
7

Unified Search and Browse Interface for

MusicBrainz
A tool for browsing music metadata

Ruchiranga Wickramasinghe

Department of Computer Science and Engineering

University of Moratuwa, Sri Lanka

ruchiranga.12@cse.mrt.ac.lk

Abstract—MusicBrainz provides an open music encyclopedia

that collects music metadata and makes it available to the public

for free. The musicbrainz.org [1] website currently supports an

advanced query search to browse the music metadata database

with queries that allow to specify descriptive search such as “The

artist groups who started their career between 1992 and 2000”.

This search functionality is built using the Apache Lucene search

library and one has to be familiar with the Lucene search syntax

in order to type in a valid query that fulfils their need. If not, one

will have to refer to a huge documentation that contains all the

possible keywords for each entity in the database, which would

consume a considerable amount of effort and time. This paper

describes a solution to this issue developed by creating an interface

that unifies the advanced query search with a simple indexed

search while allowing the user to do any search that they could

have done using the existing search functionality without needing

any prior knowledge on Lucene search syntax or other

documentation.

Keywords—MusicBrainz; music; metadata; MetaBrainz; music

encyclopedia; unifed search and browse.

I. INTRODUCTION

MusicBrainz is a project carried out by the MetaBrainz non-
profit organization [2], which provides an open music
encyclopedia that collects music metadata and makes it available
to the public all over the world for free. It is one of the leading
open source music metadata databases in the world and contains
music metadata of over 1 million artists from all around the
world. The musicbrainz.org web site [1] currently has a search
facility that is built on top of this metadata database primarily
with two options [3]. The first option is an indexed search
functionality that allows a user to enter a search key and get a
list of items that match the given search key. The other option is
the indexed search with advanced query syntax. This search
functionality is built using the Apache Lucene search library and
one has to be familiar with the Lucene search syntax in order to
type in a valid query that fulfils their searching or browsing
needs. For someone who is not familiar with this syntax, he or
she will have to refer to a lengthy documentation that contains
all the possible keywords for each relevant entity in the database,
which would be a cumbersome thing to do. The primary
motivation behind this project is the difficulty in using the above
mentioned advanced query syntax search that currently exists in
the musicbrainz.org website. Furthermore, for someone visiting

the site for the first time, the vastness of the database of metadata
available with MusicBrainz is quite unseen simply due to the
complexity of the procedure that one has to follow to get some
advanced information retrieved from the database. The designed
interface addresses all of these issues and provides a good
exposure to the information made available via the MusicBrainz
database to the general public. The difficulty in going through
the lengthy documentation [4] to create the exact query that
satisfy ones searching needs would have caused a significant
amount of users to have given up on getting their search needs
done with the MusicBrainz database. This in turn would have
made a negative impact on the experience the people get in
interacting with the musicbrainz.org website. With this unified
search and browse interface, users are no longer needed to waste
their time and effort, reading through the lengthy
documentations finding the exact key terms to use in the query
that they are trying to create.

II. LITERATURE REVIEW

The musicbrainz.org website, which is the official website
of the MusicBrainz project at present, has its search
functionality [3] implemented in three ways.

The first method is the indexed search where the search is
carried out with the use of an indexing mechanism that is
updated every three hours. This search allows the user to specify
an entity, which the searching needs to be done with and a
search term that is directly used to match with the items in the
index and find the results. This is the most basic search feature
implemented in the aim of providing a simple fast way of
accessing the database with the cost of not returning the most
recent data.

The second option is the indexed search with advanced
query syntax where the search functionality provided is much
more powerful than the previous method. This approach uses
the Apache Lucene library which is a high-performance, full-
featured text search engine library which can be used for any
application that requires full-text search, especially cross-
platform [5]. The advantage of using this library is that it allows
making more abstract search queries like “Artists of type
‘person’ from Sri Lanka who were born before 2000”. Even
though this gives the user more power on retrieving very useful
information from the database, the query syntax that specifies
the above mentioned abstract sentence to the search system

8

happens to be quite complex. For someone who is not familiar
with the Lucene search syntax, they will definitely have to go
through the documentation provided in the web site itself for
advanced query search [4]. Hence the exposure the contents in
the database get via this search is quite limited.

The third method that the searches can be carried out is the
direct database search, which does not use any indexes, but talks
to the database itself directly. This option is made available to
mitigate for the issue of indexed results not being up to date with
the database contents real time due to the three hour update
interval. But this search performs slower than the indexed
searches and sometimes returns a less number of results due to
the search timeout constraint imposed to make it responsive.

All these three existing search features by themselves fail to
provide a fast, simple, feature rich search and browse
functionality that provides better exposure and easy access to
the contents in the database.

In addition, MusicBrainz server has a web service that is
integrated to the server itself that accepts queries in the Lucene
search syntax and returns results either in XML or JSON
formats [6]. It is an interface to the MusicBrainz database that
is aimed at developers of media players, CD rippers, taggers,
and other applications requiring music metadata. The service's
architecture follows the REST design principles. Interaction
with the web service is done using HTTP and all content is
served in either XML format or JSON format depending on
what is specified in the query being sent to it [6].

III. SYSTEM MODELS

A. System Requirement

The users need to be provided with the set of all categories
that the database can be browsed with. The query to be sent to
the Web Service needs to be generated depending on which
categories the user has selected. The query that is currently being
sent to the MB Web Service should be visible to the user as a
hyperlink. That way the users are also able to get an idea on what
the Web Service actually returns for that particular query even
though it is shown in JSON format. Once the user has selected a
category to browse the database through, its set of sub fields that
the results can be narrowed with should appear. The sub fields
should allow multiple selections and depending on the items
selected at a particular time, the query shown to the user needs
to be updated. At the same time on each update, an asynchronous
request needs to be sent to the Web Service to retrieve the
relevant results. The received results need to be parsed and
shown in a tabular manner. The results retrieved after querying
the MB Web Service are usually in large numbers and hence a
pagination of results is needed. At every update made to the
query, only the first 25 results of all that matched that particular
query need to be shown avoiding an infinite length scroll. User
should then be able to traverse through the next pages from a
next button as well as to jump to a specific page from a button
that has a label representing that specific page. In addition to all
that the user should be able to optionally specify a search term
to be incorporated to the query being generated so that the
browsing and the searching will be unified. The primary
functional requirements of the Unified Search and Browse

Interface explained above is shown in Fig. 1, in the form of use
cases.

Fig. 1. Main use case diagram of the system.

B. System Design

As far as the functionality of the interface is concerned, the
system can be looked at as an application that well adheres to
the client server architecture. The client side includes the user
interface which will handle all the user inputs and the actions
that needs to be followed after receiving them including
querying to the web service. It maintains a connection with the
server side layer via HTTP requests and responses. The server
side of the application includes the MB web service as the
interface for accessing the database and the MB database as the
back end source of information.

Fig. 2. Logical view of the system.

Logically the system is composed of two significant
packages. The Interface Package contains the classes or
components that are used in the development of the user
interface. The Support Package contains the controllers and

9

other utility components that are being used by the interface to
provide its functionality. Fig. 2 shows the logical view that
corresponds to the contents of the Interface Package. The
PageContent component is composed of the ResultPanel
component and the SearchBox component and has one or more
EntityPanel components associated with it. The ResultPanel
component has the Pagination component. Each EntityPanel
component is an aggregate of one or more of DateRangeField,
InputSelectField and SelectField components. All these
components are custom React UI components.

The design phase of the interface involved in a lot of UX
research since the interface is meant to be used by the whole
internet community and the interface needed to have the ability
to provide a good user experience to each and every one of those
users. Accordingly an initial prototype was created [7] and
presented to the MusicBrainz community for collecting
feedback and the feedback had to be associated carefully when
the actual interface was built. The interface was made such that
it could be used and navigated only using keyboard navigation
as well. The interface had to be made as uncluttered as possible
and a lot of effort was made to make sure the users feel engaged
with the system while using it by making notifications appear,
updating the user on what is happening on the background
whenever it was needed.

Fig. 3. Process view of the system.

Fig. 3 depicts the sequence of actions that a user is eligible
to perform on the interface with the corresponding inputs as a
diagram. The user can optionally enter a search term or select a
certain category and further options will pop up guiding him or
her to proceed to the next step. Then, selecting a single sub field

or multiple sub fields will complete the query generation and the
system will proceed to send an HTTP request to the web service
and the response will be received in the JSON format. Upon
successful reception of the results, the system will automatically
parse the JSON string into an object and use the content of that
object to display the results in a tabular format. At any time the
user is able to change the category he has selected, the sub fields
he has selected, the search key he has specified as well as the
page of results.

IV. SYSTEM IMPLEMENTATION

A. Implementation Procedure

The unified search and browse interface requires a good deal
of interactions with the user and needs to be able to change it
self dynamically depending on the inputs given and events fired
by the users. Hence to meet this requirement of dynamic nature,
a UI building library would be of good use. Two of the most
prominent such libraries are KnockoutJS [8] and ReactJS [9].
The primary language used throughout the project was
JavaScript and the prototype of this project [7] was built using
the KnockoutJS JavaScript library [8]. The library was changed
to ReactJS [9] during the actual development mainly because of
the fact that ReactJS shows better performance than KnockoutJS
in rendering the UI [10].

The most powerful effect of using react is that it allows
designing the interface in a modular manner where each
component would have its own state as well as its own mark up.
The mark up for each component was written using JSX which
is a JavaScript syntax extension with tags similar to those in
XML that provides a concise and familiar syntax for defining
tree structures with attributes [11]. The JSX allows specifying
pointers to functions that needs to be called on certain event
triggers. These event handling functions would alter the
components state depending on the context and the input
received and the changes in state are reflected in the mark up in
turn. This concept helps building maintainable dynamic UI’s of
remarkable quality with very much less effort.

Since the interface is targeted for use by the whole world, all
operations carried out by the interface needs to be cross browser
compatible. For this purpose, for most of the computational
necessities, the Lodash library [12] was used. Lodash is a
JavaScript utility library that delivers consistency, modularity
and performance with some other extra functionality as well
[12]. Each and every entity, field and option shown in the unified
search and browse interface are retrieved dynamically from the
database as the page is compiled and generated in the
MusicBrainz web server. This way any modification done to the
database schema or values in the database would automatically
be reflected in the interface contents avoiding the need of
redundant work. This was achieved by calling the server side
function utilities that act as an API over the MusicBrainz
database.

The styling of the interface was done using LESS which is a
dynamic style sheet language that can be compiled into
Cascading Style Sheets (CSS) and run either on the client-side
or server-side [13]. LESS allows the use of variables as well as
more structured style declarations. The MusicBrainz server has
own colour palette and predefined sizes for fonts and other text.

10

The interface was styled using all those predefined constants to
make it look consistent with the rest of the site.

All the development of the project was done using
SublimeText [14] which is a sophisticated text editor for code
and mark up. The necessary information in generating the query
with valid syntax and keywords was taken from the
documentation for the MusicBrainz XML web service available
at the musicbrainz.org website [4], [6].

The primary purpose of the Unified Search and Browse
Interface is to provide a way for the users to quickly and easily
browse through music metadata. All the results displayed on this
interface are solely retrieved from the MusicBrainz database.
The application that acts as the interface for the database access
is the MusicBrainz XML web service and the data are received
by the client interface in JSON format. Furthermore, for
maintainability purposes, all the entities, fields as well as options
available for the user to interact with are also retrieved from the
MusicBrainz database. This includes the list of all countries in
the world and a list of all script languages in the world as stored
in the database as well.

The query generated by the interface needs to have correct
and valid Lucene key words for the corresponding fields and
options selected by the user. The documentation of MusicBrainz
xml web service [6] contains all the possible key words for each
of the possible fields and options. This comprehensive document
was used as a reference in coding the behavior of the interface
that deals with generating the query. The primary pseudo code
for the overview execution of the interface is given in Fig. 4.

While true
If option selected OR search term input
If search term input
 Add search term to the query
If options selected
 For each option selected
 If option already in the query
 Remove that option from query
 Else
 Add that option to query
Request: If an AJAX request is currently in execution
 Abort current request
Make new AJAX request to the web service
If success
 Parse returned JSON results to a tabular format
 If request new page
 Modify query with correct offset
 Go to Request:
Else
 Display Retry link on the interface

Fig. 4. Main use case diagram of the system.

Once the interface is loaded, it waits for the user to select an
entity for the browsing to be done with. Once an entity is
selected, the user has the choice of selecting the options to
browse the database with respect to the selected entity, enter a
search term to be incorporated to the browsing or do both at
once. If at least one of those actions is triggered, the algorithm
would update the query in the state of the relevant component
appropriately.

For performance tuning, bursts of requests being made to the
MusicBrainz web service need to be avoided since it would
waste a lot of time waiting for the responses of previous requests

to come. Hence, the code was written in such a manner that at
one moment at most one active request is being made to the web
service. This was achieved by maintaining a variable that holds
a reference to the current AJAX request in operation if there is
any, and for each request that is being triggered, the existing non
null request is aborted and the new request is stored in that
variable. If the current sent request fails for some reason, a retry
link along with the reason for failure would be displayed. Once
the results are visible, the user has the option of traversing
through the different pages of the results and if such a request is
made, the query is updated with appropriate offset and a new
request is made to the web service following the same procedure
described earlier.

B. Main Interfaces

The web interface would contain a lot of dynamic content.
But the basic layout of the interface will contain a pane on the
left which will contain a list of categories the MB database can
be browsed with. On top of that list would be a text input field
that would allow the user to specify a search term to be included
in the query to be sent to the MB Web Service. Clicking on a
certain category would summon another panel under it that has
further fields that can be selected to narrow down the results with
respect to the selected category. Clicking on a category would
show up all the results that match that category without any
constraints on the right pane of the page. Clicking on one or
more subfields would narrow down that browsing result to
match all those selected fields.

Sub fields will be basically of five categories as per the
requirement. First is the type that has predetermined set of
values, which are fetched from the database directly. The second
type is a dynamic set of values which include a text input at the
bottom allowing the users to type in the text input and add what
they have typed to the list. The third type is a field that allows
input of range of dates. Next type is a field that allows entering
a count of something that accepts number ranges as well as
specific numbers. The final one is a list of items displayed as a
drop down list. The results will be displayed in a tabular manner
and pagination functionality is available on top of the results
table. Some other information like the total number of results
matched and the date and time the last request was made to the
web service also is visible above the table containing the results.
Another label would dynamically pop up notifying the user to
wait in instances where the interface is doing some work in the
background.

Initially, the interface does not support browsing through all
the entities at once and Search Box is kept disabled. Once the
user has selected an entity to browse the database with, the
search box becomes enabled and a panel containing the options
relevant to that entity comes up. It can be clearly seen in Fig. 5,
that the user has selected options to browse the database
requesting for artists of type person who are from Sri Lanka.

11

Fig. 5. The interface after a serving for a browse query.

The query that corresponds to the request in Lucene syntax is
visible under the results table. Since the number of results
returned for this query is eleven, a single page exists and hence
the Next and Previous buttons of the pagination functionality are
kept disabled and the current page 1, is highlighted.

V. SYSTEM TESTING AND ANALYSIS

The testing was done under four major techniques as
Functional testing, UI testing, Performance testing, and Security
testing. Functional testing of the unified search and browse
interface was done targeting at the testing requirements that
directly map to the use cases and business functions of the
project. These tests verify proper data acceptance, processing,
retrieval and the appropriate implementation of business rules.
The tests were carried out by interacting with the UI of the
interface and analyzing the changes happening in the mark-up
of the interface. The strategy that was used for the above
mentioned technique was as follows. The React Test Utilities
provided by the React library allows simulation of events as if
they were triggered by a user. This way it was possible to
programmatically input data and trigger click events in the
application interface and then using a test harness, it was
possible to check whether the mark-up of the page is changed in
response to the simulated event.

UI testing was used to verify a user’s interaction with the
interface ensuring that the UI provides the user with the
appropriate access and navigation through the functions of the
interface. Additionally, it involved in testing the interface for
cross browser compatibility since the audience for this interface
includes the whole public community and each of them might
be accessing the interface from various different browsers and
versions. The approach used for UI testing was to create tests to
simulate the relevant events like key presses and mouse clicks
on the target elements and check if the mark-up of the interface
as well as the query changed appropriately. The strategy used to

achieve that was to simulate events using the React Test Utils
library [15] and programmatically input data and trigger events
in the application interface. Then using a test harness, it was
possible to check and see if the mark-up of the page changed in
response to the simulated event as expected. The PhantomJS
headless browser [16] was used as the environment for the mark-
up to load and scripts to run and the test results were observed
via its command line console.

For cross browser compatibility testing, the page was
accessed using the BrowserStack online tool [17] manually and
made sure the interface conformed to the expected standard in
all the available browser environments. The tool allows
selection of a browser with a particular version to navigate to the
target-of-test and test the functionality of the interface in
different browsers manually.

 In performance profiling, the response times and other time-
sensitive requirements were measured and evaluated there by
verifying the performance requirements of the interface. The
main approach used in stress performance testing was to
simulate browsing requests for a certain entity in a burst and
observe the time taken to respond for the last request and the
number of requests sent to the web service while processing the
burst of requests. The strategy that was used here was quite the
same as with the prior techniques. Here the inputs were triggered
in a burst. The test harness was used to observe if the response
to the last one of the burst of requests is received within an
expected period of time. Furthermore the number of requests
sent could be determined by the number of times the results table
mark-up shown in the interface changed itself. The interface also
included a caching mechanism for all the pages retrieved for a
specific query. This will improve the performance of a user
moving back and forth in the pages in the paginated set of results
since no communication with the web service is made for
viewing an already loaded result page.

12

Apart from stress testing, Fig. 6 shows the variation of the
average response time of the interface as the complexity of the
browsing query changes with respect to the number of sub-fields
selected under the field ‘Type’ for category Artists. Fig. 7 shows
the same comparison with respect to the number of fields
browsed through with only one sub-field selected for the same
category.

Fig. 6. The average response time variation of the interface as
the browsing query complexity changes with respect to fields.

Fig. 7. The average response time variation of the interface as

the browsing query complexity changes with respect to

categories.

System security was tested by means of user inputs. The
relevant test case uses React Test Utils to input strings to the
interface that has characters which would invalidate the query if
incorporated without escaping them. Once they are input,
JQuery [18] is used to see if the updated query contains the exact
same input but with the special characters escaped. This way the
interface is made very much immune to possible code injection
attacks [20]. Since the interface only deals with reading
information from the web service, it is hardly possible for any
other security threat to exist that would cause any considerable
damage to the functionality of the system.

VI. CONCLUSION AND FUTURE WORK

 This paper presents a unified search and browse interface
tool to overcome the search difficulties in existing MusicBrainz
music encyclopedia web site. The tool is implemented using a
user friendly wrapper through web services. The user feedback
shows that the interface provides a satisfactory level of user

experience and a user friendly search facilities. This tool enables
the exposure of the metadata in the MusicBrainz database to
many users and will be available in MusicBrainz beta site [19].
The tool has the strict requirement of selecting an entity first
before starting a search task. As a future extension, the above
restriction can be addressed using the MusicBrainz server side
web services. Also, the caching mechanism can be improved by
using a separate server to cache all the retrieved pages. Further,
we suggest including a complete set of details for the recent
database records to improve search facilities.

REFERENCES

[1] Musicbrainz.org, 'MusicBrainz - The Open Music Encyclopedia', 2015.
Available: https://musicbrainz.org/. [Accessed: 26- Oct- 2015].

[2] Metabrainz.org, 'MetaBrainz Foundation', 2015. Available:
https://metabrainz.org/. [Accessed: 27- Oct- 2015].

[3] Musicbrainz.org, 'Search - MusicBrainz', 2015. Available:
https://musicbrainz.org/search. [Accessed: 16- Sep- 2015].

[4] Musicbrainz.org, 'Indexed Search Syntax - MusicBrainz', 2015.
Available: https://musicbrainz.org/doc/Indexed_Search_Syntax.
[Accessed: 16- Sep- 2015].

[5] Lucene.apache.org, 'Apache Lucene - Welcome to Apache Lucene', 2015.
Available: https://lucene.apache.org/. [Accessed: 16- Sep- 2015].

[6] Musicbrainz.org, 'Development / XML Web Service / Version 2 -
MusicBrainz', 2015. Available:
http://musicbrainz.org/doc/Development/XML_Web_Service/Version_2
. [Accessed: 16- Sep- 2015].

[7] R. Wickramasinghe, 'Unified Search and Browse Interface Prototype',
2015. Available: http://musicbrainzexploremockup-
ruchiranga.rhcloud.com/. [Accessed: 16- Sep- 2015].

[8] Knockoutjs.com, 'Knockout : Home', 2015. Available:
http://knockoutjs.com/. [Accessed: 27- Oct- 2015].

[9] Facebook.github.io, 'A JavaScript library for building user interfaces |
React', 2015. Available: https://facebook.github.io/react/. [Accessed: 27-
Oct- 2015].

[10] Codementor.io, 'React vs AngularJS vs KnockoutJS: a Performance
Comparison | Codementor', 2015. Available:
https://www.codementor.io/reactjs/tutorial/reactjs-vs-angular-js-
performance-comparison-knockout. [Accessed: 27- Oct- 2015].

[11] Jsx.github.io, 'JSX - a faster, safer, easier JavaScript', 2015. Available:
https://jsx.github.io/. [Accessed: 27- Oct- 2015].Dfdf

[12] Lodash.com, 'lodash', 2015. Available: https://lodash.com/. [Accessed:
27- Oct- 2015].

[13] Wikipedia, 'Less (stylesheet language)', 2015. Available:
https://en.wikipedia.org/wiki/Less_(stylesheet_language). [Accessed: 16-
Sep- 2015].

[14] Sublimetext.com, 'Sublime Text: The text editor you'll fall in love with',
2015. Available: http://www.sublimetext.com/. [Accessed: 27- Oct-
2015].

[15] Facebook.github.io, 'Test Utilities | React', 2015. Available:
https://facebook.github.io/react/docs/test-utils.html. [Accessed: 27- Oct-
2015].

[16] Phantomjs.org, 'PhantomJS | PhantomJS', 2015. Available:
http://phantomjs.org/. [Accessed: 27- Oct- 2015].

[17] Browserstack.com, 'Cross Browser Testing Tool. 300+ Browsers, Mobile,
Real IE.', 2015. Available: https://www.browserstack.com/. [Accessed:
27- Oct- 2015].

[18] j. jquery.org, 'jQuery', Jquery.com, 2015. Available: https://jquery.com/.
[Accessed: 27- Oct- 2015].

[19] Beta.musicbrainz.org, 'MusicBrainz - The Open Music Encyclopedia',
2015. Available: https://beta.musicbrainz.org/. [Accessed: 27- Oct-
2015].

[20] Wikipedia, "Code injection", 2016. Available:
https://en.wikipedia.org/wiki/Code_injection. [Accessed: 07- Feb- 2016].

