
towards the traceability link generation. When text is used to
provide descriptive details of the informal semantics in artefacts,
the frequently involved pre-processing steps can be identified as
text normalization, identifier splitting and stop wordremovaL

Traceability provides a..logical ,connection b.elwiam..artefacts, of
the software development process. The cost of maintaining a
larger number of artefact relationships when a change occurs is
identified as a major reason for the limited use of traceability in
practice. Moreover, it is signified that the effort of maintaining
artefact relations is considerably high though the number of
artefacts is minimal. Hence, traceability maintenance, ensuring
the correctness of traceability over time is significant to address
[II]. Thus, proper identification of a feasible traceability
maintenance approach could reduce the total cost and effort in
the software development process.

The Rule-based approaches define rules based on the attributes of
the artefacts to generate traceability links between different
software artefacts. Then the traceability links maintenance is
performed by rc-evaluating the rules. Furthermore, the rule-based
approaches can be combined with event-driven approaches. Thus
the traceability maintenance can be conducted in two phases:
recognizing changes based on events, and re-evaluating the rules
that governing link updates [12].

: can

2.3 Change Detection and Impact Analysis
Since software change is the central norm of today's mainstream
SDLC, it is an utmost importance to cope with the changes
properly to reduce cost regardless of the used software
development model. A hypothesis-based change management
with a traceability timeline in a feature-oriented manner is
presented in [16], They have mapped important requirements as
features and a change is addressed in the feature level

Change impact analysis (CIA) in software development detects
the consequences of an artefact alteration on other parts of the
software .system.-Generally,impact, analysis. is conducted.before
or/and after a change implementation [17]. The benefits of
piloting impact analysis prior to a change are understandability,
change impact prediction and cost estimations. Therefore,
conducting impact analysis after an execution of a change can be
beneficial in tracing ripple effects, selecting test cases and
performing change propagation. :
Different impact analysis methods are available in the literature.
One such categorization is traccability-bascd and dependence-
based [17]. The traccability-bascd CIA is narrowed in recovering
the traceability links among software artefacts. Dcpcndencc-

ased CIA is defined as estimating the change effects of a
proposed change. Another categorization of CIA techniques is
static impact analysis and dynamic impact analysis. Static CIA
techniques consider all possible behaviors and inputs [IS]. Thus,
contains a cost of precision though safe. Moreover, static CIA
cciniqucs analyze the syntax and semantic dependencies ot a

program cot e and construct intermediate representations using
cal graphs and program dependency grapiis such as call grapHs-

'« (>uaimc CIA techniques overcome this drawback by
impacSarefdemified*^teT* “C"C':’**

I

j
■

i

more precise though less safe. !

78

33
? 4 Change Propagation

feedback mechanism involved after each build script execution

IcciiorfoT tc'srcascs7'erc~[l 7]rWhefT airaltcratfohd
essential to ensure that other related artefacts arc consistent as
well. Change propagation considers the required new changes for
other entities in the application to ensure the consistency within
the system after an entity has been changed. Change propagation
is mostly performed during the incremental changes.

An approach for change propagation in heterogeneous software
artefacts by combining multi-perspective modeling and impact
analysis is presented in [19], They have introduced a recursive
change propagation algorithm that restricts the change
propagations across dependency relation regardless of the type
and limit size of the impact sets to be computed. Another
technique is the use of a distance measure to control the
propagation of changes to indirectly related artefacts by either
terminating the change propagation or by prioritizing the impact
paths based on their depth [20]. Furthermore, there exist
probabilistic models, such as Markov Chains and Bayesian Belief
Networks that model change propagations based on mathematical
theorems [21] finis, contribute in computing the probability of
an entity being impacted by a change in an artefact.

2.5 Consistency Management
The changes and refinements that occur in artefacts are not
guaranteed to happen in a same speed and pace Therefore the
consequences of each artefact change or refinement may not
result in a uniform pattern. Some refinements may reflect and
impact on other artefacts immediately. Thus, the stability among
artefacts can become inconsistent and can fail in representing the
expected software system solution. Consequently, that can lead
to stakeholder dissatisfaction and system failure. Therefore,
consistency management is essential to minimize efforts in
software maintenance. Consistency management is the ability to
preserve the synchronization among software artefacts along with
the occurring changes [2]. Accordingly, an artefact alteration or
the presence of outdated artefacts should consistently reflect on
other affected artefacts before continuing in the software process.

A significant holistic artefact management framework that
considers traceability in heterogeneous artefacts and the notions
of change detection, change impact analysis and consistency
checking has discussed in [2]. They have used different
code impact analysis techniques to support software artefacts
such as requirements in natural language, UML class diagrams
and Java source code. The presented prototype has emphasized
any artefact inconsistencies with solution options. However, Ik
work is limited for non-distributed development environments.

.______ ______ ------------------ in* ,i.r.y,w«rin p.p*^
—failures—defying—ts—recommended best -pr-aetke—to-
-preswve-Cl.-MoreoverTthe ratiohal^bf-verskfivcbntrollihg-usihg

lhe scripts to control code rather than individual
key methodology' in tracing software artefacts.

Tree

commands is a

DevOps broadens the view of software engineering paradigm by
defining metrics that are understood
measurement methods and tools, bring
'everything to share

across teams, sharing
in automation, measure

among team members and by making
performance part of agile stories [23]. DevOps is an approach in
testing strategies that increases the organization throughput It
has been a powerful selection for better results and in speeding
up customer query processing due to the evolving tool support

Jenkins is a prominent DevOps tool that supervises regularly
executed jobs. It is an open source, rapid, continuous integration
server that generates a scenario where errors are being detected ai
an early stage in the SDLC. The basic functionality of Jenkins
server is to conduct a list of steps supported bv a triaeer [24]
Puppet is another configuration tool in DevOps. that deploys
micro-serv ices [25] There is a central configuration server that is
polled by clients for making changes to the configuration [26}
The configurations are described using a set of scripts defined in
a Domain Specific Language (DSL). Docker is another open
platform for building, shipping and executing distributed
software applications even on a virtual machine or a cloud
environment The existence of microservices has enriched by
tools including Docker. It has made the containers or the objects
that hold and transport data accessible for everyone easily [25J.
Thus, the powerful utilization of Docker has reduced the
deployment efforts in microservices. Travis [27] is a recognized
distributed continues integration service that supports building
and testing open source software projects. It encourages
workings by tightly coupling to DevOps practices. Further, it
performs automatic scheduled tests with GilHub repositories.

team

3. TRACEABILITY IN PRACTICE
3.1 Traceability Support Techniques
Figure I, illustrates a combination of existing techniques and
approaches in the domain of traceability management, change
detection, impact analysis, consistency management and
continuous integration. It emphasizes the lack of specific
techniques in traceability management in Cl rather than
theoretical principles such as DevOps, probabilistic practices.

source

ChaA(« MKThMMd

Impact

Tr*c««M0tV

MMMfMMnt

Macmaon

7jff*

2-6 Continuous Integration
Continues Integration (Cl) is the repetitive integration process ot
building and testing in a software process. It elaborates the
frequent merging of the sole components of an application into a
shared branch by preserving the healthiness of the code
S>act of Cl is significant in reducing the risks 1,1
development such as lack of deployable software, late disc D
of defects and lower project visibility [22].Here, 1
commits to the version control repositories are frcqucn > -
mto the Cl servers and applied build scripts to m .
^ee, The principal Single Source Pain, »««***£
having version control repositories such as
erforce and Visual SourceSafe that allows to

c°des from a single primary location [22].

v.

Vm
'*****.

. Traceability support techniquesFigure 1access all source
Also there is a

79

34
. Evaluation of Iraccabilily support techniquesTable 1

LimitationsAdvantagesMcthods/ tccliniqucs followedTecliniquc Functionalities Weakness in recognition of
structural changes. [3]

Idea! for artefacts such as
requirements, use eases and
object models, f 11]_______

Rules based on artefact attributes.
Traceability maintenance is based
on rule re-evaluation (11}______.

Rule-based Define rules in
traceability links
generation____ Weekly support for other '

types of artefacts.
Supports requirements and
source code artefacts. [3]Hypertext-

based
Support traceability
maintenance.

XML
Markup specifications. [28]

Scalability issues when
maintaining the dynamicily
of the traceability. [291

Ability to maintain dynamic
links. [29]

Publish-subscribe relationshipEvent-based Automate trace link
generation and
maintenance.

mechanism.
Event-based subscriptions. [29]
Set of constraints arc provided that
must not be violated by any
traceability link. [13]_________
Incremental transformation [12]
Graph- transformation based
methodologies. [14] ___________

Difficulty in referencing all
traceability links to
constraints. [13]______

Most artefacts types can be
viewed as constraints on one

Constraint-
based

Support traceability
maintenance

another. [13]
Not all software artefacts are
generated by model
transformations. [12]

Beneficial for model basedTrans formati
on-based

Support traceability
maintenance. software systems. [12]

Lack of scalability and tool
support. [29]

Maintain the quality by
assessing the impact of
functional changes upon non-
functional requirements. [29]

Soft goal Interdependency
Graph (SIG).
Traceability matrix. [29]

Goal-centric
(OCT)

Manage change
impact of non­
functional
requirements.

visualization of the traceability links. Correspondingly, the
DcvOps practices can be achieved in this framework.

A comparison of traceability management techniques is given in
Table I. The major limitations are being restricted for few types
of artefacts and insufficient tool support. Many techniques
addiesses only the requirements and design level software
artefacts. Thus, the artefacts in later phases ofSDLC such as test
reports and configuration files are not extensively addressed.

3.2 Challenges in Traceability Management
The current software industry is still reluctant in adapting the
traceability aspects in to the environments due to the above
identified limitations. The major challenge is in building an
automated tool for traceability support with a wide range of
customizability and scalability [29]. It is important to consider
most of the artefact types and development environments [12]
Also it is challenging to visualize traceability management in a
flexible way [30]. Many existing work lacks tangible direct
advantages of traceability'management in software development
Further, maintaining traceability links during continuous software
evolution is challenging, as it is an endless and error prone task.

•
AftcfaCtt

™W : Traceability
Establishment

&
Traceability Management j

Schedule
Continuous Integration__

Change : ;
1 Detection

i i
; Change ;
: Impact ! !

;
| . Consistency ' '
I '^Management

.•Jr---..--. 7
::v Visualization

Change
Propagation

, i— , .
:'j

4. PROPOSED FRAMEWORK
We propose a frame work: to'capture traceability management in
continuous integration environment with DevOps practices and
the high-level view is illustrated in Figure 2..The previous work of
this research [6] [7] [8], SAT-Analyzcr, is primarily involved in
this framework for extending with the proposed enhancements,
which are shown in dashed line. Yet, the existing components of
the SAT-Analyzcr, which are shown in filled colour arc still need
enhancements to cater new software artefacts and considerations.

a

Figure 2. High-level view of the SAT-Analyzcr extension

5. CONCLUSION
Traceability management in a continuous integration environment
is an important aspect in SDLC due to the risk of conflicts and the
growth of software maintenance cost. This paper explores
literature on traceability management, change detection, impact
analysis, change propagation, consistency management an
continuous integration. The main limitation in existing context is
ack of sufficient tools and techniques. The existing tools are

limited to certain types of software artefacts and development
environments depending on the used programming languages or
the design notations. Tims, the automation of traceability relations
generation has become unachievable completely. Moreover, U>e
support for traceability and continuous integration is important to
be available throughout the SDLC, which is not complete,
preserved in current practices. Thus, the necessity of a frame***
lor traceabUuy management and continuous integration to cow
a DLL with DevOps practices is identified. Further, this PaP

This framework mainly considers software artefacts in Cl
such as configuration files and test scripts. With the scheduler a
scheduling algorithm will be implemented to automatically trigger
the continuous integration along with traceability management by
providing automation in a DevOps environment. The Cl process
can be integrated with the DevOps tools such as Jenkins that
supports build automation, versioning, triggering and distributed
development [31]. Therefore, enables DevOps with rapid changes,
collaborations, constant monitoring, Cl and delivery. Thus, the Cl
component is compromised with change detection, change impact
analysis, change propagation through the dependent artefacts and
consistency management among the affected artefacts prior to ihe

process

80

?j !

proposed an extended framework for the existing SAT-Anal
jl5| Tang A. et al. 2007. A rationale-based architecture modelyzer

development-in—terms—ef-iraeieabifiiv-nwno^^J^
"^continuous integration.------------------------------- ~ -—

frvil—\w7TT

l^arer

[16] Passos, L et a!72013:FcatureT3nenied Soflware Evolution
Categories and Subject Descriptors In Proc. of the Int.
worksop on Variability Modelling of Software Intensive
Systems (VaMoS). ACM. (2013). 17 1-17:8.

6. ACKNOWLEDGMENTS
The author acknowledges the support received from the LK
Domain Registry in publishing this paper The conclusions and
recommendations in this paper arc those of the author and
necessarily reflect the views of the LK Domain Registry. [17] Li, B. et al. 2013. A survey of code-based change impact

analysis techniques. Software Testing Verification and
Reliability. 23. 8 (2013). 613-646.

may not

7. REFERENCES
[18] Sun, X. et al 2010. Change impact analysis based

taxonomy of change types. In Proc. of the Int. Computer
Software and Applications Conference (2010), 373-382.

[19] Lehnert, S. et al. 2013. Rule-Based Impact Analysis for
Heterogeneous Software Artifacts. In Proceedings of die
I7'h European Conference on Software Maintenance and
Reengineering (2013). 209-2 IS.

[201 Di Rocco, J. et al. 2013. Traceability Visualization in
Metamodel Change Impact Detection In Proceedings of die
2nd Workshop on Graphical Modeling Language
Development. (2013). ACM. NY. USA. 51-62.

[211 Lehnert. S. 2011. A review of software change impact
analysis. (2011).

[22] Duvall. P. et al. 2007. Continuous integration: improving
software quality and reducing risk. Addison-Wesley. 2007.
1-272.

[1] Rajlich, V. and Vaclav 2014. Software evolution and
maintenance. In Proceedings of the on Future of Sofi\
Engineering (FOSE 2014). ACM. New York, USA. (2014).
133-144

on a
rare

[2] Pete, 1 ct al. 2015 Handling the differential evolution of
software artefacts' A framework for consistency
management. In Proc.of the 2Td Int. Conf. on Software
Analysis. Evolution, and Reengineering. (2015), 599-600

[3] Cleland-Huang, J ct al. 2012. Software and systems
traceability. Springer.

[4] Kim, G. 2011. Top 11 Things You Need to Know About
DevOps. IT Revolution Press. (201 I).

[5] Perera, I. et al. 2016. Evaluating the impact of DevOps
practice in Sri Lankan software development organizations.
In Proceedings of the I6'1' Int.Conf.on Advances in ICT for
Emerging Regions, (2016), 281-287. [23] Cottesheim, W. et al. 2015. Challenges, benefits and best

practices of performance focused DevOps. In Proceedings
of the 4'h ACM/SPEC l/U. Workshop on Large-Scale
Testing^2015). ACM, NY, USA. 3-3.

[24] Mullaguru. S. 2015. Changing Scenario of Testing
Paradigms using DevOps-A Comparative Study with
Classical Models. Global Journal of Computer Science and.
15.2(2015).
Viktor, F. 2016. The DevOps 2.0 Toolkit: Automating the
Continuous Deployment Pipeline with Containerized
Microservices. 2nd ed. Victor Farcis. (2016). 397.
Schafer, A. cl al. 2011. Collaborative Administration in the

of Research Computing Systems. October. II,

[6] Wijesinghe, D.B. et al. 2014. Establishing traceability links
software artefacts. In Proceedings of the I4,h Int.among

Conf. on Advances in ICT for Emerging Regions. (2014).
55-62.

[7] Kamalabalan, K. et al. 2015. Tool Support for Traceability
of Software Artefacts. In Proceedings of the Moratuwa
Engineering Research Conference, (2015), 318-323.

[8] Arunlhavanathan, A. et al. 2016. Support for traceability
management of software artefacts using Natural Language
Processing. In Proceedings of the 2nd Int. Moratuwa
Engineering Research Conference, (2016), 18-23.

[9] Pfleegcr, P.C. et al. 2015. DevOps A Software
Perspective.

[10] AI-Ani, B. et al. Continuous coordination within the context
of cooperative and human aspects of software engineering,
In Proc.of the Int. workshop on Cooperative and human
aspects of software engineering, ACM, NY, (200S), 1-4.

[11] Mader, P. and Gotcl, O. 2012. Towards automated
traceability maintenance. Journal of Systems and Software.
85, 10(2012), 2205-2227.

[12] Mnro, S. cl al. Traceability Maintenance: Factors and
Guidelines. In Proceedings of the 3ISI IEEE/ACM hit. Conf
on Automated Software Engineering (ASE 2016). ACM.
USA, 1313- 1322.

[25]

[26]
Architect’s Context

(2011), 1-6.
[27] Travis Cl - Test and Deploy Your Code with Confidence:

https://travis-ci.org/. Accessed: 2017-07-05.
[2S] Alves-Foss, J. et al. 2002. Experiments in the use of XML to

enhance traceability between object-oriented design
specifications and source code. In Procof the Annual
Hawaii hit. Conf on System Sciences., (2002), 3959-3966.
Galvao, I. and Goknil, A. 2007. Survey of Traceability

in Model-Driven Engineering. In Proceedings
Distributed Object

[29]
Approaches
of the --
Computing Conference,

U* IEEE Int.Enterprise
(2007), 313-313.

Visual Dashboard for
Teams. In Proceedings of

Human hactors
al. FASTDash: A

in Software[30] Bichl, J.T. ct
Fostering Awareness
the 2010 ACM SIGCHI hit,Conference on
in Computing Systems, ACM, USA, 1313-1322.

[31] Berg, A.M. 2012. Jenkins Continuous Integration Cookbook.
I. PACKTpublishing, (2012), 344.

tic establishment and
ID] Fockcl, M. ct al. 2012. Scmi-automa

maintenance of valid traceability in automotive development
processes. In Proc. of the 2nd hit. Workshop on Software
Engineering for Embedded Systems, (2012), 37—13.

[D] Sclnvarz, H. ct al. 2010. Graph-based traceability: a
comprehensive approach. Software ct Systems Mot e mg.

4 (2010), 473-492.

81

A

https://travis-ci.org/

