
Emergent Model of Emotions Using Buddhist Philosophy

S.N. Nallaperuma

Dissertation submitted to the Faculty of Information Technology,

University of Moratuwa, Sri Lanka for the partial fulfillment of the requirements of the

Degree of MSc in Artificial Intelligence

Declaration

I declare that this dissertation does not incorporate, without acknowledgment, any material previously submitted for a Degree or a Diploma in any University and to the best of my knowledge and belief, it does not contain any material previously published or written by another person or myself except where due reference is made in the text. I also hereby give consent for my dissertation, if accepted, to be made available for photocopying and for interlibrary loans, and for the title and summary to be made available to outside organization.

S. N. Nallaperuma

Name of Student Signature of Student

University of Moratuwa, Sri Lanka Electronic Theses & Dissertations www lib mrt ac lk

Supervised by

Prof. A. S. Karunananda

Name of Supervisor(s)

Signature of Supervisor(s)

Date

Dedicated to

All those who have dedicated their

Sweat and tears,

Smiles and cheers,

To cherish

The fruits of intelligence!

Acknowledgements

Our sincere gratitude is presented,

to professor A. S. Karunananda for his conceptual advices supported immensely to shape up the initial hypothesis, the feedback and various advices provided throughout the project which enhanced the quality of project and paper work;

to Dr. N. Wikramarachchi for his recommendations and feedback provided in early stages of the project which improved the foundations of the project;

to the members of MSc AI batch 2009 (University of Moratuwa) for strengthening the approach by raising questions and discussion points from different perspectives;

to the staff of Faculty of Information Technology, University of Moratuwa for the kind support provided to conduct experiments at evaluation stage;

and to friends and family, for all time encouragement and support to carry on studies.

Abstract

The term emotion is important to AI as the term intelligence itself. Emotions contribute a great deal to intelligence. Specially in human level AI emotion aspect plays a crucial role. Emotion aspect supports decision making in a sound manner balanced with cognitive aspects, thus making an AI agent believable character different from unconvincing clown. Various attempts have made throughout the history of AI to incorporate emotional support in intelligent systems. Yet still some paths left untraveled. In general previous attempts have identified emotions as static representations. These models are rule based hence the element of uncertainty and evolvability of the system are not given sufficient importance. Although emotions are common to everybody, arousal and responses may be different as driven by a factor of uncertainty. Hence the total outcome is emergent. A strong philosophical basis for these ideas could be found in Buddhist teachings on emotions.

This work presents an attempt based on Buddhist philosophical concepts of emotions where mind state can be considered as an emergent phenomena resulting from interactive elementary entities called emotions. These emotion factors are freely interacting autonomous entities. Their interactions are only constrained with boundary conditions imposed by rules for possible combinations of emotion factors as described in Buddhist theory of emotions. Proposed model is realized via MAS where emergence is supported intrinsically. Hence features are supported with MAS features autonomy, emergence, etc together with emotional capabilities. Inputs and outputs to simulated system are simulated sensory inputs and outputs provided in text mode represented by constrained English. Simulated system comprises of three basic modules containing the prescribed MAS for the core accompanied by personality and the world. Implementation of the system is done as a virtual agent application that is comprised of our emotion model within its cognitive architecture. Evaluation of the system suggests that it is capable to behave emotionally supported with features of emotional intelligence, approximately similar to human behavior in closed environment, and behave smoothly compared to conventional emotion models. Hence we are confirmed on the success of the incorporating emergent emotion model.

Contents

	Page
Chapter 1 Introduction	1
1.1 Introduction	1
1.2 Background and Motivation	1
1.3 Aim and Objectives	2
1.4 Proposed Solution	2
1.5 Structure of the Thesis	3
1.6 Summary	
Chapter 2 State of the Art of Emotional Modeling	5
2.1 Introduction	5
2.2 Basic Ideas on Emotion Representation	5
2.2.1 Emotion Representation Categorizations	5
2.3 Behavior based Approaches	6
2.4 Emotion Oriented Computing oratuwa, Sri Lanka.	7
2.5 Personality based Emotion Models Dissertations	10
2.6 Integrating with Existing Cognitive Architectures	17
2.7 Summary	21
Chapter 3 Buddhist Theory of Emotions	23
3.1 Introduction	23
3.2 Cetasiks – 52 Categories of Emotional States	23
3.2.1 Universals	24
3.2.2 Particulars	24
3.2.3 Immorals	24
3.2.4 Beautifuls	24
3.2.5 Abstinences	25
3.2.6 Illimitables	25
3.2.7 Wisdom	25
3.3 Mind as a Combination	25
3.4 Combination of Cetasiks in Citta formation	26
3.4.1 Universals	26

3.4.2 Immorals	27
3.4.3 Beautifuls	27
3.4.4 Contents of Different Types of Citta	28
3.5 Mindfulness	28
3.6 Summary	29
Chapter 4 MAS Technology	30
4.1 Introduction	30
4.2 Complex Systems	30
4.3 Swarm Intelligence	30
4.4 General Model of a MAS	31
4.4.1 MAS Features	31
4.4.2 MAS Performance	31
4.5 Applicability in Emotion Representation	32
4.6 Summary	32
Chapter 5 Our Approach to Emergent Model	33
5.1 Introduction www.lib.mrt.ac.lk	33
5.2 Cyclic Model of Emotion	33
5.2.1 Emergence is the Key	33
5.2.2 Personality and Mood	33
5.2.3 Cyclic Model	34
5.3 Hypothesis	35
5.4 Building Blocks of Approach	35
5.4.1Inputs and Outputs	35
5.4.2 Process	36
5.4.3 Users	41
5.4.4 System Features	41
5.5 Summary	41
Chapter 6 Architectural Design	43
6.1 Introduction	43
6.2 Choice of Technology for Realization	43
6.3 Ton Level Architecture	44

6.4 Modularized Design	45
6.4.1 Personality	45
6.4.2 Core – MAS of Emotions	45
6.4.3 World	47
6.5 Summary	47
Chapter 7 Detailed Design and Implementation	49
7.1 Introduction	49
7.2 Software tools and technologies used	49
7.3 Basic structure of application program	50
7.4 Implementation of EME	51
7.4.1 Implementation of MAS framework	51
7.4.2 Complete structure of EME	53
7.4.3 System flows of EME	56
7.5 Implementation of world	60
7.5.1 Basic structure of world	60
7.5.2 Flows of world Theses & Dissertations	61
7.6 Game simulation lib mrt ac lk	61
7.6.1Structure of the game world	62
7.6.2 Flows of the game world	62
7.6.3 Graphical User Interface	63
7.7 Implementation of OCCTest agent	64
7.8 Summary	64
Chapter 8 How the System Works	65
8.1 Introduction	65
8.2 GUI of Snakes and Ladders	65
8.3 Behavior of the simulated game	66
8.4 Behavior of EME via a sample scenario	67
8.5 Summary	68
Chapter 9 Evaluation	69
9.1 Introduction	69
9.2 Evaluation strategy	69
9.2.1 Evaluate over the features of emotional support	69

Appendix B History of Complex Systems and Emergence Appendix C Implementation Details	
References	87
10.5 Summary	85
10.4.2 Applicability for problems in different domains	85
10.4.1 Applicability for other problems in emotion domain	
10.4 Possible further extensions	85
10.3 Limitations and drawbacks	84
10.2 Success rate w.lib.mrt.ac.lk	84
10.1 Introduction ctronic Theses & Dissertations	84
Chapter 10 Conclusion and Further Wokatuwa, Sri Lanka.	84
9.7 Summary	82
9.6.2.3 Analysis on EME's internal workings	79
9.6.2.2 Experiment 2: EME Vs OCCTest	77
9.6.2.1 Experiment 1: Turing Test	74
9.6.2 Analysis on Quantitative results	74
9.6.1 Analysis on Qualitative results	73
9.6 Analysis on results	73
9.5 Obtaining results	72
9.4 Choice of participants	72
9.3.3 Experiment 3: Evaluating EME's internal workings	71
9.3.2 Experiment 2: Benchmarking	71
9.3.1 Experiment 1: Turing Test	71
9.3 Experimental set up	70
9.2.3 Benchmarking over OCC model	70
9.2.2 Turing test for emotional intelligence	70

List of Figures

	Page
Figure 4.1 – General architecture of a MAS	31
Figure 5.1 – State transitions of cyclic model of emotions	34
Figure 5.2 – Generic system view of the approach	38
Figure 5.3 – Simulated system's view of the approach	39
Figure 5.4 – Extract from possible state transitions of entities	40
Figure 6.1 – Top level architecture	44
Figure 6.2 – Personality	45
Figure 6.3 – Core-MAS	46
Figure 6.4 – World	47
Figure 7.1 – Basic structure of EME application	50
Figure 7.2 – Structure of MAS framework	51
Figure 7.3 – Complete structure of EME	55
Figure 7.4 – Basic system flow of EME	59
Figure 7.5 – Structure of World ty of Moratuwa, Sri Lanka.	60
Figure 7.6 – Flow of World per timer ticks & Dissertations	61
Figure 7.7 – World of Snakes and Ladders	62
Figure 7.8 – A sample flow of Game World	63
Figure 8.1 – GUI of Snakes and Ladders	65
Figure 8.2 – Help button	67
Figure 8.3 – Switch Turn indicator	67
Figure 8.4 – Updated expression of EME	67
Figure 9.1 – Graph for user A played against human	75
Figure 9.2 – Graph for user A played against EME	75
Figure 9.3 – Graph for user B played against human	75
Figure 9.4 – Graph for user B played against EME	76
Figure 9.5 – Graph for user C played against human	76
Figure 9.6 – Graph for user C played against EME	76
Figure 9.7 – Arousal intensities of EME and OCCTest during round1	78
Figure 9.8 – Arousal intensities of EME and OCCTest during round2	78
Figure 9.9 – Arousal intensities of EME and OCCTest during round3	78
Figure 9.10 – Cetasik intensities for EME for first moment	80

Figure 9.11 – Cetasik intensities for EME for second moment	80
Figure 9.12 – Average thought frequencies for three rounds	81
Figure 9.13 – Intensities of moods over time	81
Figure 9.14 – Impact of Personality	82

