
JavaScript tools for online
information retrieval

Ruwan Gamage
School of Information Management, Wuhan University, Wuhan, China and

Library, University of Moratuwa, Moratuwa, Sri Lanka, and

Hui Dong
School of Information Management, Wuhan University, Wuhan, China

Abstract

Purpose – Efficiency of server side search engines is very low in cases of slow internet connections.
Therefore, this study aims to examine use of client side search tools.

Design/methodology/approach – A previously introduced client side JavaScript search model was
used. New data were obtained for response times against an array of different sized index files. A
simple linear regression model was used to obtain the limitation of file size for the search tool.
Response times for repeated searches were obtained for the client side search model and selected
server side search tools.

Findings – It was found that the search model could be used only for a small-sized data set. Still, it
was useful against server side search methods for repeated searches during a single session.

Research limitations/implications – Response time differs according to the network traffic,
connection speed, and so on. Therefore, use of the search model is context-specific.

Originality/value – The model is easy to use and maintain. Therefore, organizations that wish to
make their small data collections searchable on the web can use the model. The model is especially
suitable for users with slow internet connections who experience very low efficiency in searching large
server side databases. The paper introduces the model, solutions and technical aspects for practical
execution.

Keywords Java, Search engines, Information retrieval, Response time

Paper type Research paper

1. Introduction
A script running on a client workstation might check the input user’s submission to a
web page. This is to make sure they entered all required data and appropriate data
values. This can resolve local problems locally, without troubling the server for all
minor issues. However, scripting has so many other uses, including advanced browse
features and creating cookies on client machines. The server can use one type of
cookies for tracking user actions on the client, and another type for “acting” as “search
engines”.

We are using a JavaScript search tool, one with an array of data elements to
examine client side search tools’ fitness to be a technology-in-demand for small
databases. Lab testing was conducted, and response times were measured for
displaying results case-by-case, with different sized data arrays.

The first part of the paper describes the motivation behind this study and its
objectives, and some of the concepts used will be explained. The next section describes

The current issue and full text archive of this journal is available at

www.emeraldinsight.com/1468-4527.htm

OIR
30,4

380

Refereed article received
26 January 2006
Revision approved for
publication 30 March 2006

Online Information Review
Vol. 30 No. 4, 2006
pp. 380-394
q Emerald Group Publishing Limited
1468-4527
DOI 10.1108/14684520610686779

previous related attempts, and the search tool and results of experiments will be
analyzed. Thereafter, a discussion and conclusions follow.

2. Motivation and objectives
It is common for people to spend more time in front of computers waiting until
information appears, than actively extracting information. This is especially true in
countries where internet access is comparatively slow. When it takes more time to
receive results (response time), the search efficiency is low. Conversely, when there is a
lower response time, the efficiency is high (Figure 1).

Client side search tools have the inherent feature of delivering the search results
without consulting the server. If some progress can be achieved towards using
JavaScript as an information retrieval solution, developing countries with slow internet
connections will benefit. As for many, more time on the internet means more money
spent. It is observed that users give up retrieval of web-based information because of
the intolerable time lag for results.

Therefore, the main objective of this study is considering JavaScript for increasing
search efficiency.

3. Concepts and tools
3.1 Client side search (CSS)
In server side search (SSS), the server handles all the requests. A busy server is likely
to run out of memory when a large number of simultaneous services are requested. As
interactive web access gained popularity, technologists developed new methods to
process form inputs without starting a new copy of the servicing program for each
browser input. Examples of these technologies for communicating with web servers
include Java Servlets and Microsoft’s ASP.NET; they allow a single copy of the
servicing program to service multiple users without starting multiple instances of the
program (Morrison et al., 2002). Busy servers readily put these into use. Figure 2 shows
the basic functioning of a client-server search engine.

Still, creating a short script is faster than creating a short compiled program. Also
compiled programs demand advanced software from the user’s terminal. Therefore,
use of scripts is justified when a large program is not required for processing HTML
form inputs (Morrison et al., 2002). Scripting is a client side technology. A basic model
of a client side program has been given in Figure 3.

Figure 1.
Response time and search

efficiency

Figure 2.
Basic functioning of

client-server search engine

JavaScript tools

381

Web pages associated with a compiled client side program run on the user’s computer.
A user’s browser must be able to run the program file.

Client side processing is carried out on the client machine. Initially, the search
script is requested from the server. Thereafter, for example, a JavaScript search tool
writes cookies on the browser. These temporary files do the subsequent searching,
avoiding the need for repeated requests from the server. The cookie is stored in the
client’s browser memory. This makes the client a host of the data set. The second
search uses these cookies to give results. Succeeding searches also use the same
information. The cookie’s lifespan is only a search-session wide. If you close the
computer or delete all the cookies, then you have to reconfigure the client for a new
search.

In this type of client side script, source code written in such languages as JavaScript
and VBScript is embedded in an HTML document. It is placed within delimiter tags
(, script. . . . and , /script .) to indicate to the user’s browser that the text is code
rather than web page text. If the user’s browser is able to recognize and interpret the
code, it is processed. Use of a client side scripting language depends on a user’s
operating system, browser platforms, and developer expertise. If the web pages are to
be accessed by a variety of users over the internet, JavaScript is probably better than
VBScript, as JavaScript is the only scripting language able to run on nearly all
browsers (Morrison et al., 2002).

3.2 Response time (lag time) – RT
Technically, response time refers to the amount of time it takes for a keyboard input to
reach the application and return a response. Length of “response time” depends on
various factors. Response time in a web-based search engine is expected to be
proportional to the bandwidth, web traffic at the time, and performance of the PC. The
higher the response time, the more embarrassing it is for the user. Previous research
suggests that user productivity is dramatically reduced when response time is
significantly high. Sterbenz (2001) states that further productivity gains are realized
when the response time decreases to the range of 100 milliseconds. According to him,
human factor studies have also indicated that consistent response time is better for
users than response with a significant variance, since users alter their behavior based
on response time at a relatively slow rate.

Nielsen (1997) confirms that a 0.1 second (100 ms) threshold is suitable, while a 1.0
second limit is acceptable. Within this limit a user’s flow of thought will be
uninterrupted. Ten seconds is the limit the user can focus their attention.

Figure 3.
Model of client side
program

OIR
30,4

382

3.3 Zero response time
The ideal response time for a search is 0.00 seconds. No search tool has so far obtained
this efficiency.

3.4 JSS and JavaScript array
There are many models for JSS, developed by many individuals. Here we are focusing
on scripts with data arrays. The array contains data elements, or “objects” subjective
for search. It is a listing of information arranged one after the other, with proper
formatting, which is understandable by the script (see Appendix).

4. Literature review
Various attempts have been taken in the field of information retrieval to increase
response time. Chan and Ueda (2000), Long (2002), and Quah et al. (2004) experimented
with using cached objects, query slicing techniques, and web agents, respectively. All
these are technologies associated with SSS. Academic research in CSS is rare. However,
such applications are common in the internet for downloading – though, the usage in
online applications is low.

JavaScript is the first choice in local search media, such as CD-ROMs and off-line
databases. JSE (described later) is an example of a script using data arrays. This has
also enjoyed a limited use as an internal web site search engine. Its function was to
search within web sites. It was advised to use JSE with an array for less than 50 data
elements (JSE Documentation, n.d.). Gamage (2006) used a basic test with few data sets
to demonstrate the behavior of the same JavaScript search tool.

Advanced uses of JavaScript (not necessarily arrays) as an online information
retrieval tool can also be found. WebSPIRS 4.0 by SilverPlatter is one such commercial
application, which started using this technology for its search interface in the 1990s.
ICDL, a recent project from the University of Maryland, USA, uses JavaScript for
simple searches of children’s books. It is also used for easy browsing of categories.
Following is an overview of these two previous examples.

4.1 WebSPIRS
WebSPIRS 4.0 is a product by SilverPlatter (later absorbed by OVID). It is an advanced
information delivery system that uses JavaScript for information retrieval (Jacsó, 2004).
It was introduced in an era where most other information delivery systems were
running on DOS or installable client software. WebSPIRS itself passed these “primal”
stages. The version focused on was available for subscribers to SilverPlatter’s online
databases. Some institutions also mounted it on their Intranets. WebSPIRS presented
features such as selecting search variables, index browsing, cross databases searching,
and on the fly formatting of results.

4.2 International Children’s Digital Library (ICDL)
ICDL (see www.icdlbooks.org) makes children’s books available worldwide for free.
Currently it has 914 children’s books written in 34 different languages (Jacsó, 2004).
Designed to support early literacy for children aged 5-10, it is a five-year research
project of the University of Maryland’s Human Computer Interaction Research Group.
It offers two options for search through two parallel interfaces, one using a Java-based

JavaScript tools

383

zooming interface (termed “enhanced”) and one using HTML and JavaScript (termed
“basic”). The Java version supports conjunctive queries (i.e. read AND long books), but
only works on certain web browsers. The HTML version works on any web browser,
but does not support such queries (Hutchinson et al., 2005). However, it worked with
lower bandwidth and less powerful computers (Druin, 2005).

From the inception, the research team was changing features based on interaction
research output. A critical issue that emerged was balancing access and innovation.
When the ICDL was first launched in November 2002, only the “Enhanced” search
option was available. Based on web log analyses, the team found that only 10 percent
of all visitors coming to the ICDL web site actually used the library. This finding, along
with other feedback from those who did not have hardware and software requirements,
immediately convinced the team to focus on developing the “basic” interface for broad
access. When ICDL Basic was launched in June 2003, the first five months of web logs
showed that 50 percent of all visitors to the web site entered the library. This convinced
the ICDL development team to reconsider the importance of developing tools for broad
access. In addition, by having both versions, the team has been able to learn a great
deal about the profile of users with regard to country of origin, categories of use etc., as
opposed to dial-up (Druin, 2005).

5. The JavaScript search tool (JSS) on focus
5.1 JSE search
JSE Search is an open source JavaScript application downloadable from the Internet
(JSE Documentation, n.d.).

JSE circumvents HTML’s inability to pass a value from one page to another by
using a session or non-persistent cookie. The cookie expires when the user’s session
ends. JSE consists of two HTML files (form.html and results.html) and two scripts
(form.js and search.js). A data array is placed on the second script. Each element of the
array takes the following format: TITLEURLDESCRIPTION$KEYWORDS. The
field delimiter is the “dollar” ($) mark. Keywords are not displayed, while the title
appears on top of the description with a link to the given URL (see the appendix for the
script).

The first script writes cookies containing search words and then loads the result
page. The second script reads the cookie, defines matches and generates search results.
Results are set as a single-page numbered list with links to detailed pages if available.
For users, searching is similar to “Google”. A preceding minus character excludes a
word, while phrases are supported within double-quotes. The existing model of JSE
search is shown in Figure 4.

Figure 4.
Existing JSE search model

OIR
30,4

384

5.2 The response-time experiments
An experiment was conducted to understand the behavior of JSS response, with
increasing the size of the data array. Actual web conditions were used by hosting a
searchable directory on the internet. Response times were checked with data in the Sri
Lankan Web Sites Database (www.srilankasupersearch.com), which contains directory
type data: title, URL, description, and keywords for each data element (DE). An
empirical 60 seconds RT limit was formulated, considering the readership, region on
focus, and the nature of data.

Scripts with different numbers of data elements, thus having different script file
sizes, were mounted in separate folders at http://search.arjees.com/testbed/jse All data
was extracted from the same set of data for uniformity. A search was executed to test
each JavaScript on the IE browser. The same word was searched (JSE) which had been
inserted in a single data element (first DE) of each data set. Therefore, each search
event retrieved only one result.

For each script, RT values were taken for the first search (action involved with the
server) and for four subsequent searches (actions involved with the client only). After
experimenting with each file size, cookies and temporary files were deleted. This was
to ensure that no cookies were remaining in the client machine before the next
experiment began. The PC with a 900 MHz processor, which we used to represent an
average client, was connected to the institutional LAN. The server was located
externally to the institution Intranet. It was attempted to control the variable network
speed by taking all measurements while the throughput was between 50 kbps and
10 kbps. This throughput range lasted for only 85 minutes in the network. Values for
21 JavaScript file sizes could be collected within this period. The results are shown in
Table I.

Another set of data was collected for comparison purposes. Table II presents
response times obtained for selected popular search engines for five subsequent
searches, and the response times obtained for JSE Search. The response time focused
on for the first of JSE Searches is the empirical limit.

6. Data analysis and discussion
This is a study on evaluating the strengths and weaknesses of JavaScript as a search
tool for small data sets. To examine the functionalities of JavaScript, JSE Search was
selected. It is an open source, freeware, robust script that enables easy configuration.

This is an extension of a previous study by one of the authors (Gamage, 2006). In
that study, only a few data sets were used. Results have not been compared with
results from a server side search engine. The model introduced was fairly abbreviated.
Those shortcomings have been avoided in the present study.

Analysis of the two tests conducted follows.
Results of the first test (Table I) were displayed in a bubble graph (Figure 5). The

diameter of each bubble corresponds to the size of the particular script file. Results
show the difference of SSS and CSS. The first search of JSE is corresponding to a SSS,
because it has to download the necessary files and create cookies on the browser. All
subsequent searches are client side processes. CSS has taken no time to give results.

JavaScript tools

385

Response times (s)
Name of
search engine URL First Second Third Fourth Fifth Total

Google www.google.com 2 3 4 1 5
P5

1G RTð Þ ¼ 15

Yahoo www.yahoo.com 10 20 30 12 50
P5

1Y RTð Þ ¼ 122

Alltheweb www.alltheweb.com 15 240 þ 10 10 5
P5

1AðRTÞ ¼ 280þ

JSE Search – 60 0 0 0 0
P5

1G RTð Þ ¼ 60

Table II.
Response times for five
subsequent searches of
popular search engines
against JSE Search

Figure 5.
Increase of size of script
and response time with
number of data elements
in the array for five
successive searches

Response times (s)
Number of data elements
in the JavaScript array

Size of JavaScript file –
FS (kb) First Second Third Fourth Fifth

0 2.3 – – – – –
1 2.5 10 < 0 < 0 < 0 < 0
10 4.8 10 < 0 < 0 < 0 < 0
20 7.8 11 < 0 < 0 < 0 < 0
30 10.9 15 < 0 < 0 < 0 < 0
40 14.2 11 < 0 < 0 < 0 < 0
50 17.2 5 < 0 < 0 < 0 < 0
60 20.1 3 < 0 < 0 < 0 < 0
70 23.7 8 < 0 < 0 < 0 < 0
80 27.3 7 < 0 < 0 < 0 < 0
90 30.5 8 < 0 < 0 < 0 < 0
100 33.3 8 < 0 < 0 < 0 < 0
150 49.7 15 < 0 < 0 < 0 < 0
200 66.8 29 < 0 < 0 < 0 < 0
250 86.4 15 < 0 < 0 < 0 < 0
300 104.0 24 < 0 < 0 < 0 < 0
350 115.0 23 < 0 < 0 < 0 < 0
400 128.0 28 < 0 < 0 < 0 < 0
450 142.0 35 < 0 < 0 < 0 < 0
500 164.0 30 < 0 < 0 < 0 < 0
600 189.0 45 < 0 < 0 < 0 < 0

Table I.
Increase of size of script
and response time with
number of data elements
in the array for five
subsequent searches

OIR
30,4

386

Simple linear regression analysis was carried out between RT (dependant variable) and
FS (independent variable). According to the analysis, the adjusted R 2 value is 0.812.
That means approximately 81 percent of the variation of response time is affected by
the script file size. The balance is due to random variables. The calculated “f” value is
82.849, and tabulated “f” value is 4.40 at 95 percent significance level. Therefore, the
experiment is highly significant. From the data, it is 95 percent certain that an increase
of file size by 1 kb will make the response time increase in the range 0.136-0.218. The
limit of response time was kept at 60 seconds, as described in section 5.2.

According to the analysis, b0 and b1 values are 0 and 0.177 respectively. Therefore,
the prediction equation can be interpreted as:

Ŷ ¼ b̂0ðRTÞ þ b̂1ðRTÞX ð1Þ

Y ¼ 0:177 X ð2Þ

Y is replaced by the limit of RT (60 sec). X is the predicted FS limit.
Therefore X ¼ 60=0:177 < 340 kb.
The obtained file size limit (X) is approximately 340 kb.
A similar analysis was carried out to measure the corresponding number of data

elements for the given FS:

Ŷ ¼ b̂0ðFSÞ þ b̂1ðFSÞX ð3Þ

Let the number of data elements be zero – according to the data obtained, the file size is
2.3 kb. Therefore:

b̂0ðFSÞ ¼ 2:3

According to the analysis:

b̂1ðFSÞ ¼ 0:318

Therefore, the prediction equation can be interpreted as:

Y ¼ 2:3 þ 0:318 X ð4Þ

To obtain the number of data elements at the FS limit (for this set of data), substitute
the FS limit to equation (4). The result is (X) approximately 1,062.

Therefore, we can predict that for this set of data, the maximum number of data
elements we can host is 1,062 to search within a RT of 60 sec.

Test 2 demonstrates that during the process of repeated searching, each SSS also
requires a time for subsequent searches. It is obvious that the cumulated RT in each
case becomes more than the RT of JSE at a particular junction. This can be interpreted
as:

Xp

1
G RTð Þ;

Xq

1
Y RTð Þ;

Xr

1
AðRTÞ .

Xp;q;r

1
J RTð Þ:

The summation values represent total RT of Google, Yahoo, Alltheweb, and JSE in
search numbers p, q, r respectively.

JavaScript tools

387

Therefore, JSE is more efficient in repeated searching than a server side search
engine for a small number of data objects not exceeding a file size of 340 kb. These data
are acceptable for the particular range of internet speed (throughput 50-10 kbps).

6.1 Discussion on results obtained
The experiment was designed to examine the behavior of JavaScript in managing
databases. The network and terminal environment conditions represented a typical
internet connection in a developing country. The increase of response time with the
increase of number of data elements was tested. Results were presented in the form of a
bubble graph, as it clearly displayed the change of RT with the size of the script.

In this case, it shows that the RT is proportional to the size of the script. Before the
experiment we decided on an empirical limiting value for RT of 60 seconds. This was
based on the target population (general public), place (Sri Lanka), and average internet
connection speed (low) (Shrestha and Amarasinghe, 2001). Therefore, the study shows
that in this particular case, around 1,062 data elements is the maximum that can be
hosted.

From the results it is evident that JavaScript cannot be used for making search tools
for long lists of data sets. It also demonstrates its inability to handle large files of book
data. Therefore, both book catalogues and heavy databases are not the best candidates
for JSS. However, the results demonstrate that the subsequent searches showed it is
really fast in displaying results – a speed that no server side technology can match.
Also, it is obvious from the study that the search tool is truly efficient for repeated
searching of small data sets.

It should be noted that the second search in Alltheweb had the user wait for a long
time. This may be due to an abnormality in the network traffic or some other unknown
factor. However situations like this, and instances of compete breakdown of servers are
common in server side searching. This highlights the suitability of script-based search
for repetitive searches. This also satisfies our primary objective – having good
response times.

6.2 Limitations of the study
Search engine studies carry out tests such as the use of Boolean logic, truncation, field
search, recall etc., for examining the efficiency and effectiveness of a tool. However, we
have concentrated on the “response time for word search” only. Also, the experiment
was based on directory entries, rather than comprehensive catalogue data. Therefore,
we cannot generalize the maximum number of data elements the search tool can handle
within a justifiable RT.

Test conditions imitate a typical network and PC environment, and every effort has
been taken to control every variable other than those tested. But it should be noted that
the internet speed is constantly changing in a network, depending on network traffic.
Processor speed is also changing from PC to PC.

To demonstrate repetitive searches in a server side search, we used huge databases
utilizing different technologies. This may not represent an average server side search
tool with a small number of data elements in its database.

OIR
30,4

388

6.3 Advantages of CSS
CSS is simple, and does not require prerequisites of hardware or special software for
operation or installation. Therefore anyone can host a CSS even on a free web server.
Because free servers limit server activity requested by client web sites, using CSS
applications would be an advantage for the free-server customer. Whatever the server,
server traffic will be at its minimum, because most activities are carried out in client
machines. For the administrator, debugging is easy. Having all files necessary in a
single folder on a local machine, any problem regarding the source and data can be
resolved. In the case of JSS, only four lightweight files are needed.

Users will find recall good because each data set is small. High-speed search results
and avoiding possible server breakdowns are other advantages. Users with inefficient
Internet connections find JavaScript tools attractive. ICDL research findings support
this attitude. Due to lack of popularity, they are phasing out the “enhanced” version of
ICDL, which uses Java (International Children’s Digital Library, n.d.). Instead they are
focused more on developing the JavaScript version.

6.4 Disadvantages
The size of the data set is limited. Therefore the user has to search in different
categories if the data set is larger than the amount it can hold. Response time for
configuration is higher than the approved times given in section 3.2.

Because of the limitation on the size of data array, it has limited uses. It is possible to
search only for metadata – not full-text or abstract. Anyone can download the script
because the real URL of the file is given in the form.html page. Therefore, only public
data can be hosted. However, links to abstract and full-text (where applicable) can be
directed to server side techniques, which have more security. Users are sometimes
skeptical in allowing JavaScript to run on machines, as there is concern about security
and spying in script-enabled browsers. If a user’s PC has not enabled cookies, the script
cannot run, thus ignores the request. The display format is poor, and search controls
(field search, search among databases etc.) are less.

From the viewpoint of an administrator, repeated off-line updating of the database
is a problem. Therefore having real-time updates is not a reality, because as it is
dependent on human work, it may or may not be updated regularly. Therefore the user
cannot trust the available data.

6.5 Improvements
To satisfy the need to harness the wonders of scripting, while keeping users in touch
with the search system, a new model was introduced. It is termed the two-tier
JavaScript search model. Inclusion of data from a multi-field format, automation of
writing the script, and the introduction of categorized searches are other improvements
introduced. These are simple, but effective mechanisms in terms of hosting CSS.

6.5.1 Two-tier JavaScript search model (TTJSM). As explained above, using a
JavaScript for searching means there is a delay between the first search request and
displaying the results. Although the delay in the first search is high, the response times
of subsequent searches become virtually zero. Therefore, there should be a method to
negotiate with the user until the first search is carried out. The strategy used for this is

JavaScript tools

389

to first allow the user to do a configuration before carrying out the actual search. This
configuration is actually a pseudo search (see Figure 6).

In order to achieve the pseudo search, one layer of action (two files) was added to the
existing model (Figure 4). These are index.html (pseudo search page with a
configuration button) and the form_f,js, which is the false form.js script. The button in
the first HTML page sends a search command to the server. This initiates the
procedure of writing cookies in a user’s browser. After it is done, the user will be
redirected to the real form HTML page with a search box. The whole process is called
“configuration”.

TTJSM is simple in structure, and easy to configure. It also reveals reasons for the
delay to the user. Therefore there is no hiding of facts. If the user agrees to the deal
because of the bonus of zero-response times for subsequent searches, he can stay and
continue. Otherwise he can switch to a server side search tool.

Because the user is informed beforehand, they are not dejected by the long time
taken for the first response.

However, there is a possibility that the user can leave the whole system, because
explanations are lengthy and configuration is not a familiar practice in search engines.
Sacrificing the first search attempt is another issue from the side of the user.

6.5.2 Enabling multiple fields inside display format and mechanizing script writing.
The only file with dynamic data of the set of JSE files is search.js script. Therefore, if
the creation of the script can be automated, it will be easier for the average technologist
who manages the web catalogue.

Each data element in JSE has the format: TITLEURLDESCRIPTION$
KEYWORDS. Each variable is separated by a ’dollar’ ($) mark. Hence the script we
are focusing on supports the inclusion of title, URL, description and keywords of the
data element. Some kinds of data elements, for example, a set of library books, contain
more fields such as author, publisher, place etc. Therefore, we examined a particular
bibliographic data set for inclusion within the same format. Formatted text with more
fields could fit in the description area, without harming the functionality, or without
changing the script. Then the script creation process was mechanized using a
commonly used library database program.

We used CDS/ISIS 1.5 for Windows for mechanizing the writing of script. It is a
freeware distributed by UNESCO as a database tool. Libraries in developing countries
use this for developing their databases in electronic form. Although current usage
records are not available, it is still a popular and powerful library software, and is
taught in most library schools. Therefore, many small libraries have added or are

Figure 6.
Proposed TTJSM model

OIR
30,4

390

planning to add their book data into CDS/ISIS databases. Due to common usage, and
many having already entered bibliographic data in CDS/ISIS, it is a plus point for using
the program for mechanizing script writing. The idea is to print data array into a text
file. This can be inserted into the search.js template.

The sample data set that we chose is the sample “Conference Proceedings Database”
available in CDS/ISIS. We created a print format suitable for displaying results in a
window. Both CDS/ISIS formatting language and HTML were used (Figure 7).

Data is displayed as follows. Additional charters can be seen according to the
conventions used when entering data. The display format is fully adjustable according
to an administrator’s wish (Figure 8).

6.5.3 Category search. Because JSE can handle only a small number of results,
comparatively large databases can be divided into sub-sets. This paper does not
introduce a possible modification for searching all categories at one stretch. However,
each category can be made a subject for a main search as shown in Figure 9. It is a
demonstration of DDC classification in a category search.

6.6 Uses
It is true that users with high internet connection speeds, or those who use applications
within Intranets enjoy the real flavor of CSS. However, those with low bandwidth may
also need some applications when the information is critical, and repeatedly on use.
Dictionary and thesaurus listings are one example, as is a catalogue or a directory. For
example, researchers may need book data in libraries, or data on artifacts in a museum.
A doctor may need information on essential medicines – information that can save a

Figure 8.
Display of results in
multiple fielded data

elements

Figure 7.
CDS/ISIS print format for

writing the data array

JavaScript tools

391

life. A lawyer who practices international law may need information from recent cases
from overseas. Most of the above information is both critical and urgent. It is also
needed repeatedly during a single session.

Other information that may or may not be critical, such as product catalogues and
web directories, also qualify for possible hosting as CSS.

6.7 Future
More studies, especially user studies, should be carried out on the acceptance of the
model. The code can be changed to give more control over the search, and the use of
frames and other technologies should be examined for simultaneous configuration of
several categories.

7. Conclusion
Using CSS for imitating databases for small collections can improve customer
satisfaction by giving speedy access to search results. It is a matter of fact that the
configuration time is high in low bandwidth connections. In that sense it is viable to
state that JSS engines are suitable for intranets rather than the internet. For example,
universities offering information products to their own students and staff can reap the
benefits of this technology. Demanding the user to search in several search-spheres is
apparently a backward option, but it is worthwhile compared with virtually zero

Figure 9.
Demonstration of DDC
classification in category
search

OIR
30,4

392

response time in subsequent searches. This would enable catalogues and directories
already on the www to improve their search options. Also, these models will be helpful
to immediately host web OPACs for those who have not yet done so.

This would enable high-speed basic search in a very small catalogue, usually with a
script with data of less than 340 kb. Researchers and professionals, who need to search
repeatedly for information during the course of the day, would be the likely users.

One should not always assume that using a JSS engine means some amount of
delay. If the number of data objects is very low, or the Internet speed is very high, the
system may configure itself very quickly.

CSS can be an option in the main interface for the user to select.
JavaScript is useful for navigation between information categories. ICDL put this to

good use.

References

Chan, E. and Ueda, K. (2000), “Efficient query result retrieval over the web”, Proceedings
International Conference on Parallel and Distributed Systems, IEEE Computer Society.

Druin, A. (2005), “What children can teach us: developing digital libraries for children with
children”, The Library Quarterly, Vol. 75 No. 1, pp. 20-43.

Gamage, R. (2006), “Where the speed matters . . . zero-response-time search engine for small
collections”, Computer Science, Vol. 3815, Proceedings of 8th International Conference on
Asian Digital Libraries, pp. 224-31.

Hutchinson, H.B., Rose, A., Bederson, B.B., Weeks, A.C. and Druin, A. (2005), “The international
children’s digital library: a case study in designing for a multi-lingual, multi-cultural,
multi-generational audience”, Information Technology and Libraries, Vol. 24 No. 1, pp. 4-12.

International Children’s Digital Library (n.d.), available at: www.icdlbooks.org (accessed 3 March
2006).

Jacsó, P. (2004), “Thoughts about federated searching”, Information Today, Vol. 21 No. 9,
pp. 17-20.

JSE Documentation (n.d.), available at: www.Javascriptkit.com/script/script2/jse/jse10a.zip
(accessed 30 May 2005).

Long, B.A. (2002), “Design pattern for efficient retrieval of large data sets from remote data
sources”, Lecture Notes in Computer Science, Vol. 2519, pp. 650-60.

Morrison, M., Morrison, J. and Keys, A. (2002), “Integrating web sites and databases”,
Communications of the ACM, Vol. 45 No. 9, pp. 81-6.

Nielsen, J. (1997), “The need for speed”, available at: www.useit.com/alertbox/9703a.html
(accessed June 2005).

Quah, J.T.S., Chen, Y.M. and Leow, W.C.H. (2004), “Networking e-learning hosts using mobile
agents”, Intelligent Agents for Data Mining and Information Retrieval, Idea Group Inc.,
Hershey, PA, pp. 263-93.

Shrestha, G. and Amarasinghe, S. (2001), “Perspectives on the use of the internet in Sri Lanka”,
LCS Technical Report TR-815, Massachusetts Institute of Technology, Cambridge, MA,
available at: www.cag.lcs.mit.edu/,saman/papers/SLReport-1-01.pdf (accessed 3 March
2005).

Sterbenz, J.P.G. (2001), High-speed Networking: A Systematic Approach to High-bandwidth
Low-latency Communication, John Wiley & Sons, New York, NY, pp. 441-2.

JavaScript tools

393

Appendix

Corresponding author
Ruwan Gamage can be contacted at: ruwan@lib.mrt.ac.lk

Figure A1.
Form.js and search.js
(part) JavaScript files

OIR
30,4

394

To purchase reprints of this article please e-mail: reprints@emeraldinsight.com
Or visit our web site for further details: www.emeraldinsight.com/reprints

