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Abstract 

 Deployable structures play a vital role in a variety of applications such as aerospace 

structures, rapid development civil engineering projects, medical devices, 

reconfigurable robotics and many other engineering applications. Deployable thin-

walled booms make use of elastic strain energy during storage and are capable of self-

deploying to their fully deployed configuration which is an ideal candidate to 

overcome the bottleneck of limited launch vehicle capacity faced in space applications. 

In this research, an attempt has been made to characterise the mechanics of tape 

spring booms which are the simplest form among the coilable booms.  Numerical and 

analytical frameworks are established to investigate the large deformation analysis of 

deployable coilable tape springs during the flattening process, which is the initial 

process of coiling. Geometrically non-linear finite element models implemented in 

Abaqus/Standard are used to characterize the flattening mechanics of isotropic tape 

springs under compressive deformation. The effects of geometric and material 

properties on flattening behaviour are investigated through a numerical parametric 

study. A simple analytical model is developed to predict the stresses and forces during 

compression flattening, and a good correlation has been found with the numerical 

study.  

The tension stabilized coiling behaviour of longer tape booms is then investigated 

through analytical and numerical studies.  A useful analytical model is developed to 

determine the required minimum tension force to prevent instabilities such as 

blossoming instability and buckling instability. The influence of varying coiling radius 

due to the thickness of multiple turns is taken into account in the developed analytical 

framework. Also, the required minimum torque and power for tension stabilized 

coiling of tape spring are developed considering energy conservation where the effect 

of friction is also considered.  

Coiling of isotropic tape spring booms is simulated in commercially available 

finite element software Abaqus/Explicit. A good correlation has been found between 

the numerical and analytical results in terms of the required torque for coiling of 

longer tape-spring. Furthermore, a novel approach to predict the minimum required 
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tension force to prevent the instabilities is proposed. A numerical parametric study is 

conducted utilizing this technique in order to study the effect of the coiling ratio on the 

required tension force. In terms of the bending and tension-dominated regimes, the 

numerical findings exhibit good qualitative agreement with the established analytical 

model. Furthermore, a linear trend is observed in the numerical results for the loss of 

uniqueness region, which is helpful for the development of analytical models. 

 

Keywords: deployable structures, deployable coilable booms, tape springs, coiling 

mechanics, flattening mechanics 
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CHAPTER 1  

1. INTRODUCTION 

1.1 Overview 

Deployable structures eliminate the bottleneck associated with storage and 

transportation capacities in various engineering applications. The term deployment 

refers to the transformation process of a structure from a compact configuration to a 

significantly larger operational configuration.  

Solar sails [1], star shade [2], antennas [3], booms [4], [5]  and inflatable habitats 

[6] in aerospace applications, stents in medical applications [7], disaster relief housing 

[8], adaptive and climate responsive structures [9] in civil engineering are common 

examples where the concept of deployable structures have been used for easy storage 

and improved productivity. 

Mechanics of deployable structures are considered in three stages. The folding or 

compaction stage considers stowage methods and the large deformation associated 

with them. Reliability and deterministic deployment where required deployment 

forces, strain energy control etc. is the second stage. Finally, the post-deployment stage 

where structural behaviour after deployment is analysed critically for the intended 

operation. A deep analysis of these three stages is crucial for the success of mission to 

prevent any ad hoc deployment and potential damage.  

Deployable booms are a subclass of deployable structures and are a crucial part of 

structures used in space applications such as solar panels, solar sails and membrane 

antennas. Thanks to their superior properties like lightweight nature, high packaging 

efficiency, simple and reliable deployment behaviour and scalability. These thin shell 

structures make use of stored elastic strain energy through packaging to self-deploy 

with the requirement of a smaller number of components. 

Some notable examples of structures that have been already flown are Astro 

Aerospace’s Storable Extendible Tubular Member (STEM) [10], Mars Advanced 

Radar for Subsurface and Ionosphere Sounding (MARSIS) antenna on the Mars 
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Express spacecraft [4], Triangular Rollable and Collapsible (TRAC) booms act as 

deployment actuators in LightSail 1 and LightSail 2  which launched in 2015 and 2019 

respectively [1], [11]. 

 

1.2 Strain Energy Deployed Thin-walled Booms State of the Art 

Thin shell Structures based on the strain energy deployed concept have already been 

used in missions and a range of different organizations (NASA, DLR etc.)  have been 

exploiting this concept for future missions. Astro Aerospace’s Storable Extensible 

Tubular Member (STEM) is one of the oldest tubular deployable booms which has 

first flown in 1962. The STEM boom is coiled on a drum in the flattened state and 

returns back to its undeformed circular state on deployment via a motorized 

mechanism [10].  

Air force research laboratory has designed a self-contained linear meter-class 

deployable (SIMPLE) boom targeted for CubeSat (nano satellites) mission [12]. This 

boom was designed with a motor-less mechanism and was able to self-deploy by 

unique controlled strain energy release of bistable tape springs. The SIMPLE boom 

has deployed length of 1m and packed into volume of 72 cm3 (5.0 cm × 3.8 cm × 3.8 

cm), see Figure 1.1, where the deployment can be initiated by the release of a single 

burn wire.  

NanoSail –D, LightSail 1 and LightSail 2 are successfully flown in Space, where 

these booms act as deployment actuators (see Figure 1.2) [1], [11]. The collapsible and 

rollable feature of the booms allows it to be packed in a very compact manner. 

LightSail 2 is comprised of four 4 m elgiloy (non-magnetic, non-corrosive alloy) 

TRAC booms which are used as deployment actuator for solar sail system with 32 m2 

deployed area [1],  Figure 1.2.     
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(a) (b) (c) 

Figure 1.1: SIMPLE boom (a) stowed configuration (b) initial deployment (c) 

deployed configuration [12]. 

TRAC Booms 

5.6 m 

5.6 m 

(a) (b) 

Figure 1.2: LightSail 2 (a) in orbit (b) deployment system (courtesy: The Planetary 

Society). 
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MARSIS Antenna was launched in 2003 by the European Space Agency, designed 

to look for water on Mars and explore its atmosphere. The antenna is a tubular structure 

consisting of two dipole booms each 10 m long and 3.8 cm diameter and a monopole 

of 7 m long and 2.0 cm diameter which are made of S-Glass/Kevlar composite, Figure 

1.3 (a). These tubes were folded into an accordion manner with 1.5 m segments and 

several slotted hinges which act as elastic hinges as shown in Figure 1.3 (b).   

 

 

 

 

 

 

 

 

 

 

 

 

In 2019, NASA Langley Research Center designed a new kind of support beam 

known as Deployable composite boom (DCB) that is able to be rolled up for launch 

and unrolled in space, see Figure 1.4 (a). They are 75% lighter and stronger than the 

equivalent available thin-shell metallic booms used in the Apollo era. German 

Aerospace Center (DLR) is the collaboration partner of DCB where they are 

developing a unit to store these booms and boom deployer mechanism,  Figure 1.4 (b) 

and analyse the structural performance of the boom. Advanced Composites Solar Sail 

System Technology demonstration mission (ACS3) is a project to deploy a solar sail 

system (80 m2) using four 7 m Deployable Composite booms.   HYPERSail system is 

Monopole Boom 

Dipole Boom 1 

Dipole Boom 2 

(a) 

(b) 

(c) 

Figure 1.3: MARSIS antenna booms (a) in orbit (b) stowed (c) smooth deployment of 

second dipole boom (courtesy: Astro Aerospace). 
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six times the size of the ACS3 system (495 m2) which uses four 16.6 m Deployable 

Composite booms as shown in Figure 1.4 (c). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) (b) 

(c) 

Figure 1.4: NASA’s Deployable Composite Boom (DCB) system for HIPERSail  

(a) 16.6 m boom partially coiled on a 18 cm diameter spool (b) booms co-wrapped 

inside the DLR-developed deployment mechanism (c) booms deployment during 

ground testing  (courtesy: NASA). 
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NASA is still working on utilizing these DCB in some other future projects such 

as rollable straight ladders that could be used as ramps to overload equipment, straight 

trusses for lunar communication and targeting habitats for astronauts and hangers for 

the equipment where these booms serve as high stiffness beams for surface 

construction and curved structures to create dome structures.  

A deep understanding and quantification of three stages such as stowage, 

deployment and structural behaviour after deployment of these booms are crucial for 

the success of the mission to prevent complicated deployment and potential damages. 

These stages are interrelated with each other for example, the packaging method 

influences the deployment path [13]. Accordingly, several researchers have attempted 

to characterise the mechanics of these deployable booms. 

1.3   Alternative to Physical Testing 

Physical testing of these lightweight deployable booms is expensive and time-

consuming because it requires air drag-free environment, reduced gravity and reduced 

friction. There are two main approaches followed to replace the experimental testing. 

The first approach is to employ analytical models to study the behaviour of these 

thin shell structures. For example, Seffen & Pellegrino [14] developed simple beam 

models to characterise the deployment dynamics of tape spring booms which is either 

coiled around a spool or folded with one or more localized folds. However, this 

approach failed to capture extensive contact and discontinuities arise due to the 

significant change of geometry which are significant factors that affect the deployment 

of these deployable booms.  

The second approach involves characterising the mechanics of thin-shell 

deployable booms through numerical models in the virtual environment. Due to the 

rapid advancement of high-performance computers and the availability of robust 

algorithms to capture contact behaviour and the discontinuities involved, have led the 

virtual simulation as a feasible solution in comparison with pure analytical approaches.  
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1.4 Scope of the Study 

Strain-energy deployed thin-walled booms can be packed either by folding with 

localized folds similar to MARSIS antenna boom (see Figure 1.3) or by coiling where 

these deployable booms are in a coiled form (see Figure 1.4) and extended into a rod-

like structure mimicking the mechanism of the carpenter’s tape measure. The broad 

aim of this research is to investigate the mechanics of coilable deployable booms 

through numerical simulations and analytical studies. For this purpose, the tape spring 

boom was selected in this study due to its simplicity. 

In general, booms are first flattened either naturally due to their bi-stable behaviour 

[15], [16] or by force [17]–[20] prior to coiling. Flattening can also take place even 

during coiling where booms are flattened either by applying a sufficiently large tension 

force at the tip of the tape spring [13] or by constraining the tape spring with radial 

springs [21] to avoid the formation of localised folds. These curved thin shells are 

subjected to large deformations during the coiling process [20]. A deep understanding 

of flattening behaviour is important since the developed stress must be within tolerable 

limits for the structure to recover its original shape at the end of the unloading process 

(no reduction in stiffness in its deployed configuration). These booms can be flattened 

either by pulling at both ends or by compressing [20]. Compression flattening is 

preferred due to the geometry of the tape spring. Characterising the mechanics of tape 

spring during the flattening will help to predict the deformed cross-section at a specific 

load (compressive or tensile load), the required force to completely flatten these booms 

and the stiffness of radial springs used during the coiling and uncoiling process. On 

the other hand, developing simplified analytical and numerical frameworks will 

helpful to reduce computational cost, to predict the developed stresses and  the 

deformed cross-section at a specific load (compressive or tensile load), the required 

force to completely flatten these booms and the stiffness of radial springs used during 

coiling and uncoiling process.  

Futhermore, during the coiling process, these shells exhibit unexpected 

localization with the formation of a series of nested localized folds leading to complex 

and unreliable deployment. One of the possible solutions for this problem is applying 
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a sufficiently large tension force [13] and this tension force shows particular variations 

in three different regimes which are defined based on the ratio between the transverse 

radius of the tape spring and the radius of the cylinder. But the study by Wilson et al. 

[13] does not account for the coiling of longer tape spring, it only accounts for the 

length in the order of one coiled circumference which is a single coiling scenario. 

In real-scale satellites and space structures, these deployable booms are meters in 

length. The SIMPLE boom having a deployed length of 1m, use of 4 m deployable 

booms in LightSail 2 and 7m in the ACS3 project and 16.6m deployable composite 

booms used in HYPERSail system are few examples. When longer tape spring booms 

involve coiling, simplification of the coil to a circle with a constant radius of curvature, 

breaks down due to a significant difference in coiling radius between the innermost 

and the outermost layers as the number of turns in the coil increases. This varying 

coiling radius affects the required tension force during the coiling process. Hence, the 

effect of increasing coiling radius should be taken into account in developing analytical 

and numerical frameworks. 

1.5 Aim and Objectives  

Taking into account the research gaps mentioned in the previous section, the objectives 

of the research would be as follows; 

➢ Characterising the flattening mechanics of tape spring booms through simple 

numerical and analytical frameworks 

➢ Investigate the effects of geometric and material properties on flattening behaviour 

through a numerical parametric study 

➢ Characterising the coiling mechanics of longer tape spring booms 

➢ Developing a simplified numerical approach to predict the required minimum 

tension force   

1.6 Methodology  

Overall outline of the methodology is shown in Figure 1.5. First, the flattening 

behaviour of tape springs will be investigated by means of numerical simulations and 

simplified analytical models. By idealizing behaviour to a plain strain condition, 2D 

finite element models will be constructed in Abaqus/Standard finite element package. 
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A numerical parametric study will be conducted to investigate the effects of the 

geometric and material properties of isotropic tape springs on flattening behaviour. 

Next, the tension stabilized coiling of longer tape spring booms will be investigated 

through analytical and numerical studies. A detailed analytical framework will be 

developed by considering the effect of varying coiling radius due to the thickness of 

multiple turns, friction and pressure between each layer. Developed analytical 

framework will be then extended to bistable composite tape spring booms. The coiling 

behaviour of tape spring booms of length in the order of one coiled circumference will 

be simulated in commercially available finite package Abaqus/Explicit to determine 

the simulation parameters through various sensitivity studies in order to obtain 

accurate results and the fastest possible simulation speed. Parameters determined from 

the sensitive study will be utilized for coiling of a long tape spring with length in the 

order of meters. Also, a new wrapping simulation approach will be developed to 

predict the required minimum tension force which will be helpful for conducting the 

numerical parametric study for different coiling ratios.   

 

 

Figure 1.5: Overview of the methodology 
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1.7 Outline of Chapters 

This thesis comprises six chapters. Following the present introductory chapter, 

CHAPTER 2 begins with a brief review of strain-energy deployed thin-walled booms 

and past studies on characterising coiling and flattening mechanics through analytical, 

and numerical studies. Problems associated with coiling and uncoiling mechanics and 

existing solutions are reviewed in detail.  

CHAPTER 3 focuses on characterising the flattening mechanics of tape spring 

booms. This chapter establishes numerical and analytical frameworks to investigate 

the large deformation analysis of deployable coilable tape springs. Geometrically non-

linear finite element models implemented in Abaqus/Standard are used to characterize 

the flattening mechanics of isotropic tape springs under compressive deformation. The 

effects of geometric and material properties on flattening behaviour are investigated 

through a numerical parametric study.   

CHAPTER 4 presents a detailed analytical framework to determine the required 

minimum tension force during coiling of longer tape spring booms, by accounting the 

effect of varying coiling radius.  First, mathematical models for isotropic tape spring 

booms are developed, and then those models are extended for bi-stable composite tape 

spring booms. Moreover, mathematical model for the required torque for the tension 

stabilized coiling of tape spring booms is presented.     

In CHAPTER 5,  the coiling of tape spring booms is numerically simulated.  

Simulation techniques developed in Abaqus/Explicit to yield quasi-static solution are 

described. Initially coiling of tape spring of length in the order of one coiled 

circumference is simulated and verified with existing studies. The sensitivity of 

simulation to various numerical parameters is investigated for coiling simulation.  The 

study is then further extended to longer tape spring boom. Furthermore, a different 

approach than the method proposed by Wilson et al. [13] to find the minimum required 

tension force is presented in this section. 

CHAPTER 6 presents the summary and conclusion of the research. Finally, some 

suggestions for future works are presented. 
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CHAPTER 2  

2. LITERATURE REVIEW 

This chapter presents an overview of the literature on thin-walled deployable booms 

and underlying mechanics during packaging, especially their flattening and coiling 

mechanics. The chapter begins with a background of various thin-walled deployable 

booms and moves towards underlying mechanics of tape spring booms. The concept 

of bistable composite tape spring booms is then briefly discussed. Next a review of 

flattening mechanics of deployable coilable booms is presented. The following two 

sections provide an overview of coiling mechanics of these deployable booms through 

analytical, numerical and experimental studies done by past researchers. This includes 

problems associated with the coiling mechanics, how researchers have tackled them 

through analytical, numerical and experimental studies and the limitations in the 

developed models. Techniques for minimizing the computational effort of numerical 

simulation in a virtual environment are provided in the final section.    

2.1 Strain Energy Deployed Thin-walled Coilable Booms 

Strain energy deployable booms which make use of elastic strain energy during folding 

and self-deploy by releasing the stored energy. Coilable, deployable booms are a 

subclass of strain-energy deployed booms where they are first flattened and tightly 

wrapped around a centralized hub. This enables a very efficient packaging strategy for 

aerospace applications based on space. There are four main classes of deployable 

booms such as Storable Tubular Extendible Membrane (STEM) booms, Tape spring 

booms, Triangular Rollable and Collapsible (TRAC) booms and Collapsible Tubular 

Mast (CTM) booms,  Figure 2.1. 

Tape spring booms are the simplest and most common form among the deployable 

booms. They are straight, thin-walled and have a curved cross-section (see Figure 2.1 

(a)), recall carpenter’s tape. Due to their simplicity, these booms are often used in 

CubeSat missions [12], [22]. However, the torsional stiffness of deployed tape springs 



12 

 

is low and they often have different stiffnesses depending on the bending direction 

[23].  

STEM architecture, created in Canada in the 1960s, is a slight modification of a 

tape spring [24]. The key difference is that the cross-sectional arc length of the 

cylindrical body is greater than 2π radians, Figure 2.1 (d). Because of the open cross 

section, the torsional stiffness is still low despite the increased arclength's effect on 

axial and bending stiffness [23]. BI-STEM concept (Figure 2.1 (e)) is an additional 

modification to STEM to the stiffness where two STEM booms are overlapped during 

deployment [25]. Then interlocking BI-STEM (Figure 2.1 (f)) has been developed to 

increase the torsional stiffness of BI-STEM.       

CTM booms were developed by the National Aeronautics and Space 

Administration (NASA) in 1965, which are initially designed to use as bendable pipes 

for reactor fluids [26]. These booms have a closed cross-section which is formed by 

bonding two omega-shaped half-shells together such that one half-shell combined with 

another in an upside-down position [5], Figure 2.1 (c). Beginning in 1998, the German 

Aerospace Center (DLR) developed carbon fibre reinforced polymer (CFRP) CTMs 

of different scales for several deployment mechanism concepts. 

TRAC booms are formed by attaching two tape springs along the common edge 

(see Figure 2.1 (b)) which are originally developed at the Air force research laboratory. 

An advantage over the tape spring is equivalent bending stiffness in both directions 

can be achieved by changing design parameters [27]. TRAC booms may be flattened 

and wrapped more easily than CTMs because of their open cross-section [28].       

In addition to isotropic materials like steel or copper-beryllium [29], deployable 

coilable booms can also be made from composite materials like carbon and glass fibre 

[5], [12], [30]–[33]. In the recent years, these booms are fabricated using composite 

materials such as carbon and glass fibres because of design flexibility and high specific 

properties [34]. 
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2.2 Mechanics of Tape spring Booms 

Numerous studies have been conducted to study the bending mechanics of isotropic 

tape springs. Seffen & Pellegrino [14] have characterized the bending behaviour of 

tape spring through moment rotation relationship where it shows a highly nonlinear 

behaviour, Figure 2.2. Here positive and negative moments correspond to opposite 

(longitudinal and transverse curvatures are opposite sense) and equal sense bending 

(longitudinal and transverse curvatures are equal sense) respectively, Figure 2.3. 

Hence these moments induce tensile and compressive stresses respectively along the 

edges of the tape spring.      

(a) (b) (c) 

(d) (e) (f) 

Figure 2.1: Different classes of Deployable booms (a) Tape spring (b) TRAC (c) 

CTM (developed by DLR [5]) (d) STEM (e) BI-STEM (f) Interlocking BI-STEM. 
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As seen in Figure 2.2, the origin (O) is represented by initial configuration. During 

the application of positive moment, tape spring shows a linear behaviour (from O to 

A) as the cross-section begins to flatten. Once it is flattened, tape suddenly snaps (from 

A to B) where moment decreases quickly since the deformation localized into that 

transversely flattened, longitudinally curved region. From B to C moment remains 

approximately constant with the increase in the arc length of the localised fold. Upon 

unfolding process, moment remains in the steady path (from C to D), then snaps to 

point E and finally returns back to O by following same path of folding process. There 

is a reduction in moment (between B and D) during the unfolding process when 

compared with the folding process.      

 

 

Figure 2.2: Moment-rotation relationship for a general tape spring [14]. 
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In case of equal sense bending, linear behaviour ends much sooner with sudden 

bifurcation at F due to flexural torsional deformation. Moment gradually decreases up 

to point G with the increase in torsional fold amplitude and finally it remains at steady 

state. Here, unfolding follows same path of folding. 

 

 

 

 

 

 

 

 

 

 

 

Ye et al. [35] performed numerical parametric study where the effects of subtended 

angle of section, total tape spring length, thickness and cross section radius of the tape 

spring on the symmetric bending performance of tape spring are investigated. It has 

been found that, the driving capability of the tape spring has significantly improved 

due to its thickness and subtended angle, however its length and cross section radius 

may have diminished it. Additionally, the response surface methodology (RSM) and 

parameter's effective analysis are used to develop the optimum design of tape spring 

structure design, which targets maximum strain energy during the deployment of the 

tape spring hinge and subjects to the permissible stress of the tape spring.  

Figure 2.3: Tape spring subject to end moments (a) Undeformed (b) opposite-sense 

bending with the positive bending moment (c) equal-sense bending under negative 

bending moment [14]. 

(a) 

(b) 

(c) 
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The characteristics of three-dimensional tape spring folds, in which the fold's 

central line does not always remain perpendicular to the lengthwise direction (see 

Figure 2.4), have been experimentally studied by Walker & Aglietti [36]. The effect 

of twist angle on peak and steady state moments, skew angle on peak and steady-state 

hinge moments and bending angle on the torsional moment are investigated. The 

conclusions obtained from the study are: 

1. As the twist angle increases, positive peak moment increases while negative 

peak moment decreases.   

2. Both positive and negative peak hinge moment decrease with increasing skew 

angle. 

3. As the bend angle increased negative torsional moment increases while 

positive torsional moment decreases. 

 

 

 

 

 

 

 

 

 

 

 

 

Later, the curvature characteristics of tape springs folded in two and three 

dimensions have been investigated by Walker & Aglietti [37] where photographic 

method has been employed to analyse the curvature. It is found that three-dimensional 

(a) (b) 

(c) 

Figure 2.4: Fold line correspond to (a) 2D fold (b) 3D fold (c) example of 3D tape 

spring fold [36]. 
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tape spring folds exhibit a variation in curvature, but this variation has a minor impact 

compared to the tape thickness tolerance. Hence, constant curvature models are precise 

enough for most tape fold applications. 

It should be noted when the strips are bent, a tight localized fold with a distinctive 

radius result, which is connected to straight regions by doubly curved transition, or 

ploy region, Figure 2.5. Seffen et al. [38] have predicted the axial extent of the ploy 

regions (𝐿𝑝) for folded orthotropic tape-springs through classical long-wave solution 

in the theory of deformed shells, which is expressed as: 

𝐿𝑝 = 
1

√70
   
1 

𝛽1 4⁄
   

𝑏2

𝑅1 2⁄  ℎ1 2⁄
                                         (2.1) 

where, 𝛽 is the ratio of orthogonal Young’s moduli (𝐸𝑦 𝐸𝑥⁄ , where 𝑥 and 𝑦 correspond 

to length wise and transverse direction respectively.), 𝛽 = 1 for isotropic tape spring 

and 𝑏, 𝑅 and ℎ denote arc width, transverse radius and thickness of the tape spring. 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

Flatten Transition Undeformed 

Figure 2.5: Geometry of the tape spring during large deformation. 
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2.3 Bistable Composite Tape spring Booms 

Bi-stability structure has two stable configurations which means two local minimums 

in stored strain energy. Usually strain energy of one configuration is lower than the 

other [39]. It can be transformed from less stable state to more stable state by the 

application of mechanical loading or activation energy where stored strain energy will 

be released into kinetic energy. On the other hand, mechanical loading is again 

necessary to add strain energy to change from a more stable state to a less stable state.  

In case of cylindrical shell structures, bistable behaviour originates from the fact 

that the transformation of a surface from zero gaussian curvature (product of the two 

principal curvatures) to another surface with zero gaussian curvature [39]. This 

transformation requires only bending energy. Bistable composite booms are stable in 

both coiled and deployed configuration which allow lighter and less complicated hold-

down mechanism used to constrain booms in their coiled form [22], [40]–[42]. Figure 

2.6 shows the transformation of bistable composite tape spring boom from more stable 

configuration to less stable configuration with the help of applied bending moments 

𝑀 (activation energy).   

 

 

 

 

 

 

 

 

 

 

 

More stable configuration        

(stress and strain free) 

Less stable 

configuration with 

natural radius 𝑟𝑠 

Figure 2.6: Transition from more stable (straight) configuration to less stable (coiled) 

configuration of a bi-stable composite tape spring [22]. 
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The strain energy variation of bistable and non bistable tape spring booms with the 

application of moments is shown in Figure 2.7 [22], [43]. It should be noted that after 

a certain moment (point A) tape spring flattened and become coiled state. Once the 

applied moment is released, non bistable tape spring deployed back to its initial 

configuration, but bistable tape spring remained in its coiled form with certain amount 

of strain energy.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This bistable behaviour can be achieved by choosing appropriate ply arrangements 

and lamina layups with fibre composites. Researchers have developed analytical 

models to characterise the mechanics of bistable composite booms [15], [16], [39], 

[44], [45]. 

Using the Classical laminate theory (CLT), the constitutive relationship for a 

homogenized thin plate, is written in terms of stress and strain resultants as follows. 

Figure 2.7: Classical strain energy plots for bistable and non bistable tape spring 

booms [22], [43]. 
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             (2.2)  

 

which can be expressed in a brief form 

{
𝑁
⋯
𝑀
} =  [

𝐴 𝐵
𝐵 𝐷

] {
𝜀0

⋯
𝜅

}                                             (2.3) 

 

where 𝑁 and 𝑀 denote force and moment resultants and 𝜀0  and 𝜅 denote mid plane 

strain and curvature. The stiffness matrix relating the stress and strain resultants is 

known as ABD matrix [16]. The submatrices 𝐴  , 𝐷  and 𝐵  represent extensional, 

bending and coupling stiffness matrices respectively.  

When the laminate layup configuration is symmetric, ABD matrix can be 

represented as: 

[
𝐴 𝐵
𝐵 𝐷

] =  

[
 
 
 
 
 
𝐴11 𝐴12 0
𝐴21 𝐴22 0
0 0 𝐴66

0   0    0   
0   0 0
0   0 0

0   0    0   
0   0 0
0   0 0

𝐷11 𝐷12 𝐷16
𝐷21 𝐷22 𝐷26
𝐷61 𝐷62 𝐷66]

 
 
 
 
 

                         (2.4) 

 

where 𝐵  matrix is zero which means there is no coupling between stretching and 

bending. But bending and twisting are coupled because 𝐷16 and 𝐷26 are typically not 

zero. This coupling behaviour will result the rollup configuration being twisted like a 

helix [16], [39], [45] (see Figure 2.8 (b)). Therefore, coupling between bending and 

twisting has to be eliminated to achieve perfect rollup configuration.     
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This bend-twist coupling can be eliminated by antisymmetric laminate layup, the 

ABD stiffness matric of antisymmetric laminate is 

[
𝐴 𝐵
𝐵 𝐷

] =  

[
 
 
 
 
 
𝐴11 𝐴12 0
𝐴21 𝐴22 0
0 0 𝐴66

0 0 𝐵61
0 0 𝐵62
𝐵16 𝐵26 0

0 0 𝐵61
0 0 𝐵62
𝐵16 𝐵26 0

𝐷11 𝐷12 0
𝐷21 𝐷22 0
0 0 𝐷66]

 
 
 
 
 

                            (2.5) 

 

Here, stretching and bending are now coupled (𝐵 ≠ 0). However, this coupling has 

only a weak effect [16], [45] which means it is not critical for bistable behaviour. 

Figure 2.8 (a) shows the perfectly rolled up configuration of antisymmetric laminate 

layup where longitudinal and transverse direction are in the principal directions of 

curvature on the rolled-up configuration. Also,  𝐷66  can be ignored since twisting has 

a small effect on the bending behaviour [16], [46]. Hence, bending behaviour can be 

reduced to: 

[
𝑀𝑥

𝑀𝑦
] =  [

𝐷11 𝐷12
𝐷12 𝐷22

] [
𝜅𝑥
𝜅𝑦
]                                       (2.6) 

  

 

 

 

 

 

 

 

 

 

 

 

(a) (b) 

Figure 2.8: Rolled up configurations of (a) antisymmetric laminate lay up (b) 

symmetric laminate layup (Link). 

http://www-civ.eng.cam.ac.uk/dsl/research/ki206/bistable.html
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2.3.1  Strain energy 

Strain energy models during loading is helpful to characterise the mechanics of 

bistable composite shells.  Iqbal & Pellegrino [39] derived analytical models for the 

total strain energy per unit length of the shell (𝑈) which is the sum of bending energy 

per unit length (𝑈𝑏) and stretching energy per unit length (𝑈𝑠) are expressed as follows. 

𝑈 =  𝑈𝑏 + 𝑈𝑠                                                          (2.7) 

𝑈𝑏 = 
𝑏

2
[𝜅𝑥 𝜅𝑦 𝜅𝑥𝑦]𝐷 [

𝜅𝑥
𝜅𝑦
𝜅𝑥𝑦

] =  
𝑏

2
(𝐷11Δ𝜅𝑥

2 + 2𝐷12Δ𝜅𝑥Δ𝜅𝑦 + 𝐷22Δ𝜅𝑦
2 )   (2.8)  

 

𝑈𝑏 = 
𝑏

2
(𝐷11𝜅𝑥

2 + 2𝐷12𝜅𝑥 (𝜅𝑦 −
1

𝑅
) + 𝐷22 (𝜅𝑦 −

1

𝑅
)
2

 )              (2.9)  

 

𝑈𝑠 = 
𝑏

2
[𝜀𝑥 𝜀𝑦 𝜀𝑥𝑦]𝐴 [

𝜀𝑥
𝜀𝑦
𝜀𝑥𝑦
] =  

𝑏

2
𝐴11𝜀𝑥

2                         (2.10) 

 

𝑈𝑠 =
𝐴11
2
(
𝑏

2

𝜅𝑥
2

𝜅𝑦2
+
𝑠𝑖𝑛(𝑏𝜅𝑦)

2

𝜅𝑥
2

𝜅𝑦
3 −

4𝑠𝑖𝑛2(𝑏𝜅𝑦/2)

𝑏

𝜅𝑥
2

𝜅𝑦4
)                 (2.11) 

where; 𝑏 =  𝛼𝑅  (arc length along the cross-section, see Figure 2.9) and 𝜅  and Δ𝜅 

correspond to curvature and curvature change respectively.  

 

 

 

 

 

 

 
Figure 2.9: Uniform bending of a cylindrical shell (a) original configuration (b) change 

of transverse curvature (c) change of longitudinal curvature [39]. 

(a) (b) (c) 
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Iqbal & Pellegrino [39] drawn contour plots of total strain energy as the function 

of curvatures (𝜅𝑥  and 𝜅𝑦 ) for a 5-ply antisymmetric laminate [+45/-45/0/+45/-45] 

made of polypropylene or glass unidirectional lamina (see Figure 2.10). It should be 

noted that the absolute minimum (𝑈  = 0) at 𝜅𝑥 = 0 and 𝜅𝑦 = 1 𝑅⁄  = 0.04 mm-1 

correspond to undeformed configuration and there is a local minimum (𝑈 ≠0) at 𝜅𝑥= 

1/36 mm-1 and 𝜅𝑦 ≈ 0 correspond to the coiled configuration. 

 

The longitudinal curvature at secondary stable state (coiled form) - 𝜅𝑥𝑠 is given 

by the following equation [12], [47], [48].  

𝜅𝑥𝑠 = 
1

𝑅

𝐷12
𝐷11

                                                          (2.12) 

Jeon & Murphey [12] derived bending strain energy per unit length at the 

secondary stable state – 𝑈𝑏𝑠  by substituting 𝜅𝑥𝑠 and 𝜅𝑦= 0 to Equation 2.9, resulting 

in following Equation.  

Figure 2.10: Total strain energy contour plot for a bistable composite cylindrical 

shell with 𝑅 = 25 mm and 𝛼 = 1600 [16], [39]. 
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𝑈𝑏𝑠 = 
𝛽

2𝑅
(𝐷22 −

𝐷12
2

𝐷11
)                                                 (2.13) 

 

2.3.2 Woven composite model and material modelling techniques  

Thin woven composites have been widely used for space structures because of their 

symmetrical and balanced properties, as well as the integrated nature of these fabrics, 

which makes manufacturing and fitting to complex curves easier [16]. However, it is 

complex and computationally expensive to model the internal structure of woven 

composites. The challenge of obtaining thin composite in-plane and out-of-plane 

mechanical properties further complicates modelling thin FRP (Fibre Reinforced 

Polymer). It is usually not possible to accurately extract single ply properties from the 

standards that are typically used to create FRP datasheets since they are designed to be 

utilised in multi-ply laminates.  There are numerous ways to resolve or lessen the 

aforementioned issues; the most common ones are: 

1. Generate a representative volume element (RVE) of the woven composite 

using, for instance, TexGen 17 and Abaqus, and then predict the homogenized 

elastic mechanical characteristics and plug them into the Abaqus material 

model [49]. 

2. Utilize the homogenization procedure in a composite unit cell (by 

approximating the internal structure with beam elements and multipoint 

constraints) to extract the composite's ABD matrix coefficients and assign the 

elastic properties to the material model in Abaqus [50]. 

3. Idealizing the woven structure as a collection of unidirectional FRP plies and 

isotropic layers and adjust the ply thicknesses and positions across the laminate 

thickness to correspond with the actual material properties [16].  
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2.4 Flattening Mechanics of Deployable Coilable Booms 

Flattening is the initial process of coiling where these curved thin shells are subjected 

to large deformations [20]. These booms can be flattened either by pulling at both ends 

or by compressing [20]. Chu & Lei [19] conducted mechanical analysis to investigate 

the characteristics such as flattening and wrapping behaviour of the deployable booms. 

The stresses developed and strain energy during the flattening and wrapping process 

are predicted through an analytical study. In order to minimize the maximum stress in 

the boom, the diameter of the storage reel and the dimensions of the boom cross-

section are optimized. Finally, FEM is used to analyse the mechanical characteristics 

of the deployable boom to evaluate the effectiveness of the design, which are in good 

accord with theoretical prediction. 

Yu Hu et al. [51] investigated compressive and tensile flattening processes of 

composite thin-walled lenticular tube (CTLT), see Figure 2.11. Two types of three-

dimensional finite element models of the compressive and tensile flattening processes 

of CTLTs, respectively, were numerically simulated using Abaqus software. Then 

mechanical properties and geometric nonlinearity characteristics of CTLTs in the 

flattening process are obtained through experimental study, where stresses and strains 

of each ply of the composite materials as well as the force-displacement curves of the 

CTLT specimens during the flattening process were measured during the testing. 

Simplified theoretical models also developed where the flattening process of CTLTs 

was simplified into unidirectional elastic bending deformation of composite thin-

walled lay-up, ignoring the effects of coupling force and transverse deformation. 

According to their study, the compressive flattening of the CTLTs results in a 

significantly lower stress and more uniform distribution than the tensile flattening, 

showing that the compressive flattening method is preferable for designing an actuated 

mechanism.  

 

 

Figure 2.11: Thin-walled lenticular tube [5]. 
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Bai et al. [20] examined the flattening behaviour large folding deformation 

behaviour during tensile and compressive flattening of a thin-walled deployable 

composite boom (DCB) made of high strain carbon fibre-reinforced plastics 

fabricated using co-bonding and vacuum-bag technologies. Geometrically non-linear 

finite element models are implemented in Abaqus/ Standard and Abaqus/ Explicit and 

simplified analytical models developed to characterise the flattening behaviour of the 

DCB, and the results show a good correlation with the experimental results. It was 

found that the DCB may deform and recover elastically, and that the load-displacement 

curves of the DCB exhibit nonlinear characteristics in both tension and compression 

deformations, see Figure 2.12 and Figure 2.13 respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

(b) 

(c) 

Figure 2.12: Deformation of the DCB under tension flattening (a) snapshots from 

experimental study (b) snapshots from numerical study (c) variation of tensile force 

and displacement [20]. 
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Wang et al. [52] have developed a simplified analytical model for the purpose of 

predicting the neutral cross-section position of a lenticular deployable composite boom 

during tensile deformation. The three-dimensional lenticular DCB is approximated as 

two-dimensional spring system and a rigid rod which are distributed parallel along the 

longitudinal direction of the boom (see Figure 2.14). By resolving the balancing 

equations and geometric relationships, the neutral cross-section is located. The 

theoretical model predicts that the neutral cross-section will be at the location 2/3 of 

the normalized axial length. Theoretical model results are validated using numerical 

(a) 

(b) 

(c) 

Figure 2.13: Deformation of the DCB under compression flattening (a) snapshots 

from experimental study (b) snapshots from numerical study (c) variation of 

compressive force and displacement [20]. 
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simulation and a good correlation between analytical model and numerical simulation 

has been achieved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

(a) 

(b) 

Initial state Tensile state Forces on the rod 

Figure 2.14: (a)Tensile flattening deformation of a lenticular DCB (b) simplified 

model with rods and springs [52]. 
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2.5 Problems Associated with Coiling and Uncoiling Mechanics and 

Existing Solutions 

A deep understanding of coiling and uncoiling behaviour of thin shells is crucial for 

the mission’s success otherwise it will lead to complex deployment and potential 

damage. This section discusses some of the problems associated with coiling and 

uncoiling behaviour and the solutions proposed by the past researchers through 

analytical, experimental and numerical studies.  

During the coiling process these thin shells exhibit instabilities such as buckling 

instability where   unexpected localization by forming series of nested localized folds 

[13] (see Figure 2.15 (b)) and blossoming instability where boom does not conform 

with the hub, but uniformly increases its coiling radius [21] (see Figure 2.15 (c)). 

 

 

 

 

 

 

 

 

This localization effect has a significant influence on its subsequent stowage and 

uncoiling process which will cause complex deployment and potential damage. 

Possible solutions to avoid these effects are as follow: 

1. Constraining the coiled configuration using radial springs [21], [44], [53], 

Figure 2.16 (a). However, this approach still allows buckling instability.  

2. Tension stabilized coiling  [13] which applies sufficiently large tension force 

at the tip of the tape spring during the coiling process, Figure 2.16 (b).  

 

(a) (b) (c) 

Figure 2.15: (a) Tightly coiled tape spring boom around the hub (b) buckling 

instability [13] (c) blossoming instability [21]. 
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3. Co-coil a thin membrane with the deployable structure and apply tension to the 

membrane using a second spool, Figure 2.16 (c). In this case, the tensioned 

membrane applies a distributed pressure on the structure, conforming it to the 

hub. 

4. By using bistable composite tape spring as it is stable in both deployed and 

coiled states [12], [39], [45].  

5. Choosing the spool radius which matches with the natural radius of the tape 

spring since the tape spring is stable (stored strain energy is at minimum) when 

radius of curvature of longitudinal fold equal to the natural transverse radius of 

tape spring [54].  

 

 

 

 

 

 

 

 

 

4th and 5th approaches only applicable when there is smaller number of turns in the 

coiled configuration so we can simplify the situation as circular (variation in radius is 

negligible). But this simplification breaks when there are larger number of turns 

(longer tape spring booms) because there is a significant variation between inner and 

outer coil radii. Jeon & Murphey [12] have observed this localization effects for 

bistable composite tape spring boom when there is significant difference between 

spool radius and the secondary stable state radius (𝑟𝑠).  

With regards to tension stabilized coiling, a key question is what magnitude of 

tension force is required to prevent the formation of localized folds. For this purpose, 

Wilson et al. [13] derived minimum required tension force for opposite sense coiling 

of isotropic tape spring booms through analytical, experimental and numerical studies, 

(a) (b) (c) 

Figure 2.16: Instabilities can be eliminated by (a) radial stabilisation (b) tension 

stabilisation (c) pressure stabilisation (Link). 

http://www.pellegrino.caltech.edu/packaging-and-deployment-of-solar-arrays-and-antennas
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especially for shorter tape spring booms (length in the order of one coiled 

circumference of the hub). With regards to analytical model developed, the minimum 

required force shows particular variations in three different regimes depending on the 

coiling ratio (ratio between natural transverse radius of tape spring (𝑅) and radius of 

hub (𝑟𝑐)). Figure 2.17 illustrates the variation of tension force in three different regimes 

which are characterised as follows. 

 

 

 

 

 

 

 

 

 

 

 

 

I. Bending dominated region 

When coiling ratio (𝑟𝑐 𝑅⁄ ) ≤ 1, longitudinal bending was the predominant mode of 

deformation during the coiling. Therefore, bending strain energy is used to formulate 

the required tension force. The required minimum tension force shows a quadratic 

decrease as coiling ratio approaches 1,  Figure 2.17. The variation of tension force (𝑇) 

with coiling ratio (𝑟𝑐 𝑅⁄ )  can be expressed as follows: 

𝑇 =  
𝐷𝛼

2𝑅
(

1

(
𝑟𝑐
𝑅)

2 − 1)                                                  (2.14) 

Figure 2.17: Three regimes of opposite sense coiling of a tape spring 

with 𝑅 = 19.2 mm, 𝛼 = π/2 and 𝐷 = 0.0192 Nm [13]. 
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where, 𝐷 = 𝐸ℎ3/(12(1 − 𝜈2)) is the bending stiffness of the shell (𝐸 and 𝜈 denote 

elastic modulus and Poisson's ratio of the tape spring, respectively) and 𝛼 and ℎ are 

subtended angle and thickness of the tape spring cross section respectively, Figure 2.2 

(a). 

II. Loss of uniqueness region 

When 𝑟𝑐 > 𝑅 , equation yields to compressive force which may lead to unstable 

uniformly coiled configuration. Therefore, Wilson et al. [13] analysed the strain energy 

of different form of configurations such as single localized fold, two localized folds 

and with uniform radius 𝑟𝑐, Figure 2.18.  

 

 

 

 

 

 

 

 

 

According to the strain energy variation (𝜃 =  𝜋 2⁄ ) in Figure 2.19, uniform radius 

(𝑟𝑐) configuration has higher strain energy than the other two configurations beyond  

(𝑟𝑐 𝑅⁄ ) > 1. Single localized fold configuration is more stable than two localized fold 

configuration up to the coiling ratio, (𝑟𝑐 𝑅⁄ ) = 3.424 and beyond this point two-fold 

configuration become stable than the single fold configuration. Hence (𝑟𝑐 𝑅⁄ ) = 3.424 

is the limit of single fold configuration which is termed as loss of uniqueness region 

(a) (b) (c) 

Figure 2.18: Schematic of different equilibrium configurations of shorter length 

tape spring coiled around a hub of radius 𝑟𝑐 > 𝑅  (a) uniform radius configuration 

(b) single fold configuration with fold radius 𝑅 (c) two-fold configuration with fold 

radius 𝑅 [13]. 



33 

 

or transition region where tape spring undergoes longitudinal bending and transverse 

flattening during the tension stabilized coiling.  

 

 

 

 

 

 

 

III. Tension dominated region 

When (𝑟𝑐 𝑅⁄ ) > 3.424, uniform coiling can be attained by transverse flattening of the 

tape spring because of the formation of localized folds. Therefore, tape spring flattened 

and deform under the action of transverse pressure where axial tension together with 

longitudinal curvature causes the pressure against the cylinder [13]. Wilson et al. [13] 

idealized the flattening behaviour of tape spring cross section as the tip deflection of a 

cantilever beam. The required tension force is expressed in Equation 2.15, where it 

shows a linear increase with the coiling ratio.  

𝑇 = 
48𝐷(1 − 𝑐𝑜𝑠 (

𝛼
2))

𝛼3𝑅
 
𝑟𝑐
𝑅
                                          (2.15) 

Also, Wilson et al [13] performed numerical simulations using commercial finite 

element software LS-Dyna to characterise the mechanics of tension stabilized coiling 

of shorter tape spring booms where two different situations are considered. First, a tape 

spring is loosely wrapped around the hub, forming a series of localized folds then it is 

Figure 2.19: Bending strain energy plots of uniformly coiled (Uc), single fold (U1) 

and two-fold (U2) configurations where 𝜃 = 𝜋/2 [13]. 
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pulled and tightly wrapped around the hub with gradual application of tension force. 

Second, a tape spring is tightly wrapped around the hub, by rotating the hub with a 

large tension force applied at the far end. In this scenario the minimum tension force 

required to uniformly wrap the tape spring is determined.    

In the first approach the variation of tension force with extension is studied and 

validated with an experimental study. Also, sequence of shape transition with 

gradually increasing tension force is studied (see Figure 2.20). Sharp drops (c, d, e, f) 

in the tension force corresponds to bifurcation of folds where fold radius increases with 

the tension force and then suddenly bifurcate into two folds.      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

Experimental study 

Numerical study 

Figure 2.20: Force profile corresponding to wrapping of a steel tape spring along 

with snapshots from experimental and numerical studies [13]. 
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Figure 2.21 (a) shows normal deployment of these coiled boom using motor 

mechanism to drive the hub. This creates a controlled deployment sequence in which 

the outermost layer of the coil gradually exits the deployer housing in its straight form.  

However, blossoming instability can be observed during the uncoiling process where 

boom stops deploying and unwinds inside the deployer as the central hub rotates [21], 

[44], [53], see Figure 2.21 (b).  

 

 

 

 

 

 

 

 

 

An excessive compressive axial load (also known as a "tip force") being applied 

to the boom's already-deployed segment is one of the causes that contributes to 

blossoming [21], [44], [53]. This tip force might be produced when the boom 

encounters any resistance during uncoiling, for instance, when a boom is used to 

unwind and tension the solar or drag sail's thin membrane, see  Figure 2.22 (a) and (b). 

Figure 2.22 (c) shows the variation of sail tension for a 26 cm diameter small prototype 

solar sail [55] and this sail tension acts as a compressive load to the boom. 

 

 

 

 

 

 

 

(a) (b) 

Figure 2.21: Schematic of boom deployment (a) normal deployment 

(b) Blossoming instability [21]. 

(a) 
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Therefore, it is important to predict the magnitude of tip force that can be sustained 

before blossoming begins. Hoskin [21], [56] developed an energy model for isotropic 

booms and ascertained the maximum tip force allowable during deployment, self-

blossoming torque and self-deployment torque. Hoskin [46] then examined how the 

coil layers moved in respect to one another as they blossomed, and he proposed a 

strategy of considering the effect of friction in the model and predicted the torque. In 

Hoskin’s friction analysis [46], an assumption was made such that the pressure 

distribution between the coil layers is approximately uniform when forces were 

(b) 

(c) 

Deployment snapshots Deployment force trajectories  

Figure 2.22: (a) CubeSail deployment sequence (b) schematic of single boom 

deployment sequence [21] (c) deployment of a small protype solar sail and 

corresponding force versus deployment ratio [55]. 
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applied to the coil's exterior. Later, this model was enhanced by the incorporation of a 

more precise force distribution obtained using finite element analysis [53]. Then this 

study further extended to composite booms with symmetric or anti-symmetric layup.   

2.6 Studies on Coiling, Stowage and Deployment Mechanics of 

Booms 

Several approaches have been taken for mechanical analysis of deployable booms 

because mechanical analysis is the foundation of the design based on the requirements. 

This section presents analytical, numerical and experimental studies conducted to 

characterise coiling, stowage and deployment mechanics of booms. 

Seffen & Pellegrino [14] have investigated the dynamic deployment of a tape 

spring that is coiled around a circular hub. Theoretical models have been developed 

for the self-actuated two-dimensional deployment dynamics of tape springs wound on 

a freely rotating circular spool with a radius of  𝑟 that is approximately equal to the 

transverse radius of curvature  𝑅  of the tape spring. The application of Lagrange's 

equations is used to construct the equations of motion for a coiled tape spring. 

Lagrangian of the system is given by the difference between the total kinetic and 

potential energies. The closed-form solution for the scenario where a tape spring 

deploys from a stationary spool in a gravity-free vacuum environment is shown in the 

following equation. 

1

3
𝜌(𝐿 − 𝑟𝜃)3𝜃̈ −  

1

2
𝜌𝑟(𝐿 − 𝑟𝜃)2𝜃̇2 +  𝜇𝑟𝑅𝛼 = 0                    (2.16) 

where, 𝜇 (= 
𝐷(1±𝜈)

𝑅2
, positive and negative signs correspond to opposite and equal sense 

bending respectively) is the strain energy stored on the coiled region per unit area, 

𝐷 (=𝐸ℎ3/12(1 − 𝜈2) ) is flexural stiffness of the shell, 𝐸 , 𝜈  and 𝜌  denote elastic 

modulus, Poisson's ratio and  mass per unit length of the tape spring, respectively and 

other notations are represented in the Figure 2.23.   

By solving the Equation 2.16, Equation 2.17 can be obtained. The time taken for 

self-actuated deployment of tape spring is shown in Equation 2.18. 
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𝜆 = √
6𝜇𝑅𝑟2𝛼

𝜌𝐿4
4

√2𝑡                                                               (2.17) 

𝑡 =  
1

2 √
6𝜇𝑅𝑟2𝛼
𝜌𝐿4

                                                                 (2.18) 

 

 

 

 

 

 

 

 

 

 

Haggalla [57] did modification for the above theoretical model by incorporating 

the effect of varying of coiling radius for longer tape spring, see Equation 2.19. 

Because coiling of longer tape spring involves larger number of turns hence there is a 

significance difference between inner and outer layer of coils.   

𝜆̇ =  √
6𝜇𝑅𝛼

𝜌𝐿4
(
(1 − 𝜆)ℎ𝐿

𝜋
+ 𝑟ℎ𝑢𝑏2) 

1

𝜆
                                (2.19) 

For the purpose of reducing computational effect, Picault et al. [58] developed a 

one-dimensional developed a one-dimensional model (in-plane displacements 

scenario) with only four degrees of freedom, which was utilized to simulate various 

tape spring folding, coiling, and deployment sequences. Simplified model with a 

highly deformable cross-section is developed by incorporating classical hypotheses of 

Figure 2.23: (a) Geometry of a tape spring (b) schematic representation of a tape 

spring coiled around a freely rotating spool [14]. 

(a) 

(b) 
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beam theory and elastica kinematics is introduced to describe the changes in the cross-

section shape with few parameters for large displacements, large rotations, and 

dynamics are extracted from a complete shell model. The developed equations are then 

directly incorporated into the FE software COMSOL, which automatically 

differentiates using the Hamilton's principle. According to the results, the rod model 

with highly deformable cross-section has demonstrated its capacity to capture large 

displacements, large rotations and dynamics.  

In order to explore the stability of coiled isotropic tape springs without applying 

tension or radial pressure, Pedivellano & Pellegrino [59] presented a computational 

and analytical approach. Stretch-free, uniformly coiled tape spring has been modelled 

in Abaqus where the stability problem was resolved in two steps using an implicit 

integration strategy. Tape spring’s longitudinal radius of curvature, stress distribution 

and shape of the cross-section in the stretch free coiled configuration from the first 

step, are imported to second step as the initial condition to perform stability analysis.  

The simulation results imply that non-uniform deformation modes control tape spring 

stability and the equilibrium is stable for limited range of coiling ratios.  Depending 

on the coiling orientation, two dominating unstable modes were found. Torsional 

modes cause the instability of opposite sense coiling, whereas bending modes cause 

the instability of equal-sense coiled tape springs. The analysis approach created in this 

work may be useful for designing deployable structures that are inherently stable and 

only need a few constraints when stowed. 

In the study conducted by Pedivellano & Pellegrino [59] numerical stress 

distribution at stretch-free coiled configuration has been validated using simple 

analytical models based on pure bending of a thin plate have been developed. Let’s 

look at the developed analytical model since it will be helpful to verify with our results 

later. The curvature vectors in the undeformed configuration (𝜅𝑜) and the deformed 

configuration (𝜅1) for the opposite sense coiling (see Figure 2.24) are: 

𝜅𝑜 = [

𝜅𝑥𝑥
𝑜

𝜅𝑦𝑦
𝑜

𝜅𝑥𝑦
𝑜
] =  [

0

−
1

𝑅
0

]                                                       (2.20) 
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𝜅1 = [

𝜅𝑥𝑥
1

𝜅𝑦𝑦
1

𝜅𝑥𝑦
1

] =  [

1

𝑟
0
0

]                                                  (2.21) 

 

 

 

 

 

 

 

 

where the longitudinal and transverse directions, respectively, are denoted by 𝑥 and 𝑦. 

Here, the cross-section of the deformed configuration has been approximated as 

perfectly flattened.  However, this approximation only applicable for the interior 

region, not for the edges in the real scenario. During the coiling process, the curvature 

change can be expressed in the following equations.   

Δ𝜅𝑥𝑥 = 𝜅𝑥𝑥
1 − 𝜅𝑥𝑥

𝑜 = − 
1

𝑟
                                               (2.22) 

Δ𝜅𝑦𝑦 = 𝜅𝑦𝑦
1 − 𝜅𝑦𝑦

𝑜 =  
1

𝑅
                                                 (2.23) 

Δ𝜅𝑥𝑦 = 0                                                            (2.24) 

The strain distribution from the Kirchhoff-Love plate hypothesis is as follows. 

𝜀𝑥𝑥 = 𝜀𝑥𝑥
𝑜 + 𝑧Δ𝜅𝑥𝑥 = 𝜀𝑥𝑥

𝑜 − 
𝑧

𝑟
                                           (2.25) 

𝜀𝑦𝑦 = 𝜀𝑦𝑦
𝑜 + 𝑧Δ𝜅𝑦𝑦 = 𝜀𝑦𝑦

𝑜 + 
𝑧

𝑅
                                           (2.26) 

𝜀𝑥𝑦 = 𝜀𝑥𝑦
𝑜 + 2𝑧Δ𝜅𝑥𝑦 = 𝜀𝑥𝑦

𝑜                                                  (2.27) 

Here, in-plane strains of the mid plane (𝜀𝑥𝑥
𝑜 , 𝜀𝑦𝑦

𝑜  and 𝜀𝑥𝑦
𝑜 ) are zero for pure bending, 

but nonzero for a shell undergoing in plane forces.   Equation 2.28 and 2.29 give the 

𝑟 
𝑅 

(a) 
(b) 

Figure 2.24: (a) Undeformed configuration (b) coiled configuration of a tape spring. 
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constitutive model of stresses for an isotropic material in terms of shell behaviour (with 

in plane forces) and pure bending respectively. Accordingly, the stresses are 

symmetric with regard to the shell's mid surface.  

{

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑥𝑦

} =  
𝐸

1 − 𝜐2
 [

1 𝜈 0
𝜈 1 0

0 0
(1 − 𝜈)

2

] [

𝜀𝑥𝑥
𝜀𝑦𝑦
𝜀𝑥𝑦

] =  
𝐸

1 − 𝜐2
 

[
 
 
 
 𝜀𝑥𝑥
𝑜 − 

𝑧

𝑟
+
𝜈𝑧

𝑅

𝜀𝑦𝑦
𝑜 − 

𝜈𝑧

𝑟
+
𝑧

𝑅
𝜀𝑥𝑦
𝑜 ]

 
 
 
 

              (2.28) 

{

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑥𝑦

} =  
𝐸

1 − 𝜐2
 [

1 𝜈 0
𝜈 1 0

0 0
(1 − 𝜈)

2

] [

𝜀𝑥𝑥
𝜀𝑦𝑦
𝜀𝑥𝑦

] =  
𝐸

1 − 𝜐2
 

[
 
 
 
 − 

𝑧

𝑟
+
𝜈𝑧

𝑅

− 
𝜈𝑧

𝑟
+
𝑧

𝑅
0 ]

 
 
 
 

                     (2.29) 

Block et al [5] have successfully studied and experimentally investigated 

deployment of 14 m length boom weighed only 62 g per meter and was made of two 

co-bonded, omega-shaped carbon fiber half shells with 0.1 mm wall thickness each. 

Three different deployment concepts are investigated, such as chaotic boom 

deployment (Figure 2.25 (a)), electric drives on the boom tip (Figure 2.25 (b)) and 

deployment by inflation (controlled gas flow, see Figure 2.25 (c)). 

Chu & Lei [19] presented the design theory and dynamic analysis of a lenticular 

deployable boom to hold a space probe away from the spacecraft body in small 

spacecraft. The proposed deployable boom is comprised of a retractable/deployable 

mechanism, a lenticular boom with a storage reel, and other auxiliary mechanisms. 

Two ideal models of the lenticular boom with the storage reel and the 

retractable/deployable mechanism are created to optimize the design variables of the 

lenticular boom based on the mechanical analysis and taking into account specific 

geometrical dimensions and physical constraints.  Additionally, they have used the 

sequential quadratic programming (SQP) method to solve the two optimization 

models, taking into account the balance between accuracy and efficiency. Finally, the 

mechanical behaviour of the proposed lenticular boom is also investigated using FEM 

models and the outcomes support the design's effectiveness. 
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Mallol & Tibert [22] have investigated the deployment (uncoiling) dynamics of a 

meter class passively deployable boom (see Figure 2.26) based on Thomas W. 

Murphey's SIMPLE boom and taking advantage of composite shells' bi-stability, 

through experimental, numerical and analytical studies. Zero-gravity deployment 

experimental tests are performed such that boom prototype hanged in a gravity off-

loading mechanism. The numerical models' predictions of strain energy level, 

deployment time, and spacecraft displacements are in good agreement with analytical 

models, demonstrating the finite element model's theoretical accuracy. However, the 

boom deploys six times more quickly in simulations than it does in the actual 

prototype.   

 

(a) 

(b) 

(c) 

Figure 2.25: (a) Chaotic deployment (b) electrically driven tip deployment (c) 

deployment by inflation (controlled gas flow) [5]. 
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Yang et al. [60], have conducted research to identify the most optimal TRAC boom 

structure that can be utilized to drive solar panels and membrane antennas while having 

the having a sufficient driving moment and maximum deploying fundamental 

frequency, with lowest concentrated stress. The FE models are constructed using 

Abaqus software, and the wrapping and modal studies are performed using the explicit 

solver. The maximal stress during the wrapping process is constrained within 

permissible limits, while the section radius, bonding web width, and central angle are 

optimized. The RS approach is employed in the optimization process of the TRAC 

boom to reduce the computational time and cost of the coiling analysis. Along with 

design optimization, parametric studies are carried out to look into how the TRAC 

boom's section radius, bonding web width, and central angle affect its wrapping 

capabilities and fully deployed stiffness. Later, Yang et al. [17] have followed similar 

approach for a four-cell lenticular honeycomb deployable (FLHD) boom composed of 

four pairwise symmetrical tape-springs where non-dominated sorting genetic 

algorithm-II (NSGA-II) is used to obtain an optimal design. 

 

(a) 

(b) 

Figure 2.26: (a) CubeSat dummy and deployed boom suspended from the Gravity 

Off-Loading System (b) simulated models in Abaqus [22]. 
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Bai et al. [20] analysed the coiling mechanics of lenticular DCB, where a 

geometrically nonlinear and explicit finite element model is generated in Abaqus, and 

the simulations are verified by the experiments. Stable & Laurenzi [61] have analysed 

the structural strength of 500-mm-long tubular boom with open-C cross section and 

made of carbon fibre reinforced plastic (CFRP), where flattening and coiling process 

is simulated in Abaqus FEA software.  The numerical study presents the evidence that 

a thin-walled composite boom can be stored inside a 1 dm3 external-volume 

deployment device without undergoing failure. According to the results, the boom can 

safely wrap into the deployment device and the part of the boom that is still outside 

the device was found to be the most critical region. 

When tape spring deployed from cylinder drums, a piece of the cross section 

remained in flattened state against the cylindrical drum (see Figure 2.27). This results 

in reduction of the stiffness of the tape spring. Supporting framework and 

modifications to the tape spring's shape are frequently used as remedies. Shore et al. 

[62] have quantified the reduction of the stiffness through FE models in Abaqus. The 

rotational stiffness of the BeCu tape springs can be accurately predicted by the 

proposed FE model, and there is good agreement between the FE and experimental 

results. It has been found that increasing the drum length will decrease the rotational 

stiffness due to increased flattening at the root. 

 

 

 

 

The tape spring experiences significant stresses in the transition region between 

curvatures when the root is clamped while maintaining a tight coiled radius. Shore et 

al. [63] have investigated Von Mises stress field and the formation of local crinkle in 

the transition region for a Beryllium copper (BeCu) through FE simulations in Abaqus. 

The crinkling observed in the simulation findings is confirmed through experiments 

Figure 2.27: Schematic diagram of partially flattened and restrained tape spring due 

to deployment drum [62]. 
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where BeCu tape springs are manufactured and attached to a 3D printed deployment 

drum (see Figure 2.28). It is found, as the embrace angle of the tape spring decreased 

there is a marginal reduction in the crinkle length. Also, allowable transition length 

increases with the deployment drum radius which then reduce the maximum Von 

Mises stress in the tape spring and prevented crinkling. 

 

 

 

 

 

 

 

 

Leclerc et al. [64] have studied the coiling behavior of ultra-thin TRAC booms. 

Also, they proposed a novel manufacturing technique where flanges are co-cured in a 

single step. Both experimental and numerical studies revealed the formation of a 

localized buckle in the transition region between the fully deployed and the coiled 

where large gradients of curvature in the transverse direction resulted in significant 

stress concentrations and potential compressive failure of the material. Further, the 

impact of the packaged structure's radius of curvature and the composite's stacking 

order are investigated and found that the developed stresses can be reduced by making 

the web thinner that could be coiled around a smaller hub without cracking.    

 

 

 

(a) (b) (c) (d) 

Figure 2.28: BeCu tape spring and 3D printed drum (a) initial configuration (b) 

symmetric local crinkle (c) asymmetric local crinkle (d) plastic deformation after 

coiling [63]. 
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2.7 Simulation Techniques to Reduce the Computational effort 

Complex models and multi-step simulations lead to high computational cost. 

Depending on the complexity of the model, the simulation time can range from a few 

minutes to many days. This section describes some techniques that can be incorporated 

in the analysis to reduce computational effort.   

2.7.1 Use of symmetry 

Modelling the half of the structure considering the plane symmetric condition (see 

Figure 2.29) is one of the most common techniques to reduce computational effort. 

Because it will significantly reduce number of elements and the computational cost. 

The symmetry boundary condition can be used if the user is confident that the model 

is symmetric with regard to deformation and load distribution at all stages. This 

method cannot be applicable to capture the behaviour when tape spring undergoes 

complex deformations like torsional buckling that occur during equal sense bending.  

  

 

 

 

 

 

 

 

2.7.2 Co-simulation 

Co-simulation enables the coupling of various simulation systems for various 

substructures of a model, so that they can exchange data during the integration time. 

During coiling process root part of the tape spring undergoes complex contact and 

significant deformations hence Abaqus/Explicit is the most appropriate scheme. 

However, some part of the tip region (see black colour part in the Figure 2.30) only 

experienced small strain during coiling, these parts can be efficiently modelled using 

𝑥 

𝑧 ZSYMM Boundary condition 

(𝑈3 = 0 ,  𝑈𝑅1 = 0 , 𝑈𝑅2 = 0) 

Figure 2.29: Cross-section of the tape spring (a) full model (b) half model 

considering plane symmetric condition 
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Abaqus Standard. This technique provides cost effective solutions when different 

model regions can benefit from the respective strengths of Abaqus/Standard and 

Abaqus/Explicit. However, there are a lot of constraints and difficulties to be 

addressed. For example, co-simulation region nodes that take part in a tie constraint, 

an MPC constraint, or a kinematic coupling constraint of the co-simulation solution 

may have instability and accuracy issues [57].    

 

2.7.3 Shell-beam idealisation 

Using beam/rod elements and other low order elements to idealize some areas will 

result in very simple models with few degrees of freedom and minimal computational 

cost. Three different regions can be observed in the tape spring geometry during 

coiling during coiling such as flattened region, undeformed region and the ploy region, 

i.e., the transition region between the flattened and undeformed regions, Figure 2.5. 

The ploy region is the most critical as it undergoes a significant geometric 

transformation and is responsible for maintaining the strain energy gradient during 

coiling. Therefore, to accurately capture the behaviour it should be modelled as shell 

elements, see Figure 2.31. However, both flattened and undeformed regions can be 

modelled as beam elements. Meanwhile, it's important to deal with the stretching and 

bending energies involved due to stressing of the flattened region. The force/bending 

Co-simulation interface 

Figure 2.30: Schematic illustration of coiling model using co-simulation technique 
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moment transfer between the shell-beam interface is the key issue that must be 

addressed in the hybrid model. There are various methods for ensuring moment 

transfer between shell-beam interface, such as Multi-Point Constraint (MPC), 

kinematic coupling and structural distributing coupling [57]. 

 

 

 

 

 

 

 

 

2.7.4 Rod model with highly deformable cross-section 

Utilizing the one-dimensional continuous rod-like model developed in [58] will help 

to reduce number of degrees of freedom and computational effort. This approach has 

proven its ability to account large displacements, large rotations and dynamics such as 

abrupt formation of folds, the splitting of folds into two, and the inertia or pendulum 

effects. Simplified model with a highly deformable cross-section (see Figure 2.32) is 

developed by incorporating classical hypotheses of beam theory and elastica 

kinematics is introduced to describe the changes in the cross-section shape with few 

parameters [58]. Following the derivation of the elastic and kinetic energy, the model 

is integrated in the FE program COMSOL, enabling the Hamilton principle to be used 

to solve the elasto dynamic problem.  

 

 

 

 

Undeformed Flatten Transition 

Stressed Unstressed 

Beam Shell Beam 

Figure 2.31: Shell beam idealization of a tape spring during coiling [57]. 

Figure 2.32: Parametrization of tape spring for one dimensional rod model [58]. 
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CHAPTER 3  

3. FLATTENING MECHANICS OF DEPLOYABLE COILABLE   

TAPE SPRING BOOMS  

This chapter investigates the flattening mechanics of isotropic tape springs subjected 

to compressive deformation. Geometrically non-linear finite element models 

implemented in Abaqus/Standard are used to characterize the flattening mechanics of 

isotropic tape springs under compressive deformation. The effects of geometric and 

material properties on flattening behaviour are investigated through a numerical 

parametric study. A simple analytical model is developed to predict the stresses and 

forces during compression flattening, and a good correlation has been found with the 

numerical study. 

3.1 Analytical Study 

3.1.1 Flattening force-displacement relationship 

An analytical model is developed to predict the flattening force-displacement 

relationship of the tape spring in compression deformation where the tape spring is 

gradually compressed into a flattened state using contact between two rigid plates (see 

Figure 3.1). This can be treated as the quasi-static process where the tape spring is 

considered to be in static equilibrium at each loading step. Flattened state initiate from 

the point where the top plate touches the center of the tape spring and then it evolves 

toward the far ends of the cross-section under compressive loading. Figure 3.1 depicts 

that the tape spring can be idealized as a one-dimensional element with symmetric 

shape during this compressive loading process. Moreover, half of the load exerted by 

compression plates is idealized as a vertical point load  𝐹𝑐 2⁄ , at the point at which the 

specimen is tangent to the plate. 

By assuming the plane section remained plane while deformed and the specimen 

is inextensible, specific problem can be simplified to high deflection beam theory (i.e. 

Elastica theory). The theory of elastica is a useful tool to describe the behavior of 

geometrically non-linear models undergoing large deformations [65]. Taking 
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advantage of the symmetric condition, one-half of the tape spring cross-section is 

simplified as a one-dimensional beam element where only the cantilever of length 𝐿 

excluding the flatten length (𝑓) is considered to formulate the model. 

 

 

Referring to the free body diagram illustrated in Figure 3.1, moment 𝑀′ can be 

expressed as: 

𝑀′ =
𝐹𝑐
2
 𝐿ℎ                                                                  (3.1) 

where Lh is the horizontal distance from one end of the tape spring cross-section to the 

point of applied loading. Considering the material to be elastic, the maximum bending 

moment 𝑀′ due to the change in curvature from 
1

𝑅
 to 0 is given by the following 

equation. 

Figure 3.1: Schematic representation of idealized configuration of tape spring 

undergoing flattening. 
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𝑀′ =
𝐸𝐼

𝑅
                                                                       (3.2) 

where 𝐸- Elastic modulus of the material and  𝐼- second moment of area of the section 

(=  
𝑏ℎ3

12
, 𝑏  and ℎ denote width and thickness of the tape spring respectively). 

Combination of Equations 3.1 and 3.2 yields to: 

𝐸𝐼

𝑅
=
𝐹𝑐
2
 𝐿ℎ                                                                (3.3) 

 

In order to get a relationship between geometric parameters 𝐿ℎ and 𝑢, we assumed 

that geometric parameters scale together considering the elastica model with elastic 

properties. For example, 𝐿ℎ decreases with decreasing distance between two plates (𝑑) 

which means 

𝐿ℎ ∝ 𝑑                                                                     (3.4)  

Hence, 𝐿ℎ  can be expressed in terms of  𝑢 as follows: 

𝐿ℎ = sin
𝛼

2
(𝑅 −

𝑢

(1 − cos
𝛼
2)
)                                             (3.5)  

where 𝑅 and 𝛼 refer to the transverse radius and subtended angle of the tape spring 

respectively (see Figure 2.2 (a)). Substituting 𝐿ℎ in Equation 3.3 gives: 

𝐹𝑐 = 
2𝐸𝐼

𝑅sin
𝛼
2 [𝑅 −

𝑢

(1 − cos
𝛼
2)
]

                                           (3.6) 

 

The above expression is valid when 𝑢 > 0 . By considering initial condition 

 (𝐹𝑐)𝑢=0 = 0, equation is modified as: 
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𝐹𝑐 = 
2𝐸𝐼

𝑅sin
𝛼
2

[
 
 
 
 
 
 

1

(𝑅 −
𝑢

(1 − cos
𝛼
2)
)

−
1

𝑅

]
 
 
 
 
 
 

                                            (3.7) 

where 0 ≤ 𝑢 ≤ (𝑅 −
ℎ

2
) (1 − cos

𝛼

2
)  considering the effect of thickness. Flattening 

force required to fully flattened the tape spring ( (𝐹𝑐)𝑚𝑎𝑥 ) can be obtained by 

substituting  𝑢 = (𝑅 −
ℎ

2
) (1 − cos

𝛼

2
) in Equation 3.7. 

(𝐹𝑐)𝑚𝑎𝑥 = 
2𝐸𝐼

𝑅sin
𝛼
2

[
2

ℎ
−
1

𝑅
]                                             (3.8) 

Figure 3.2 illustrates the variation of flattening force with the platen displacement 

during the flattening process of steel tape spring with geometric properties 

 𝑅 = 15.1 mm, ℎ = 0.1 mm and 𝛼 = 900. It can be seen that the behaviour of tape 

spring is highly nonlinear, where flattening force increases exponentially with the 

platen displacement. 
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Figure 3.2: Flattening force profile corresponding to the flattening process of tape 

spring, where 𝑅= 15.1 mm, ℎ = 0.1 mm and 𝛼 = 900. 
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3.1.2 Developed maximum stresses 

To determine the maximum stresses developed during the flattening process, we 

followed the method proposed by Pedivellano & Pellegrino [59] and developed a 

simplified analytical model by considering phenomena as thin plate subjected to pure 

bending (no stretching) in one direction. Here maximum stresses will be developed at 

the fully flattened state, hence initial and final states (see Figure 3.3 ) are considered 

to develop the analytical model. The natural curvature vector in undeformed 

configuration (see Figure 3.3 (a)) is: 

𝜅𝑜 = [

𝜅𝑥𝑥
𝑜

𝜅𝑦𝑦
𝑜

𝜅𝑥𝑧
𝑜

] =  [

0
1

𝑅
0

]                                                            (3.9) 

Superscript ‘0’ and ‘1’ denote undeformed and deformed configurations respectively. 

Curvature vector of final deformed configuration (Figure 3.3 (b)) is: 

𝜅1 = [

𝜅𝑥𝑥
1

𝜅𝑧𝑧
1

𝜅𝑥𝑧
1

] =  [
0
0
0
]                                                           (3.10) 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑌 

𝑋 

𝑍 

𝑌 
𝑋 

𝑍 

𝑦 

𝑥 

𝑧 

(a) (b) 

Figure 3.3: Flattening process (a) undeformed (b) fully flattened configurations. 
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Therefore, the curvature change during flattening process is: 

Δ𝜅𝑦𝑦 = 𝜅𝑦𝑦
1 − 𝜅𝑦𝑦

𝑜 = − 
1

𝑅
     &    Δ𝜅𝑥𝑥 =  Δ𝜅𝑥𝑦 = 0                       (3.11) 

The strain distributions based on Kirchhoff-Love plate theory are: 

𝜀𝑦𝑦 = 𝜀𝑦𝑦
𝑜 + 𝑧Δ𝜅𝑦𝑦 = − 

𝑧

𝑅
    &    𝜀𝑥𝑥 = 𝜀𝑥𝑦 = 0                             (3.12)  

The stresses developed in fully flattened configuration were derived using 

constitutive model for an isotropic material as follows: 

{

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑥𝑦

} =  
𝐸

1 − 𝜐2
 [

1 𝜈 0
𝜈 1 0

0 0
(1 − 𝜈)

2

] [

𝜀𝑥𝑥
𝜀𝑦𝑦
𝜀𝑥𝑦

]                            (3.13)  

 

{

𝜎𝑥𝑥
𝜎𝑧𝑧
𝜎𝑥𝑧

} =  
𝐸

1 − 𝜐2
 

[
 
 
 
 − 

𝜈𝑧

𝑅

− 
𝑧

𝑅
0 ]
 
 
 
 

                                              (3.14)  

 

According to the developed model stresses are symmetric with respect to the 

middle surface. Maximum longitudinal and transverse stresses developed at fully 

flattened state are as follows: 

|(𝜎𝑥𝑥)𝑚𝑎𝑥| =   
𝐸ℎ𝜈

2(1 − 𝜐2)𝑅
                                                   (3.15)  

 

|(𝜎𝑦𝑦)𝑚𝑎𝑥| =  
𝐸ℎ

2(1 − 𝜐2)𝑅
                                                  (3.16)  
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3.2 Numerical Study 

A finite element simulation of the flattening process is useful to understand the 

mechanics of tape springs and the developed stresses. Hence, finite element models of 

tape springs under compressive loadings were developed using the commercial finite 

element package Abaqus/Standard. 

3.2.1 Initial Model Development 

To simplify the problem, plane strain behaviour was assumed by considering that the 

tape spring was predominantly under bending stress state during flattening. Therefore, 

the cross-section of the tape spring was modelled (see Figure 3.4) using four-node 

plane strain quadrilateral elements with incompatible mode (CPE4I) and the 

compression plates were modelled as rigid beams using two-node beam elements 

(RB2D2).  

In order to study the flattening mechanism, we selected the steel tape spring with 

initial geometry of 𝑅 = 15.1 mm, ℎ = 0.1 mm, and 𝛼 = 900. The material properties of 

steel are listed in Table 3.1. A uniform meshing was defined such that the edge length 

of 0.025 mm was maintained giving 604 elements across the transverse direction, 

Figure 3.4. Frictionless contact was defined between the tape spring and rigid plates 

by setting Frictionless contact property. 

The simulation was performed by keeping the bottom plate fixed while moving the 

top plate with specified downward displacement at the reference point of the plate to 

flatten the tape spring. 

In order to obtain solutions for non-linear problems, Abaqus/Standard uses the 

Newton-Raphson time integration method [66]. Flattening simulation involves contact 

between different parts and instabilities due to significant geometric changes. To 

overcome these issues *Static, Stabilize option was used in the Static/General analysis 

step [66], where stabilization factor ranging from 2×10-6 to 2×10-5 for varying 

parameters was chosen based on a trial and error process. 
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Table 3.1: Material properties of steel used in the numerical model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2.2 Numerical Simulation Results 

Figure 3.5 (a) and Figure 3.5 (b) show the evolution of longitudinal and transverse 

stresses, respectively during the flattening process and Figure 3.6 depicts the 

corresponding deformed shapes. In Figure 3.5 negative (compression) and positive 

(tension) plots describe the stresses on the top and bottom face of the shell, 

respectively.  It can be observed that the middle region experienced maximum stress 

and it evolves toward the ends of the tape spring cross section until it reaches to 

completely flattened stage. Note that through thickness stress variation is not 

considered in this study. 

 

Property  Magnitude 

Density (tonne/mm3) 8.05×10-9 

Elastic modulus (MPa) 210 000 

Poisson’s ratio 0.3 

Reference points Tape-spring 
Rigid plates 

Figure 3.4: Finite element model for flattening of tape spring using rigid plates. 
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Both transverse and longitudinal stresses are uniform in most part of the tape spring 

cross section at the final flattened configuration (see red line in Figure 3.5) and 

transverse stress is greater than the longitudinal stress. Furthermore, transverse and 

longitudinal stresses are quite smaller than the yield strength which demonstrates that 

the tape spring will recover elastically once the flattening force is removed. 
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Figure 3.5: Evolution of stresses during flattening process of the tape spring 

(𝑅 = 15.1 mm, ℎ = 0.1 mm and 𝛼 = 900) (a) longitudinal stress (b) transverse 

stress (colours correspond to deformed configurations shown in Figure 3.6). 
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3.3 Comparison of Numerical and Analytical Results 

3.3.1 Flattening force-displacement relationship 

Figure 3.7 shows a non-linear behaviour with increasing displacement for both 

numerical and analytical studies for the flattening force during compressive 

deformation which is in good agreement with the studies conducted by Bai et al.  [20] 

for the lenticular deployable composite booms. Even though experiments conducted 

by Bai et al. [20] for a different cross section, the magnitude of compressive flattening 

force is in the same order obtained from the numerical and analytical studies presented 

here. This provides a reasonable validation. Referring to Figure 3.7, flattening force 

variation obtained from analytical model shows almost same value (with minor 

underprediction) up to 1.25 mm displacement and then it overpredict the numerical 

Figure 3.6: Snapshots from simulation during the flattening process 

where; 𝑢𝑚𝑎𝑥 = (𝑅 − ℎ/2)(1 − cos 𝛼/2). 
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results. This deviation may be due to the discrepancy in the assumptions considered in 

the analytical model. It should be noted that a sharp increase in force occurs for 

displacement in the micrometre range during the final stage of flattening. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7: Comparison between numerical simulation and analytical model 

results in terms of flattening force versus displacement (𝑅 = 15.1 mm, ℎ = 0.1 

mm and 𝛼 = 900). 
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Figure 3.8 shows the variation of normalized distance 𝐿′ℎ and normalized platen 

distance 𝑑′, where numerical results show fifth order polynomial variation. But in the 

analytical model, we assumed linear variation (see the red dash line in the Figure 3.8), 

which deviates from the numerical results. This may cause discrepancies between 

analytical and numerical results. Therefore, incorporating this variation will improve 

the accuracy of the developed analytical model.  

   

 

3.3.2 Stress Distribution 

The numerical stress distribution of the final deformed configuration shows a good 

agreement with the analytical model except at the outer most region of the cross section 

since edge nodes are not subjected to deformation, see Figure 3.9. This validates 

assumption of tape spring is subjected to pure bending during the flattening process.   
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Figure 3.8: Normalized distance 𝐿′ℎ (𝑅 sin (𝛼/2) - f/2) / 𝑅 sin (𝛼/2)) versus 

normalized platen distance 𝑑′ (d/((𝑅−𝑡/2) (1− cos (𝛼/2)))). 



61 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-300

-200

-100

0

100

200

300

0 0.2 0.4 0.6 0.8 1

L
o
n
g
it

u
d
in

al
 S

tr
es

s 
-
𝜎
𝑥
𝑥

(M
P

a)

Normalized Transverse Distance

Theoretical Prediction

(a) 

-1000

-800

-600

-400

-200

0

200

400

600

800

1000

0 0.2 0.4 0.6 0.8 1

T
ra

n
sv

er
se

 S
tr

es
s 

-
𝜎

yy
 
(M

P
a)

Normalized Transverse Distance

Theoretical Prediction

(b) 

Figure 3.9: Comparison between numerical simulation and analytical model results 

in terms of maximum developed stresses (𝑅 = 15.1 mm, ℎ = 0.1 mm and 𝛼 = 900) 

(a) longitudinal stress (b) transverse stress. 
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3.4 Parametric Study 

Effects of various design parameters associated with material and geometric 

parameters of tape springs, are very important for design decision making. Using the 

numerical model described above, a parametric study was conducted to study the effect 

of geometry and material properties on the flattening behaviour of tape springs. 

Geometrical parameters such as subtended angle, transverse radius of curvature and 

thickness of the tape spring, and elastic modulus as material parameter are considered 

for the parametric study. Here, only one parameter was changed at a time, keeping all 

others parameter the same.     Maximum flattening force ((𝐹𝑐)𝑚𝑎𝑥) and maximum 

longitudinal ( |(𝜎𝑥𝑥)𝑚𝑎𝑥|) and transverse ( |(𝜎𝑦𝑦)𝑚𝑎𝑥|) stresses are considered as 

important indices during the flattening process.  

3.4.1 Effect of Thickness 

The influence of changing thickness on the flattening force and stresses at the fully 

flattened stage for an isotropic steel tape spring is investigated (see Figure 3.10). 

Thickness varies from 0.1 mm to 0.3 mm are simulated by keeping other parameters 

constant (𝑅= 19.2 mm and 𝛼  = 900). It can be clearly seen that transverse and 

longitudinal stresses behave linearly with increasing thickness which agrees with the 

developed analytical model (Equations 3.15 and 3.16).  

The required force to completely flattened the tape spring shows a cubic increase 

with the thickness which means 𝐹𝑐  ∝  ℎ
3. This validates the presence of ℎ3 in second 

moment of area in the developed analytical model. Variations indicate that minimizing 

thickness will lower the flattened force and stresses developed, but it will result in the 

reduction of the stiffness of the tape spring boom at the deployed state. Therefore, we 

should come up with an optimum value by considering all design requirements.   
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3.4.2 Effect of Transverse Radius 

Figure 3.11 depicts the variation of stresses and flattening force with the transverse 

radius (𝑅) of the tape spring where transverse radii 15.1, 19.2, 25, 30, 35 and 40 (mm) 

are simulated while keeping the other parameters constant. Based on the results, all 

stresses and flattening force decrease with increasing transverse radius, which 

correlates well with the analytical model where it predicts linear inversely proportional 

relationship with 𝑅. Therefore, increasing the transverse radius of tape spring reduces 

the developed stresses and required flattening force which would be helpful for 

designing.  
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Figure 3.10: Variation of maximum flattening force, transverse and longitudinal 

stresses with the thickness (𝑅 = 19.2 mm and 𝛼 = 900). 
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3.4.3 Effect of Subtended Angle 

The impact of changing 𝛼  on the flattened force and stresses is presented in  

Figure 3.12 where 𝛼 varies from 450 to 1800. Accordingly, (𝜎𝑥𝑥)𝑚𝑎𝑥, (𝜎𝑧𝑧)𝑚𝑎𝑥 and 

(𝐹𝑐)𝑚𝑎𝑥 behave independently with varying 𝛼, which means they show approximately 

a steady state variation with 𝛼 . This validates the absence of 𝛼  in the developed 

equations (3.15 and 3.16). But the presence of 𝛼 in the developed analytical model for 

flattening force still needs further investigation. However, when 𝛼 > 1800 flattening 

using tensile force is more appropriate than the compressive force.   
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Figure 3.11: Variation of maximum flattening force, transverse and longitudinal 

stresses with the transverse radius (ℎ = 0.1 mm and 𝛼 = 900). 
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3.4.4 Effect of Elastic Modulus 

In this study, elastic modulus was considered as the material property to study its effect 

on the flattening mechanics. Elastic modulus of magnitudes [50, 100, 130, 210, 250] 

(GPa) has been chosen here. Figure 3.13 shows that all (𝜎𝑥𝑥)𝑚𝑎𝑥 , (𝜎𝑧𝑧)𝑚𝑎𝑥  and 

(𝐹𝑐)𝑚𝑎𝑥  increase linearly with 𝐸 , which again validate the developed analytical 

models. When the material is stiffer, it requires a large flattening force and hence 

develops higher stresses.   
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Figure 3.12: Variation of maximum flattening force, transverse and longitudinal 

stresses with the subtended angle (𝑅 = 19.2 mm and ℎ = 0.1 mm). 
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Considering the overall variation in the parametric study, we can relate this 

problem with the bending of a straight beam (here bending happening other way 

around, that is from curved to straight configuration). Accordingly, the force required 

for a specific deflection is proportional to elastic modulus and second moment of area 

of the beam, and inversely proportional to length of the beam. The above trend agrees 

well with our parametric study.   
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Figure 3.13: Variation of maximum flattening force, transverse and longitudinal 

stresses with the elastic modulus (𝑅 = 19.2 mm, ℎ = 0.1 mm and 𝛼 = 900). 
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3.5 Summary 

Flattening behaviour of tape springs was investigated by means of numerical 

simulations and simplified analytical models. By idealizing behaviour to a plain strain 

condition, 2D finite element models were constructed in Abaqus/Standard finite 

element package. Numerical simulation results showed that the tape spring deforms 

and recovers elastically.    

Analytical models were also developed to predict the flattening force and 

transverse and longitudinal stresses. Both numerical and analytical methods are able 

to capture the non-linear behaviour of load-displacement curves. The developed 

analytical model shows a good correlation with the numerical results where it exactly 

predicts the stresses developed at the fully flattened stage. But it approximately 

predicts the flattening force up to a certain displacement and then overpredicts the 

numerical results. This deviation may be due to the discrepancy in the assumptions we 

took in the analytical model.  

On the other hand, a numerical parametric study was conducted to investigate the 

effects of the geometric and material properties of isotropic tape spring on flattening 

behaviour. It can be concluded that required maximum flattening force, transverse and 

longitudinal stresses varied with thickness, transverse radius, and elastic modulus of 

the material. However, they remain constant with varying subtended angles.  Variation 

obtained from the parametric study shows a good correlation with each parameter in 

the analytical model.  
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CHAPTER 4  

4. ANALYTICAL STUDY FOR COILING OF LONGER TAPE 

SPRING BOOMS 

This chapter comprises development of analytical model for the required tension 

during tension stabilized coiling of longer isotropic tape spring booms following the 

method proposed by Wilson et al. [13]. Then the developed framework was further 

extended to coiling of bistable composite tape spring. Next, energy model was 

formulated to derive the required torque for the tension stabilized coiling of tape spring 

booms where the effect of friction was also considered.  

When longer tape spring booms are subjected to coiling, the coiling radius varies 

with the coiling angle meaning there is a significant difference between the radii of the 

innermost and outermost layers of the coiled configuration. We can resemble the 

coiling process of booms with the winding mechanism of a flat web. Web can be any 

material in the form of long, thin, and flexible strips [67]. Some of the examples are 

paper, plastic films, textiles and aluminium foils.   

During the winding mechanism, wound roll geometry shows quite a good 

agreement with the Archimedean spiral. Hence researchers have approximated the 

shape of the coiled tape spring to an Archimedean spiral. The model being developed 

here is based on the same assumption, Figure 4.1.  

 

    

 

 

 

 

 

𝑟𝑐 

𝜙 

𝑟 

Figure 4.1: Approximation of coiled geometry of a longer tape spring to an 

Archimedean spiral. 
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Based on the Archimedean spiral equation [68], the relationship between coiling  

radius - 𝑟 and coiling angle - 𝜙 (total swept angle by the turns in the coil) is given as 

follows: 

𝑟(𝜙) = 𝑎𝜙                                                                 (4.1)  

where; 𝑎 is a constant and 2𝜋𝑎 is the distance between successive layers of the coil. 

By considering the initial condition and substituting relevant parameters, Equation 4.1 

was modified as follows:       

𝑟 =  𝑟𝑐 + 
ℎ

2
+ 
ℎ𝜙

2𝜋
                                                             (4.2) 

where; 𝑟𝑐- radius of the hub, ℎ – thickness of the tape spring, 𝜙 – coiling angle. Here 

we assumed each layer is tightly coiled and tape spring under perfectly flattened stage 

without any boundary effects. Because boundary effects will significantly affect the 

distance between successive layers of the coil. Equation 4.2 implies how the coiling 

radius varies with the coiling angle. The variation of coiling radius with the number of 

turns, or layers (𝑛) can be written as follows: 

𝑟 =  𝑟𝑐 + (2𝑛 + 1)
ℎ

2
                                                        (4.3) 

Since ℎ ≪ 𝑟𝑐 , coiled configuration can be approximated to a circle for a smaller 

number of turns (shorter tape spring). However, this simplification fails for larger 

number of turns due to significant difference in the coiling radius between the 

innermost and outermost layers.     

If the total length (𝐿) of the tape spring is known, then the final coiling angle can 

be expressed as follows.  

𝐿 =  ∫ 𝑟𝑑𝜙
𝜙𝑓
0

                                                                 (4.4)      

By integrating Equation 4.4 results:                                            

𝜙𝑓 =  

2𝜋 (√(𝑟𝑐 +  
ℎ
2)

2

+
ℎ𝐿
𝜋 − (𝑟𝑐 +  

ℎ
2)
)

ℎ
                               (4.5)  
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It should be noted that uniform coiling process is a feasible option to prevent any 

sudden changes.  Therefore, model developed here is based on the uniform coiling 

condition where hub rotates with constant angular velocity(𝜔). The total time taken 

(𝑡) to fully coiled a tape spring of length in a uniform manner can be expressed as:      

𝑡 =  

2𝜋 (√(𝑟𝑐 +  
ℎ
2)

2

+
ℎ𝐿
𝜋 − (𝑟𝑐 +  

ℎ
2)
)

𝜔ℎ
                             (4.6) 

 

4.1 Isotropic Tape Spring Booms 

To determine the required tension force during the coiling of longer tape springs, we 

followed the method proposed by Wilson et al. [13] by incorporating the effect of 

increasing the coiling radius due to the thickness of multiple turns. Three different 

coiling regimes were identified in [13] bending dominated, tension dominated and 

transition between two regimes, each characterised by the coiling ratio. The coiling 

ratio (𝑐) is defined as the ratio between the coiling radius (𝑟) and the natural transverse 

radius (𝑅)  of the tape spring. Hence, the initial coiling ratio (𝑐𝑖) and final coiling ratio 

(𝑐𝑓) can be expressed as follows: 

𝑐𝑖 = 
𝑟𝑐
𝑅
                                                                         (4.7) 

𝑐𝑓 = 

√(𝑟𝑐 +  
ℎ
2)

2

+
ℎ𝐿
𝜋

𝑅
                                                          (4.8) 

The three different regimes are characterised as follows.   

4.1.1 Bending dominated Region 

Booms undergo blossoming when the coiling ratio 𝑐  < 1. This behaviour can be 

avoided by applying specific tension force at the tip of the tape spring during the 

coiling process.  Referring to recent literature by Wilson et al. [13] and Hoskin et al. 

[21], bending strain energy is used to formulate the required tension force (𝑇) that’s 

why the coiling regime was referred to as bending dominated region. The bending 
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strain energy (𝑈𝑏) stored in the fold of a tape spring can be described in Equation 4.9 

utilizing Timoshenko and Calladine's theories. Fold comprises curved and poly regions 

(see Figure 2.5). 

𝑈𝑏 =  
1

2
𝐷𝐴 [(∆𝜅𝑥)

2 + (∆𝜅𝑦)
2
+ 2𝜈(∆𝜅𝑥∆𝜅𝑦)] + 𝑈𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛                (4.9) 

This study focuses on opposite sense coiling. The strain energy stored in the poly 

region of the fold is represented as 𝑈𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 . The curvature change during the 

opposite sense bending is given by: 

(Δ𝜅𝑥, ∆𝜅𝑦) =  (±
1

𝑅
 , −

1

𝑟
)                                                  (4.10) 

Here positive and negative signs represent equal and opposite sense bending, 

respectively. Note that tape spring does not undergo twisting along the longitudinal 

and transverse direction, i.e., Δ𝜅𝑥𝑦 = 0. 𝑅 and 𝑟 depict transverse radius of curvature 

at the unstressed state and coil radius of the tape spring respectively. If the unstressed 

cross-section of a tape spring has a perfect circular cross-section, then the radius of the 

circular arc is 𝑅. But if it is a curvilinear cross-section composed of straight segments 

and circular arcs,  𝑅 can be described using Equation 4.11 [13]. Here the concept of 

(𝑈)𝑚𝑖𝑛𝑖𝑚𝑢𝑚 at 𝑟 = 𝑅 [54] is used to derive this equation.  

𝑅 =  √

Σ𝑘=1
𝑚 𝑤𝑘 + Σ𝑗=1

𝑛 𝑅𝑗𝛼𝑗

Σ𝑗=1
𝑛 𝛼𝑗

𝑅𝑗

                                                    (4.11) 

where; 𝑤𝑘 represents the length of each straight segment, 𝛼𝑗  and 𝑅𝑗  are subtended 

angle of each arc and corresponding radius. The area of the curved section of the fold 

is as follows: 

𝐴 = 𝑏𝑟𝜙                                                                (4.12) 

The width of the tape spring cross-section (𝑏) is given by 𝑅𝛼. Therefore, the bending 

strain energy of the curved section of a fold during opposite sense coiling is given by 

the following equation: 
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𝑈𝑏(𝑟) =  
𝐷𝛼𝑅𝜙

2
 (
𝑟

𝑅2
+ 
2𝜐

𝑅
+ 
1

𝑟
) + 𝑈𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛                     (4.13) 

 

 

Following the method proposed by Wilson et al. [13] and Hoskin et al. [21], the 

required tension was derived. Figure 4.2 illustrates a small configuration change due 

to 𝑇 by keeping 𝜙 as constant and 𝑟 decreases by 𝑑𝑟. The change in uncoiled length 

(𝑑𝑢) in terms of change in coil radius (𝑑𝑟) is given by: 

𝑑𝑢 = −𝜙 𝑑𝑟                                                            (4.14)  

The work done by the tension force for a given extension 𝑑𝑢 is equal to the change 

in strain energy due to the change in radius 𝑑𝑟, which is expressed as follows: 

𝑑𝑈𝑏(𝑟) = 𝑇𝑑𝑢                                                          (4.15) 

In this region, friction can be ignored since the contact pressure is almost zero. 

According to Seffen et al. [38], ploy length is independent of 𝑟  that means 

 𝑑𝑈𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑑𝑟⁄   is equal to zero. Therefore, differentiating the Equation 4.13 with 

respect to 𝑟 yields:  

𝑑𝑈𝑏
𝑑𝑟

=  
𝐷𝛼𝑅𝜙

2
 (
1

𝑅2
− 

1

𝑟2
)                                           (4.16) 

Combining Equations 4.14, 4.15 and 4.16 and incorporating the change in radius 

during coiling of longer tape springs yields: 

𝑇 

𝜙 𝜙 

𝑟 
𝑟 − 𝑑𝑟 

𝑑𝑢 

Figure 4.2: Coiled geometry of a tape spring undergo change in radius due to the 

application of tension force (𝑇). 
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𝑇 = 
𝐷𝛼

2𝑅
(

𝑅2

(𝑟𝑐 + 
ℎ
2 + 

ℎ𝜙
2𝜋)

2 − 1)                                      (4.17) 

This equation shows how tension force varies with coiling angle during the 

continuous coiling scenario.  

 

Figure 4.3 shows the plot of required tension force with the coiling angle for a steel 

tape spring with 𝑅 = 19.2 mm, 𝛼 = π/2 and 𝐷 = 0.0192 Nm which is coiled around a 

hub with 𝑟𝑐  = 10 mm. Here 𝑟𝑐  is selected such that behaviour lies within bending 

dominated region (𝑐 < 1). Based on Figure 4.3, 𝑇 shows a quadratic decrease with the 

coiling angle. 𝑇 becomes zero when 𝜙 reaches to 
2𝜋

ℎ
 (𝑅 − 𝑟𝑐) −  𝜋.  Beyond this angle 

tape spring may be unstable because according to Equation 4.17 tension force is 

negative meaning it requires compressive force (see Figure 4.3). 

 

Figure 4.3: Variation of required tension force with coiling angle for tape spring 

with 𝑅 = 19.2 mm, 𝛼 = π/2 and 𝐷 = 0.0192 Nm.    
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4.1.2 Loss of Uniqueness (Transition) Region 

When coiling ratio 𝑐 > 1  or 𝜙 >  
2𝜋

ℎ
 (𝑅 − 𝑟𝑐) −  𝜋 , Equation 4.17 yields negative 

tension force which means compressive force requires to be applied. Therefore, tape 

spring with uniformly coiled configuration is unstable [13]. Wilson et al. [13] analysed 

the strain energy of different forms of configurations such as single localized fold, two 

localized folds and with uniform radius see Figure and found single fold configuration 

is more stable than the other two configurations up to 𝑐 = 3.424. Beyond this point 

two-fold configuration is more stable.  

This analogy can be understood using the wrapping scenario of tape spring 

around a quarter circle without any tension force where the radius of that quarter circle 

keeps on increasing (see Figure 4.4).  Initially, it will be in the uniform radius (𝑅) 

configuration (see Figure 4.4 (a)) up to 𝑐 = 1  then single fold configuration (see 

Figure 4.4 (b)) up to 𝑐 = 3.424 beyond that two-fold configuration (see Figure 4.4 (c)) 

up to a certain limit and then three-fold configuration likewise. So, the number of fold 

formation keep on increasing with the coiling ratio. If  𝑐 ≤ 1, then the tape spring 

undergoes longitudinal bending during the wrapping process. But the contribution 

through longitudinal bending becomes negligibly small as the number of folds 

formation increases, this phenomenon happens in tension-dominated region which will 

be described in the next section. Since there is an interaction between longitudinal 

bending and transverse flattening both tension dominated and bending dominated 

effects will affect the transition region.  

 

 

 

 

 

 

 

𝑟1 𝑟2 𝑟3 

𝑅 
𝑅 

𝑅 

𝑅 

𝑟1 < 𝑅 𝑅 < 𝑟2 < 3.424𝑅 3.424𝑅 < 𝑟3 

(a) (b) (c) 

Figure 4.4: Different equilibrium configurations for different hub radii (a) 

uniform radius configuration when 𝑟1 < 𝑅 (b) single fold configuration when 

𝑅 < 𝑟2 < 3.424𝑅 (c) two-fold configuration when 3.424𝑅 < 𝑟3. 
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4.1.3 Tension dominated Region 

Following the method proposed by Wilson et al. [13], mathematical model for required 

tension force was formulated by considering the effect of varying radius. As mentioned 

in the previous section, the number of fold formation keep on increasing beyond  

𝑐 > 3.424. Therefore, at first, coiling requires flattening of tape spring cross-section, 

and then the flattened tape spring undergoes longitudinal bending [13]. Hence tape 

spring undergoes transverse flattening under the action of transverse pressure where 𝑇 

together with longitudinal curvature (1 𝑟⁄ ) causes the pressure against the cylinder, 

Figure 4.5. Accordingly, the relationship between 𝑇 and pressure per unit length (𝑝) 

of the tape spring can be expressed as: 

𝑇 = 𝑝𝑟                                                                    (4.18)          

 

 

 

 

 

 

 

 

 

 

 

 

 

To estimate 𝑝, Wilson et al. [13] have made a simple approximation such that half 

of the cross-section was approximated as the tip deflection of a cantilever beam. But 

this mathematical model over predicts the numerical results in [13], see Figure 4.7. 

Therefore, in this study transverse flattening was simplified as a curved beam with 

length 𝛼𝑅 undergoing deflection equal to the edge height of the cross-section of the 

𝑅 

𝑇 

𝑇 

𝑝 

𝑟 

(a) (b) 

Figure 4.5: Tape spring undergoing transverse flattening together with longitudinal 

bending (a) undeformed configuration (b) flattened and longitudinally bent 

configuration [13]. 
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tape spring due to the force 𝑝 (see Figure 4.6). Castigliano’s theorem was used to 

formulate the relationship between 𝑝 and mid deflection (𝛿) given by the following 

equation.  

𝛿 =  
1

𝐷
∫ 𝑀𝜃

𝜕𝑀𝜃

𝜕𝑝
𝑅𝑑𝜃

𝛼

0
                                                      (4.19)          

where; 𝑀𝜃 can be expressed as: 

𝑀𝜃 = 𝑝𝑅sin(𝜃 ⁄ 2)cos ((𝛼 − 𝜃) ⁄ 2)                                     (4.20) 

Substituting Equation 4.20 and Equation 4.18 in Equation 4.19 and solving Equation 

4.19 yields: 

𝑇 = 
2𝐷(1 − cos(𝛼 ⁄ 2))

sin2(𝛼 ⁄ 2)(𝛼 − sin𝛼)𝑅
 (
𝑟

𝑅
)                                        (4.21) 

 

 

Figure 4.7 depicts the comparison between numerical results from [13], the 

mathematical model developed by Wilson et al. [13] and the mathematical model 

developed here. Accordingly, the mathematical model developed in this study shows 

a better correlation with numerical results than the model developed in [13]. Here 

comparison was made for the single coiling scenario. 

Figure 4.6: Schematic representation of transverse flattening of a tape spring as a 

curved beam bending. 



77 

 

 

 

Variation of required tension force with the coiling angle for coiling of a longer 

tape spring in tension dominated regime can be expressed as: 

𝑇 =  
2𝐷(1 − cos(𝛼 ⁄ 2))

sin2(𝛼 ⁄ 2)(𝛼 − sin𝛼)𝑅
 (
𝑟𝑐 + 

ℎ
2 + 

ℎ𝜙
2𝜋

𝑅
)                                 (4.22) 

 

Figure 4.8 shows the variation of required tension force with the coiling angle for 

a steel tape spring with 𝑅 = 19.2 mm, 𝛼 = π/2 and 𝐷 = 0.0192 Nm which is coiled 

around a hub with 𝑟𝑐 = 70 mm. Here radius of the hub is selected such that behaviour 

lies within tension dominated region (𝑐 ≥ 3.424). As seen in Figure 4.8, 𝑇 increases 

linearly with the coiling angle. 

 

Figure 4.7: Comparison of Tension force in tension dominated regime for model 

developed in [13], numerical results from [13] and curved beam model. 

[13] 
[13] 



78 

 

 

Examining Figure 4.3 and Figure 4.8, indicates that there is no significant change 

in required tension force for smaller coiling angles (coil with relatively small number 

of layers). Note that the effect of frictional forces was not considered in the developed 

analytical model. Applying a varying tension force is not practically feasible option. 

So, we are going to apply a constant tension force and this constant tension force is the 

maximum required tension force during the whole coiling process. If the hub radius 

and the transverse radius of the tape spring are known, the region where the coiling 

process begins can be determined.  The final coiling angle can be determined using 

Equation 4.5 if the boom's total coiling length is known. The tension force higher at 

the initial stage if the whole coiling process happens within the bending dominated 

region. If it falls within the tension dominated region, then the maximum tension force 

occurs at the final stage of coiling. 

 

Figure 4.8: Variation of required tension force with coiling angle for tension 

dominated regime of tape spring with 𝑅 = 19.2 mm, 𝛼 = π/2 and 𝐷 = 0.0192 Nm. 
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4.2 Bistable Composite Tape Spring Booms 

This study further extended for bistable composite tape springs which are stable in 

both coiled and deployed configuration. As discussed in Section 2.3, these booms also 

exhibit localization behaviour. Secondary stable configuration of Bistable composite 

tape spring occurs when the radius of fold region yields following expression:  

𝑟𝑠 = √
𝐷11
𝐷22

 𝑅                                                                (4.23) 

where; 𝑟𝑠 refers to the radius of the fold at the secondary stable configuration. Similar 

to isotropic tape spring, these booms also undergo blossoming when 𝑟 𝑟𝑠⁄  is less than 

1 and tend to form a series of localized folds for larger values of 𝑟 𝑟𝑠⁄ .  

Same procedure was followed to formulate the required tension force in bending 

and tension dominated regimes. The bending behaviour of bistable composite tape 

spring is given by Equation 4.24. Detailed derivation is explained in Section 2.3.  

[
𝑀𝑥

𝑀𝑦
] =  [

𝐷11 𝐷12
𝐷12 𝐷22

] [
𝜅𝑥
𝜅𝑦
]                                                     (4.24) 

Bending strain energy stored in curved part of a bistable composite tape spring can be 

expressed as: 

𝑈𝑏 = 
𝐴

2
 [𝜅𝑥 𝜅𝑦 𝜅𝑥𝑦]𝐷 [

𝜅𝑥
𝜅𝑦
𝜅𝑥𝑦

]                                               (4.25) 

The bending strain energy stored in both curved and poly regions is given in 

Equation 4.26. This equation was further modified into Equation 4.27 by substituting 

relevant parameters, where boom undergoes equal sense bending.  

𝑈𝑏 = 
𝐴

2
(𝐷11Δ𝜅𝑥

2 + 2𝐷12Δ𝜅𝑥Δ𝜅𝑦 + 𝐷22Δ𝜅𝑦
2)  + 𝑈𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛                  (4.26)  

𝑈𝑏 = 
𝛼𝑅𝜃

2
 (
𝐷11
𝑟
−
2𝐷12
𝑅

+ 
𝑟𝐷22
𝑅2

 ) + 𝑈𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛                      (4.27) 
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By following the same procedure used for isotropic tape spring, the required 

tension force for coiling of bistable composite tape spring for the bending dominated 

region can be expressed as:  

𝑇 =  
𝐷11𝛼

2𝑅
 ((

𝑅

𝑟
)
2

−
𝐷22
𝐷11

 )                                                (4.28) 

The above equation shows a similar quadratic trend which is observed in the isotropic 

tape spring. When 𝑟 =  √
𝐷11

𝐷22
 𝑅, the required tension force is zero. Incorporating the 

change in radius during coiling of longer bistable composite tape springs yield: 

𝑇 =  
𝐷11𝛼

2𝑅
 ((

𝑅

𝑟𝑐 + 
ℎ
2 + 

ℎ𝜙
2𝜋

)

2

−
𝐷22
𝐷11

 )                                        (4.29) 

For tension dominated region, the same approach that was done for isotropic tape 

spring was followed where transverse flattening of tape spring in equal sense direction 

was also approximated as a curved beam bending. The required tension force for 

uniform coiling of bistable composite tape spring for tension dominated regime is 

given as:     

𝑇 = 
2𝐷22(1 − cos(𝛼 ⁄ 2))

sin2(𝛼 ⁄ 2)(𝛼 − sin𝛼)𝑅
 (
𝑟

𝑅
)                                        (4.30) 

where bending stiffness in the isotropic model (Equation 4.21) was replaced by 

bending stiffness in the transverse direction (𝐷22).  

4.3 Energy Model During the Coiling Process 

Figure 4.9 shows a typical coiling process. The model being developed here is based 

on the assumption that the cross-section at each layer is perfectly flat (fully flattened 

stage). The energy balance equation during the coiling process of the tape spring boom 

is as follows: 

𝑊𝑇 +  𝑊𝐵 +𝑊𝑓 − 𝑊𝜏 = 0                                                  (4.31) 

where; 𝑊𝑇 – work done by the applied tension force, 𝑊𝐵  – boom bending energy,  

𝑊𝑓 – work done by friction torque, 𝑊𝜏 – work done by hub torque.  
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Here boom root is fully fixed to the hub, then the boom undergoes coiling by 

rotating the hub with uniform angular velocity (relatively low speed) where a fixed 

tension force (maximum required tension force throughout the coiling process) was 

applied at the other end of the boom. By substituting each term in Equation 4.31, the 

torque (𝜏𝐻𝑢𝑏) required to coil the tape spring around the hub is expressed as:  

𝜏𝐻𝑢𝑏 𝑑𝜙 =  
𝐷𝑅𝛼𝑑𝜙

2
[
𝑟

𝑅2
+  
2𝜐

𝑅
+  
1

𝑟
] + 𝑇𝑟𝑑𝜙 + 𝜏𝑓 𝑑𝜙                         (4.32) 

where 𝜏𝐻𝑢𝑏 and 𝜏𝑓 denote hub and friction torques respectively. The friction torque 

caused by friction between hub and boom (𝜏𝑓ℎ𝑏) and boom itself (𝜏𝑓𝑏𝑏) (see Figure 

4.10). The friction force is significant in tension dominated and loss of uniqueness 

regions because there is a contact pressure due to transverse flattening of the tape 

spring. But it is insignificant in bending dominated region. Here we assumed there is 

no relative motion between layers during the coiling.  

 

 

 

𝑑𝑢 

𝑑𝜙 𝑇 

𝑟 

Figure 4.9: Schematic diagram of tension stabilized coiling of a longer tape spring. 
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By incorporating variation in coiling radius with time and neglecting the effects of 

friction, Equation was modified as: 

 

𝜏𝐻𝑢𝑏(𝜙) =  
𝐷𝑅𝛼

2
[
𝑟𝑐 +  

ℎ
2 +  

ℎ𝜙
2𝜋

𝑅2
+  
2𝜐

𝑅
+  

1

𝑟𝑐 +  
ℎ
2 +  

ℎ𝜙
2𝜋

] + 𝑇 (𝑟𝑐 +  
ℎ

2
+  
ℎ𝜙

2𝜋
)       (4.33) 

 

Figure 4.11 shows the plot of required torque for coiling of tape spring with length 

𝐿 =1000 mm,  𝑅 = 19.2 mm, 𝛼 = π/2 and 𝐷 = 0.0192 Nm which is coiled around a hub 

with 𝑟𝑐  = 80 mm. Here a constant tension force 8.6 N was applied throughout the 

coiling process and this constant force is the maximum required tension force 

throughout the coiling process. Since the coiling process lies within the tension 

dominated region, maximum tension force is at the end of coiling process. This figure 

comprises torque due to boom bending, torque due to applied tension force and the 

combined. It can be seen that each torque component shows a steady variation with 

𝜏𝑓ℎ𝑏 𝜏𝑓𝑏𝑏  

Figure 4.10: Schematic representation of frictional forces acting between hub and 

boom (𝜏𝑓ℎ𝑏) and boom itself (𝜏𝑓𝑏𝑏) during tension stabilized coiling process. 
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the coiling angle.  In addition, the torque due to tension force is the highest contributor 

for the required torque throughout the coiling process. 

 

Predicting the power required for coiling and uncoiling will help to choose what 

kind of motor we select. Energy (𝐸′) required for uniform coiling of a tape spring boom 

can be expressed as: 

𝐸′ =  ∫ 𝜏𝐻𝑢𝑏(𝜙)𝑑𝜙

𝜙𝑓

0

+ 
(𝐼𝐻𝑢𝑏 + 𝐼𝑇𝑎𝑝𝑒)𝜔

2

2
                                      (4.34) 

The required power for coiling can be obtained by multiplying the required energy (𝐸′) 

from Equation 4.34 with the time (𝑡) from Equation 4.6. 

 

 

 

Figure 4.11: Variation of required torque with coiling angle during coiling of tape 

spring with 𝐿 = 1000 mm, 𝑅 = 19.2 mm, 𝛼 = π/2 and 𝐷 = 0.0192 Nm. 
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4.4 Summary 

Analytical models were developed for required minimum tension force during tension 

stabilised coiling of longer tape spring booms, where coiled geometry was 

approximated as an Archimedean spiral. In order to derive the tension force, bending 

strain energy strain energy was employed in bending dominated regime, and 

Castigliano’s theorem was used in tension dominated region. Based on the study, 

tension force shows quadratic decrease and linear increase with coiling angle for 

bending dominated regime ( 𝑐  < 1) and tension dominated regime ( 𝑐  ≥  3.424) 

respectively. The developed framework was further extended to coiling of bistable 

composite tape spring. Furthermore, an energy model was developed to determine the 

necessary torque for the tension-stabilized coiling of tape spring booms where the 

effect of friction was also considered. It was found that the torque due to tension force 

is the highest contributor for the required torque throughout the coiling process. 
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CHAPTER 5  

5. NUMERICAL MODELLING OF COILING OF TAPE SPRING    

BOOMS 

Coiling of tape spring booms were simulated in commercially available finite element 

software Abaqus/Explicit. The first part of the chapter gives an overview of implicit 

and explicit solvers in Abaqus. Next, techniques to control the simulation of coiling of 

tape spring booms in Abaqus/Explicit are described. Following that finite element 

model of initial configuration and simulation sequences of the analysis are described. 

Selecting suitable simulation parameters through sensitivity studies is explained next. 

Finally, results obtained from the analysis are presented.      

5.1 Overview 

Abaqus has two main solvers such as Abaqus/Standard and Abaqus/Explicit for 

different analysis types. Abaqus/Standard solves both linear and nonlinear static 

problems based on implicit scheme where it uses Newton Raphson method or quasi-

Newton method [66]. Implicit solver solves static problems using the following 

equation: 

𝐾𝑢 = 𝐹′                                                                   (5.1) 

where, 𝐾,𝑢 and 𝐹′ represent stiffness, displacement and external load of the system 

respectively. For a linear problem stiffness matrix and load vectors remains constant 

but for a nonlinear problem it varies with deformation history. Therefore, to get a 

converged solution it requires tangential stiffness matrix and iteration. But for severely 

nonlinear problems which involves substantial change in geometry that are associated 

with instabilities, dynamic snaps and extensive contact or sliding between different 

parts of the structure. This leads to convergence difficulties in implicit solver [66].  

On the other hand, Abaqus/Explicit is essentially designed to solve dynamic and 

transient events where inertia plays a dominant role [66]. The governing equation to 

solve explicit scheme is as follows: 
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𝑚𝑢̈ + 𝐶𝑢̇ + 𝐾𝑢 = 𝐹′                                             (5.2) 

where 𝑚𝑢̈ and 𝐶𝑢̇ correspond to inertial and damping terms respectively. To solve the 

dynamic equation, it implements central difference integration rule with the use of 

diagonal or lumped element mass matrices [66]. Explicit scheme solves the problem 

such that it directly obtains the displacement solution from previous increments to 

solve next increment. So, iteration and tangential stiffness matrix are not required. 

Therefore, explicit solver is more efficient than implicit solver to solve highly 

nonlinear problems [66].  

Coiling process occurs at relatively low speed hence static or quasi-static analysis 

approach is more appropriate. Though the implicit scheme seems more relevant, 

coiling of theses thin shells involve significant geometric changes that are associated 

with instabilities such as dynamic snaps. Also, extensive contact /sliding between 

different parts of the structure. If the implicit scheme is used, complex contact causes 

severe convergence difficulties. To overcome convergence issues, stabilization 

algorithm has to be introduced. But solution may terminate in the middle of the 

analysis even if we use stabilization algorithm in the coiling simulation. On the other 

hand, explicit scheme is most robust in handling instabilities, dynamic snaps and 

extensive contacts without any convergence difficulties. However, it requires special 

consideration to model quasi-static events.  

5.2 Abaqus/Explicit Simulation Techniques 

In order to control the analysis, there are some techniques considered in 

Abaqus/explicit simulations. To minimize the number of increments required to 

complete the analysis time increment should be large as much as possible. However, 

the stability limit of explicit solver is defined based on the Courant condition i.e., the 

time increment should be lower than the time taken for a wave to travel between 

adjacent nodes in the finite element mesh [69], [70]. The relationship for the stable 

time increment at each time increment is approximately given by Equation 5.3 [69], 

where it considers damping effects. 

Δ𝑡 = 𝛼 (√1 + 𝜉2 −  𝜉)
𝑙𝑚𝑖𝑛
𝑐𝑑

                                         (5.3) 
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where; 𝛼- time scaling factor, 𝜉- fraction of critical damping in highest frequency 

mode and 𝑙𝑚𝑖𝑛- shortest length of finite element respectively. 𝑐𝑑 - dilatational wave 

speed is given by: 

𝑐𝑑 ≈  √
𝐸

𝜌
                                                                  (5.4) 

 𝐸 and 𝜌 denote modulus of elasticity and material density, respectively.   

It is computationally impractical to model quasi-static events in its natural time 

period because it requires millions of time increments. Therefore, to obtain economical 

solution it is necessary to increase the speed of process artificially. There are two 

approaches to obtain economical solution for quasi-static problems in explicit dynamic 

solver [66]. First, increasing the loading rate to reduce the time scale of the process. 

Second, mass scaling allows you to model process in their natural time scale by 

artificially increasing the density of the material by a factor of  𝑓2 increasing the stable 

time increment by a factor of 𝑓. This approach is useful in simulations involving rate-

sensitive materials. However, inertial forces can be affected by mass scaling. Therefore, 

mass scaling approach offers no advantage in the quasi-static work performed here.  

With regards to the loading rate, loads should be applied smooth as possible to 

maintain the quasi-static condition in the simulation. This can be achieved by 

Abaqus/Explicit command *Amplitude, Definition = Smooth Step which will eliminate 

accelerations imposed at the initial and final stages of the loading step. When utilizing 

an increased loading rate, a careful consideration should be taken because at higher 

loading rates inertia forces become significant which will amplify the dynamic 

responses. Therefore, a key question is how short simulation time can be made without 

any excitations. For this purpose, Abaqus [66] recommends a time scale of ten times 

the natural period of the system as an initial estimate. 

Numerical damping should be introduced to the system to dissipate energy build 

up (especially kinetic energy) during the coiling phase. However, the simulation 

results should not be affected by the amount of numerical damping introduced into the 

system. There are several ways Abaqus/Explicit allows inclusion of numerical 
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damping to the system, of which viscous pressure damping is utilised in this analysis 

because it is an efficient tool for keeping quasi-static solution stable [31]. Here, 

velocity-dependent normal pressure is applied on the surface of the shell elements as 

follows: 

𝑝 =  − 𝑐𝜐𝝊. 𝒏                                                         (5.5) 

The coefficient 𝑐𝜐 should be carefully specified such that the structure will not 

undergo overdamping which would lower the accuracy of simulation results. 

Generally, Abaqus [66] recommends initial estimate of 𝑐𝜐 as 1-2 % of 𝜌𝑐𝑑, where 𝜌𝑐𝑑 

is given by following equation. 

𝜌𝒸𝑑 =  𝜌√
𝐸(1 − 𝜈)

𝜌(1 + 𝜈)(1 − 2𝜈)
                                     (5.6) 

where 𝒸𝑑 and 𝜈 denote dilation wave speed and Poisson’s ratio of the material.  

Comparison between histories of various energy terms in the energy balanced 

equation help to evaluate whether a particular analysis in Abaqus/Explicit is yielding 

an appropriate quasi-static response [66]. The energy conservation yields: 

𝐸𝐼 + 𝐸𝑉𝐷 + 𝐸𝐹𝐷 + 𝐸𝐾𝐸 − 𝐸𝑊= 𝐸𝑇𝑜𝑡𝑎𝑙= Constant                 (5.7) 

 

where; 𝐸𝐼 - internal Energy (combination of elastic strain energy ( 𝐸𝐸 ), energy 

dissipation due to inelastic process (𝐸𝑃) and viscoelasticity or creep (𝐸𝐶𝐷) and artificial 

strain energy (𝐸𝐴) due to hourglass resistances and transverse shear in shell and beam 

elements), 𝐸𝑉𝐷 - energy absorbed by viscous dissipation, 𝐸𝐹𝐷 - frictional dissipation 

energy, 𝐸𝐾𝐸 - kinetic energy, 𝐸𝑊 – work done by external forces and 𝐸𝑇𝑜𝑡𝑎𝑙 -  total 

energy in the system. There are two main checks on the energy histories. First, for a 

quasi-static solution kinetic energy at any particular time should be a small fraction  

(< 1%) of the internal energy of the system during the analysis. Second, energy balance 

should be remained equal to the external energy introduced to the system.  
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5.3 Finite Element Model of Coilable Tape spring Boom 

Configuration 

Initial configuration of coiling of shorter and longer tape spring booms are discussed 

here. Half of the structure was modelled considering the plane symmetric condition. 

Here tension stabilized coiling was assumed to be symmetric with regard to 

deformation and load distribution at all stages. Opposite sense wrapping was 

considered in this numerical study. 

Initially, the coiling of tape spring with length in the order of one coiled 

circumference of the hub (single coiling scenario) was simulated to serve two 

purposes. First, to determine the simulation parameters through various sensitivity 

studies to get accurate results and maximal speedup of the simulation. Conducting 

study for longer tape spring is time consuming so single coiling scenario model is 

developed. Then the suitable parameters were utilized for coiling simulation of a 

longer tape spring boom (multiple coiling scenario). Second, to predict the minimum 

required tension force to prevent the formation of localized folds.  

The finite element model shown in Figure 5.1 comprises of hub of radius 

 𝑟𝑐  = 80 mm, flattening cylinder of radius 𝑟𝑐𝑓  = 20 mm and a fully deployed tape 

spring. The geometric parameters used for the steel tape spring boom are given in 

Table 5.1, following the experimental study conducted by Wilson et al.[13].  

Coiling in the tension dominated regime was simulated, corresponding to a coiling 

ratio 𝑟𝑐 𝑅⁄  = 4.167 (> 3.424).  A shorter tape spring of length 𝐿 = 570 mm and a longer 

tape spring of length 𝐿 = 3150 mm were chosen for the study. Here length of boom 

was chosen such that uncoiled length of the boom (at the end of coiling) is greater than 

length of poly region (𝐿𝑝) based on Equation 2.1, in order to prevent the effects from 

transition region.  

Table 5.1: Tape spring boom properties used in the numerical simulation. 

 

𝑅 (mm) 𝛼 (0) ℎ (mm) 𝐸 (GPa) 𝜌 (kgm3) 𝜈 

19.2 900 0.1 210 8050 0.3 
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 Figure 5.1: Symmetric finite element model (a) initial configuration (b) node set 

and surfaces of the tape spring. 

Tape spring boom  

Rigid Hub 

Rigid roller 

Symmetric boundary condition 

No separation contact area 

Tip node 

(a) 

(b) 

Tape spring boom  
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Since the thickness of the tape spring boom is very much smaller than its transverse 

radius (𝑅) and width (𝑏), the use of shell elements to model tape spring boom is 

appropriate in terms of capturing out-of-plane bending and in-plane stresses. However, 

when choosing the exact shell element type from the readily available element types 

in Abaqus/Explicit, it is necessary to evaluate their relative accuracy in capturing such 

behaviour, as well as the computational efficiency and cost-effectiveness of utilizing 

them.  

S4 quadrilateral shell elements are useful for modelling thin structures because 

only one element is required through the thickness and the thickness has no effect on 

the explicit solver computations [71]. Due to the low computational cost, S4R 

elements; 4-node general-purpose shell, reduced integration with hourglass control, 

finite membrane strains were selected for the analysis. These elements also avoid 

membrane and shear locking effects. However, these elements are susceptible to mesh 

instability often known as hour glassing. With Abaqus' enhanced hourglass control, 

hour glassing is almost never a problem [66].   Both hub and flattening cylinders were 

also modelled by S4R elements as rigid bodies (rigid body constraint).  

Uniform meshing was defined since the whole tape spring undergoes significant 

geometric changes during the coiling process, such that meshes utilizing elements with 

3 mm edge length were employed. This results in 1146 nodes and 950 shell elements 

(S4R) for shorter tape spring and 6306 nodes and 5250 shell elements (S4R) for longer 

tape spring.  Both hub and flattening cylinder were modelled with the same mesh size 

as the boom. 

As the tape spring comes into contact with itself, hub, and flattening cylinder, it 

is necessary to define several contact surfaces. The General contact feature in the 

Abaqus allows users to define contact between all or multiple surfaces of a model. And 

the general contact algorithm is usually faster than the contact pair algorithm. Hence 

General contact feature was assigned to the entire model by specifying Contact 

Inclusions, All Exterior. With this option Abaqus/Explicit automatically defines 

potential contact surfaces that will come into contact.  
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On the other hand, the root of the tape spring can be attached to the hub by 

specifying *Surface Behavior, no separation, pressure-overclosure=HARD, and 

*Friction, rough between the hub and a strip of tape spring. With this option, a small 

strip at the root of the tape spring can be wholly fixed with the hub, Figure 5.1.      

5.4 Coiling Simulation 

Coiling process was simulated in two steps such that the tape spring boom is attached 

to the hub and coiled around the hub. First step involves flattening the root of the boom 

and attached it to the hub (see Figure 5.2 (a)) where no separation contact was assigned 

between the hub and a strip of tape spring root. In this step, no separation contact pair 

(surface to surface contact) was assigned between the hub and a strip of tape spring 

(see Figure 5.1 (b)), to attach root of the tape spring with the hub. Once the tape spring 

root attached with the hub in the first step, the contact between flattening cylinder and 

the tape spring was excluded in the second step by specifying Contact Exclusions 

between tape spring and flattening cylinder.  

Second step involves coiling process of tape spring boom (see Figure 5.2 (b)) 

where displacement/velocity boundary condition was applied to the reference point of 

the hub. In this step, a fixed amount of tension force is applied at the tip node of the 

free end of the tape spring boom during the whole coiling process. Table 5.2 provides 

a thorough description of the boundary and contact conditions, respectively, that were 

used in the analysis, where u, uR and vR  correspond to displacement, rotation, and 

rotational velocity respectively. Figure 5.1 shows global axes direction and the node 

sets defined in the tape spring model.  

For the shorter tape spring, tension force obtained from the analytical model 

(Equation 4.22) was applied and then geometry of the coiled configuration is checked 

whether it is fully wrapped without any localized folds. For the longer tape spring, 

fixed tension force is the maximum required tension force throughout the coiling 

process which is obtained from the developed analytical model (Equation 4.22). Since 

coiling process fall into the tension dominated regime, the maximum tension force is 

at the final stage of coiling. The required minimum tension force at initial and final 

stages of coiling of 3m long tape spring are 3.25 N and 3.28 N respectively.  
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𝑇 

𝜔 

RPHub 

No separation contact 

Tip node 

𝑇 

𝜔 

RPHub 

RPFlattener 

Tip node 

(a) 

(b) 

Figure 5.2: Simulation steps (a) flattening (b) tension stabilised coiling. 
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Table 5.2: Summary of boundary conditions used in the simulation. 

Parts Node set Simulation steps 

Flattening Coiling 

Rigid hub Reference point 

(RPHub) 

u1= u2= u3= 0 

uR1= uR2= uR3= 0 

u1= u2= u3= 0 

uR1= uR2=0, uR3 ≠ 0 

vR3= 𝜔 = 5.76 rads-1 

Rigid roller Reference point 

(RPFlattener) 
u1= u3= 0 

u2 = 𝑅(1 − 𝑐𝑜𝑠𝛼) − 𝑡  

     = 5.52 mm 

uR1= uR2= uR3= 0 

u1= u2= u3= 0 

uR1= uR2= uR3= 0 

Tape spring Symmetric 

edge 

u3= uR1= uR2= 0 u3= uR1= uR2= 0 

Tip node u2= 0 u2= 0 and 𝑇 = 3.25 N 

 

 

5.5 Simulating Tension Force 

To find the minimum required tension force to prevent the formation of localized folds, 

we followed a different approach than the method proposed by Wilson et al. [13]. 

Displacement boundary condition was imposed at the tip node (𝑥-direction) instead of 

applying fixed tension during the coiling process (step 2), which is expressed as: 

𝑢𝑥 = (𝑟𝑐 +
ℎ
2⁄ )𝜙                                                          (5.8) 

Here there is only one turn so the radius of the coil was approximated as a circle with 

radius (𝑟𝑐 +
ℎ
2⁄ ). The parameters are shown in Figure 5.3. 
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Then, an additional step (relaxation) was incorporated for 0.1 s, to allow the tape 

spring to relax, following the coiling process. Once the tension force variation is 

obtained, the average tension force at relaxation will be applied to the same end node 

without any boundary condition in the 𝑥- direction. Then the midline geometry of the 

final coiled configuration will be checked whether there are any localized folds with 

the application of the minimum tension force.  

If the precise geometry of the coil is known, this study can be extended to coiling 

of longer tape springs.  

5.6 Setting Simulation Parameters 

Various sensitivity studies were performed in order to choose a set of simulation 

parameters to yield accurate results and maximize simulation speed. A frequency 

analysis was performed in Abaqus/Standard and the fundamental natural period of 

vibration of the tape-spring boom in the deployed configuration was computed to 

determine the loading rate of the simulation. The estimated period was 10 ms for the 

shorter tape spring and 0.145 s for the longer tape spring.  Hence, as an initial estimate 

coiling of the tape spring boom was set to occur over a time period of ten times the 

fundamental periods [66]. However, the kinetic energy exceeded the limit of 1– 5% of 

internal energy for this time scale. Therefore, a time scale of 2s was chosen through a 

trial-and-error process ensuring that the kinetic energy is maintained within the limits, 

see Figure 5.4. This time scale corresponds to the angular velocity of 5.67 rad s-1, 

which will be applied to the coiling of longer tape spring booms.  

𝑟𝑐 +
ℎ
2⁄  

𝜙 

𝑢𝑥 

End node 

Figure 5.3: Schematic illustration of method to find the required minimum tension 

force. 
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In order to maintain the quasi-static condition, the simulation requires smooth 

application of load/displacement in order to avoid inertial effects. Hence, flattening,  

coiling angular velocity and tension force were applied using smooth step amplitude 

definition in Abaqus/Explicit. However, small peaks were seen in the kinetic energy 

variation in the simulation, indicating the need for viscous damping to keep the 

numerical model stable throughout. Hence, viscous pressure loading was applied to 

the tape spring to dampen the observed dynamic instabilities in a minimal number of 

time increments. The value of  𝜌𝒸𝑑 (see Equation 5.6) is equal to 4.77 ×10-2 for tape 

spring boom material (see Table 5.1).  By following Mallikarachchi [31], 𝑐𝜐= 2× 10-5 

𝜌𝑐𝑑 was chosen as the starting point, which is approximately equal to 9.54 ×10-7. 

Figure 5.5 shows the energy history of the single coiling simulation. Throughout 

the simulation, the total energy remains close to zero which satisfies the energy balance 

condition. Also, negligible viscous dissipation energy shows that the deployment is 

unaffected by the imposed viscous pressure. Based on the sensitivity study presented 

in this section, it was decided that the parameters  𝜔 = 5.67 rad s-1 and 𝑐𝜐= 9.54 ×10-7 

Figure 5.4: Comparison between internal energy and kinetic energy profiles for 

coiling simulation with 𝜔 = 5.67 rad s-1. 

Flattening Coiling 

0.1 
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are best for coiling simulation of the tape spring boom. The same parameters were 

used for coiling of longer tape spring boom. 

 

 

 

 

 

     

 

 

 

 

 

 

 

5.7 Results and Discussion 

Snapshots taken during the coiling process of shorter tape spring boom are displayed 

in Figure 5.6 (hub and rigid roller are not included). The tension force from the 

developed analytical model (Equation 4.22) was applied to coil the shorter tape spring 

boom, and the geometry of the mid-line coil was checked. Accordingly, Figure 5.7 

shows overlap between coiled geometry and hub geometry. It should be noted that tape 

spring boom fully wrapped around the hub without any localized folds. Also, it can be 

confirmed that geometry can be approximated as circular for single coiling scenario. 

This is useful for boundary condition defined in the Equation 5.8.  

 

Figure 5.5: Energy histories for coiling simulation with 𝜔 = 5.67 rad s-1 and 

𝑐𝜐= 9.54 ×10-7. 

Flattening Coiling 

0.1 
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Coiling, 𝜙 = 𝜋  Coiling, 𝜙 = 1.917 𝜋  

Figure 5.6: Snapshots taken during coiling simulation of shorter tape spring booms. 
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Figure 5.7: Comparison between hub geometry and coiled geometry of tape spring 

boom when 𝑇 = 3.25 N. 
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The energy history of the simulation of coiling of the longer tape spring boom is 

presented in Figure 5.8, where parameters determined from a sensitivity study in 

Section 5.6 were utilized.  It can be seen that, kinetic energy lies within 1 % if the 

internal energy, yielding a quasi-static response. However, simulation yielded a 

significant viscous dissipation energy in comparison to internal energy. This could be 

due to Abaqus/Explicit assigned a default contact damping force (𝑓𝑣𝑑) for penalty 

contact, which is expressed as follows. 

𝑓𝑣𝑑 = 𝜇0𝐴′𝜐𝑟𝑒𝑙
𝑒𝑙                                                   (5.9) 

where 𝜇0, 𝐴′ and 𝜐𝑟𝑒𝑙
𝑒𝑙  represent damping coefficient, nodal area and rate of relative 

motion between the two surfaces. The default value of 𝜇0 is 0.03 Ns/m, which leads to 

the significant increase in viscous dissipation. On the other hand, making 𝜇0 = 0 will 

cause instabilities in energy balance of the simulation [72]. Further analysis revealed 

that the viscous dissipation energy of the tape-spring alone for 𝜇0  = 0.03 Ns/m is 

negligible (Figure 5.8). This indicates that the viscous damping has no impact on the 

tape spring. It should be noted that the total energy for this simulation shows a gradual 

increase after 2.5 s. This may be due to the presence of considerable amount artificial 

energy during the simulation. This requires further investigations, especially in the 

transition region from no separation contact to separation contact. 

 

 

 

 

 

 

 

 

Flattening Coiling 

Figure 5.8: Energy histories for coiling simulation of longer tape spring boom. 
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Perfectly coiled configuration of 3.15 m long tape spring boom is shown in Figure 

5.9, where hub was rotated for around six turns in the simulation to form a coil with 

six layers. Figure 5.10 shows the variation of required torque to coil the tape spring 

boom. The noise of raw data was reduced using the MATLAB function smooth (x, y, 

span, 'rloess') with the span setting to 0.2. The "rloess" approach is a local regression 

analysis that uses weighted linear least squares, a second-degree polynomial model, 

and lowers the weight of outliers in the regression. The smooth application of the 

tension force and angular velocity utilized in the simulation is what caused the smooth 

increase in torque at the initial stage. Torque reaches a steady level with some 

fluctuations.  Instabilities in the energy histories seen in Figure 5.10 might be the cause 

of fluctuations. Moreover, analytical model (Equation 4.33) correlated well with the 

steady state torque of the numerical model.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9: Coiled configuration of 3.15 m long tape spring boom. 
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Figure 5.11  shows the variation of required tension force with the coiling angle, 

for the wrapping technique described in Section 5.5.  The noise of raw data was 

reduced using the MATLAB function smooth (x, y, span, 'rloess') with the span setting 

to 0.2. The tension force obtained at the relaxation step is approximately equal to 2 N, 

which is lower than the tension force from the developed analytical model (Equation 

4.22). In order to check the applicability of this value, the average tension force 

obtained at the relaxation step was applied during tension stabilized coiling simulation 

described in Section 5.4 and the midline geometry was checked with the hub geometry, 

Figure 5.12. As displayed in Figure 5.12, tape spring geometry matched well with the 

hub geometry without any localised folds.  

Following the method described above, a numerical parametric study was carried out 

to determine how the tension force varied with various coiling ratios. The hub radius 

was changed from 𝑟𝑐  = 8 mm to 110 mm in order to investigate the tape spring 

behaviour for a range of coiling ratios.  The same tape spring properties (𝜈 = 0. 3, 

 𝐸 = 210 GPa, 𝜌 = 8050 kg/m 3, and 𝑅 = 19. 2 mm) were utilized in all simulations. 

The length of the tape spring was chosen in each finite element model so that the free 

length was larger than the ploy length in order to avoid the effect of poly region. 

Figure 5.10: Torque profile during coiling of longer tape spring boom. 
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Figure 5.11: Force profile corresponding to coiling simulation of tape spring boom. 

Figure 5.12: Comparison between hub geometry and coiled geometry of tape spring 

boom when 𝑇 = 2 N. 
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Figure 5.13: Variation of required minimum tension force with coiling ratio 

(a) 0 ≤ (𝑟𝑐 𝑅⁄ ) ≤ 6 (b) 1 ≤ (𝑟𝑐 𝑅⁄ ) ≤ 6. 

(a) 

(b) 
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Figure 5.13 presents the variation of minimum tension force required to perfectly 

wrap a tape spring around a hub with coiling ratio. Figure 5.13 represents the three 

regimes that were addressed in Chapter 4. Accordingly, in the bending dominated 

region tension force shows quadratic decrease (98% coefficient of determination (R2)) 

as coiling ratio approaches 1, which shows qualitative agreement with the developed 

analytical model. However, the analytical model underpredicts 𝑇  until the coiling 

ratio of 0.78 and then overpredicts 𝑇. This could be due to the analytical model didn't 

take into account the influence of the clamped condition, which was employed in the 

numerical simulation (no separation contact). The numerical model's findings for the 

tension-dominated region indicate a linear trend with a 91% coefficient of 

determination (R2), which again qualitatively accords with the developed analytical 

model. However, the results are lower than the analytical model prediction. This 

discrepancy may be caused by the assumption that perfect flattening occurs during 

coiling for the analytical model, whereas the edges of the tape spring are not flattened 

perfectly in the numerical simulation due to the boundary effect. Tension force 

exhibits a linear trend with a 95% coefficient of determination (R2) in the loss of 

uniqueness region, i.e. region in between bending and tension dominated regimes. The 

linear fit of the results of the numerical simulation for loss of uniqueness region is 

shown in Equation 5.10. 

                                                        𝑇 = 0.69
𝑟𝑐

𝑅
− 0.55 (N)                                             (5.10) 

Here the gradient of linear fit in loss of uniqueness region is lower than the tension 

dominated region. This is due to the contribution from longitudinal bending and 

transverse flattening as discussed in Section 4.1.2. These findings will be useful in 

developing an analytical model for the required tension force in the loss of uniqueness 

region. 
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5.8 Summary 

The Abaqus/Explicit finite element solver was used to simulate coiling of tape spring 

booms. Abaqus/Explicit simulation techniques to yield an appropriate quasi-static 

response was presented. Considering the plane symmetric condition, only Half of the 

tape spring’s cross-section was modelled. At first, coiling of tape spring with length in 

the order of one coiled circumference of the hub (single coiling scenario) was 

simulated to determine the simulation parameters through various sensitivity studies 

to get accurate results and maximal speedup of the simulation. Checks to obtain a 

stable solution and a detailed description of the simulation parameters were presented. 

Simulation parameters obtained from the sensitivity study were utilized for coiling 

of longer tape spring booms. Numerical model of coiling of longer tape sprig boom 

needs further investigation due to the instabilities observed in energy histories. A good 

correlation has been found between numerical and analytical results in terms of 

required torque for coiling of tape spring booms.  

A new wrapping simulation technique was proposed to predict the minimum 

required tension force to prevent the formation of localized folds where obtained 

tension force slightly lower than the developed analytical model. With this force tape 

spring tightly wrapped without any localised folds. Using this technique, a numerical 

parametric study was conducted by varying the hub radius in order to investigate the 

effect of the coiling ratio on the required minimum tension force. 
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CHAPTER 6  

6. CONCLUSIONS AND FUTURE WORK 

Strain-energy deployed thin-walled booms make use of elastic strain energy during 

storage and are capable of self-deploying to their fully deployed configuration which 

is an ideal candidate to overcome the bottleneck of limited launch vehicle capacity 

faced in space applications. These deployable booms are typically stored by being first 

flattened, coiled around a central hub, and then expanded into a rod-like structure that 

resembles the mechanism of a carpenter's tape measure. A deep understanding of 

flattening and coiling behaviour is crucial for the mission’s success otherwise 

instabilities lead to complicated deployment and potential damages. 

This dissertation has two broad research objectives: firstly, to characterise large 

deformation behaviour of tape spring boom during the flattening process and secondly, 

to characterise the mechanics during tension stabilised coiling of longer tape spring 

booms. Both objectives were analysed through numerical and analytical frame works. 

The main achievements are outlined here and recommendations for future work are 

presented.  

6.1 Flattening Mechanics  

Tape spring booms undergo large deformation during flattening process; hence a deep 

understanding of flattening behaviour is important since the developed stress must be 

within tolerable limits so the structure could recover its original shape at the end of the 

unloading process. In this study, simple analytical and numerical frameworks were 

developed to predict the required flattening force and developed stresses which would 

be helpful for making design decisions.  

Flattening behaviour was idealised under plain strain conditions and the cross-

section of the tape spring was modelled using Abaqus/Standard finite element package. 

Simplified analytical models were developed using elastica beam theory and 

Kirchhoff-Love plate theory. Both numerical and analytical methods are able to 

capture the non-linear behaviour of load-displacement curves. A good correlation 
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between numerical simulation and analytical model has been achieved in terms of 

developed stresses and force displacement relationship. Numerical simulation results 

showed that the tape spring deforms and recovers elastically.    

A numerical parametric study was performed to comprehend the influence of 

geometric and material parameters on the flattening behaviour of the tape spring 

booms. It has been found that required maximum flattening force, transverse and 

longitudinal stresses varied with thickness, transverse radius, and elastic modulus of 

the material. However, they remain constant with varying subtended angles. Variation 

obtained from the parametric study shows a good agreement with each parameter in 

the analytical model. 

Findings from this study will help to predict the deformed cross-section at a 

specific load (compressive or tensile load), the required force to completely flatten 

these booms and the stiffness of radial springs used during coiling and uncoiling 

process. Additionally, the outcomes of parametric studies are useful for informing 

design choices based on particular needs.   

6.2 Coiling Mechanics 

During the coiling process, these shells exhibit unexpected localization with the 

formation of a series of nested localized folds leading to complex and unreliable 

deployment. Applying a sufficiently enough tension force to the free end of the tape 

spring boom while it is being coiled is one option for addressing this problem. This 

study investigated the required minimum tension force during coiling of longer tape 

spring booms used in real-scale satellites and space structures.   

Analytical models were developed by taking into account the effect of varying 

coiling radius, where coiled geometry was approximated as an Archimedean spiral. 

The study shows that the tension force decrease in a quadratic form and linear increase 

is seen with coiling angle for bending dominated regime (𝑐 < 1) and tension dominated 

regime (𝑐 ≥ 3.424) respectively. The developed framework was further extended to 

coiling of bistable composite tape spring. The required torque for the tension-stabilized 

coiling of tape spring booms was also determined using an energy model which took 
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the impact of friction into account. It was found that throughout the coiling process, 

the torque needed was most greatly influenced by the tension force. 

The coiling of tape spring booms was simulated using the Abaqus/Explicit finite 

element solver. Simulation techniques in Abaqus/Explicit to yield an appropriate 

quasi-static response was presented. Only half of the tape spring's cross-section was 

modelled, considering the plane symmetric condition. A sensitivity study was 

conducted to determine the simulation parameters in order to obtain accurate results 

and the fastest possible simulation speed, where the coiling of a tape spring with a 

length roughly equal to one coiled circumference of the hub was simulated. The 

simulation parameters obtained from the sensitivity study were utilized for coiling of 

a long tape spring boom with length 3.15 m. In terms of the required torque for coiling 

tape spring booms, a good correlation has been found between the numerical and 

analytical results.   

Furthermore, a new wrapping simulation approach was presented to determine the 

minimal tension force needed to avoid the formation of localized folds. This method 

yields a lower required tension force than the analytical model. A numerical parametric 

study was conducted using this technique, by varying coiling ratios. The numerical 

results show good correlation with the developed analytical model. Findings from this 

parametric study will be useful in developing an analytical model for the required 

tension force in the loss of uniqueness region. 

 

6.3 Recommendations for Future Work 

Some suggestions for potential future research directives are listed below. 

Flattening mechanics 

• Parametric optimisation of the tape spring booms for efficient flattening, 

coiling, and uncoiling processes.  

• Developing simplified analytical frameworks to characterize flattening 

behaviour of other booms with different cross sections. 

• Extending this study for bistable composite booms. 
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Coiling mechanics 

• Investigating developed stresses and strains during coiling of tape spring 

booms and how the application of constant tension force affects stresses and 

strains. 

• Developing analytical model for required tension force in loss of uniqueness 

region through numerical parametric study using new approach described in 

Section 5.5. 

• Extending this study for bistable composite booms. 

• Developing one-dimensional continuous rod-like model by accounting large 

displacements, large rotations, dynamics and stability effects of coilable boom 

in order to reduce computational efforts. 

•  Carrying out microscopic experimental investigations utilising Digital Image 

Correlation (DIC) techniques, to predict developed stress and strains in coiled 

and transition regions.   
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