
GViz: A Web Based Client Side Data

Visualization Framework

M.W. Edirisooriya, B.P.P. Fernando, T.A.M.P. Fernando, W.A.W.S.K. Wickramasinghe and S.M

Weerawarana
Department of Computer Science and Engineering,

 University of Moratuwa,

Moratuwa, Sri Lanka.

Abstract— Data visualization is widely used in modern

day web applications. Although there are popular

solutions like Google Visualization API and YUI, they

all are dependent on the server side technology. This

paper describes a generic framework which runs

entirely on the client side of a web application and

enables easy integration of different types of

visualization components like maps and charts from

different visualization providers into a single web based

dashboard [1] supporting different types of data

providers like XML and JSON [2]. Data is described to

the framework using an open standard named Data Set

Publishing Language (DSPL) [3]. The framework

implements an Event Driven Architecture (EDA) to

facilitate the numerous asynchronous workflows

happening inside.

Keywords—data visualization; client side scripting;

data description; JavaScript framework; Data Set

Publishing Language (DSPL)

I. INTRODUCTION

Data visualization is one of the main requirements
for professionals such as economists, data analysts,
scientists, researchers and students. They need to
visualize different types of data (e.g.: XML and CSV
files) in different types of visualization techniques
(e.g.: Bar charts and maps). There are both open and
proprietary software available for those visualization
purposes. Most of such software are desktop based,
platform dependent and specialized for particular
applications. For example Microsoft SharePoint [4] is
designed for business data visualization, MATLAB
visualizations are designed for mathematical data
visualization. Geographic Information System (GIS)
[5] are designed for visualization of geographic data.
Therefore a user should have a specialized
knowledge to get use from the above mentioned
complex software. As they are available as parts of
software, it is difficult to use their visualization
components (e.g.: Pie charts and maps) with other
software. For example if the user use Microsoft
SharePoint then he/she must use Microsoft Windows

operating system with .net framework as a
dependency. Also, the integrator should learn the API
provided by the software. It becomes much difficult
if the integrator wants to bring both SharePoint and
MATLAB visualization components into a single
interface. As the alternatives to the above mentioned
problems the visualization technology has moved
from the desktop to the web with the development of
technologies such as Flash, HTML5 and AJAX. As
these technologies are common to most of the
currently available web browsers they can be used as
platform independent visualization techniques.
Google Visualization API [6] and Google Dashboard
[7] are examples for such web based solutions for
data visualizations. But still the technology is
completely dependent on the server side support
provided by the server (In the above examples,
Google server). That requirement raises a lot of
problems.

The user cannot use the software without an
Internet connection.

1. Internet bandwidth is a main performance issue.

2. Reliability of the software is dependent on the

service provided by the server side company.

3. Privacy and confidentiality are severely

compromised on the data to be visualized.

4. User cannot improve and customize the

visualization software according to his/her

requirements.

We have identified those problems [8] and came
up with the solution of “Client Side Data
Visualization Framework” which is novel to the
visualization technology. The main advantage of this
framework is its capability to reuse existing
visualization components used in other web based
technologies such as visualization components used
in Google Visualization API, Highcharts [9] and Ovi
Maps [10]. Also, its data source can be given in a
variety of ways in different formats such as CSV
files, XML files and JSON files. The other advantage
is that the user can map these data sources to

appropriate visualization components using a
configuration file in Dataset Publishing Language
(DSPL). Also the user can define his own data source
and he/she can reuse existing web based visualization
components by adding them to the framework by
writing a custom adapter.

II. DATASET TECHNOLOGY

According to the aim of our project, we need to
visualize data obtained from different types of data
sources in different formats. Types of data sources
are as follows.

1. Files - Provided from server by AJAX requests

or directly from the local machine

2. Online document - Using the URL to the
document and access privileges

3. Web service - Can be enabled using the existing

XML string data provider

4. Database - Should be given from the server or

can use the local storage defined in HTML5

5. Manually entered data - Application should

enable an interface for the user to enter data

Data formats that are already implemented in the
framework are as follows. They are defined in our
framework as Data Providers.

A. Tables

The most generic data type is the Table type. It is
easy to directly convert these types of data into other
data types. This format can be created by manually
entered data and directly accessed from an online
document such as a Google Spreadsheet. That data
provider is known as “gdoc” data provider in our
framework.

B. XML format

DSPL and source data are retrieved in XML
format. There are two data providers for both XML
files and XML strings. XML string data provider can
be extended as a web service data provider that can
interact with web services.

C. JSON format

JSON format is the inherent object notation used
in JavaScript. As all the input data is converted into
JSON format it can easily provide source data in
JSON format as well. For this format also, there are
two data providers available for both JSON files and
JSON string formats.

D. CSV format

Usually large amounts of data are stored in files
in CSV format. CSV source data files can be given to
the framework using the CSV data provider.

The data given in the above formats should be
according to the data definition specified in the DSPL
file. All these data providers convert its input data
into the JSON format inside the framework and store
them in the GViz data table which is a data structure
defined in our framework. DSPL specification is used
for this conversion. After this conversion it is very
easy to provide appropriate slices to the required
visualization components as accessing JSON format
is simple in JavaScript.

III. VISUALIZATION COMPONENTS

The main visualization software components used
in the framework is known as visualization
components. As mentioned earlier a visualization
component consists of,

1. A web based UI component developed in the

web technology that may be already available in

some other software

2. A custom JavaScript adapter mapping the
functionality and data source of the UI

component to the framework

There are some reused visualization components

already available in the framework such as from the
components from Google Visualization API,
Highcharts, Bing Maps [11], Ovi Maps and Google
Maps etc. The user too can add their own
visualization components or reuse existing
visualization components and write an adapter in
JavaScript to make it compatible to our framework.

IV. DATASET PUBLISHING LANGUAGE (DSPL)

This is an open standard introduced by Google on
February 2010. DSPL is an XML configuration
standard defining data in the data source and
mapping them to visualization components by
assigning each slice of data to each visualization
component in Google Public Data Explorer [12]. As
our requirement is broader than the goals of Google
Public Data Explorer we extended the DSPL
framework to be able to assign some additional
features like mapping to the exact div of the
visualization component in an HTML file. We also
made it possible to use exact pure DSPL defined by
Google for the advanced users and made it possible
to handle the extra complexity using the JavaScript
code.

As a supporting service to the visualization
framework we developed a server side code generator
and a DSPL generator for the use of ordinary users.
Using that framework they can use an existing data
source (data provider) and an existing visualization
component to fulfill their visualization requirements.

Code generator generates the JavaScript code and the
DSPL generator generates the mapping DSPL code
between the data provider and the visualization
component.

V. ARCHITECTURE AND FLOW

A. Overall Architecture

The framework runs on client side of the web
browser. Figure 1 refers to the overall architecture of
the framework. It has a data structure used to keep
the DSPL Description globally that is needed for all
the other events. In the same object it has the DSPL
access interface that can access the content of the
DSPL description.

Then there is a data table implemented in the
object GViz Data Table that keeps the data for all the
visualization components. Data given to each
visualization component is a single slice from the
table of GViz Data Table. This encapsulates the
confidential data for each visualization component.

Data for the GViz Data Table are filled with the
data providers of different types. For example, XML
File data provider supplies data from an external
XML file in the given location. All of these data
providers work independently and asynchronously
[13] from each other. As the DSPL description is an
XML file it is loaded using the XML File data
provider.

Each visualization component is provided with
data in a single slice as described in the DSPL
description. As GViz Data Table provides a single
API for the visualization component, custom written
visualization adapters are used to communicate
between visualization components and that API.

Figure 1 - Overall Architecture

B. Event Mechanism

According to the Figure 2 as the framework uses
a lot of asynchronous calls using AJAX and
secondary storage transactions the framework is
designed using Event Driven Architecture (EDA).

When the framework loads, first it loads the
DSPL file from the given location (DSPL
configuration loaded event). According to the
specification of the DSPL file, then it loads the
external dependencies that are required mainly for the
custom visualization components. This event is
known as Dependency configuration loaded event.
Then the framework loads required data sources from
appropriate data providers according the DSPL
specification. All loaded data are first converted to a
standard JSON format and then bind to the GVIz data
table. Headers of each data are assigned in the GVIz
data table according to the DSPL specification.
Finally all the loaded data are used as the data
sources of the visualization components and the
visualization components are loaded from the given
location asynchronously. After this event,
visualization component loaded event is fired. This is
the event model.

Figure 2 - Event Sequence

Event 1 - DSPL configuration loaded event

Event 2 - Dependency configuration loaded event

Event 3 - Data loaded event

Event 4.1 and 4.2 - Visualization component loaded

event.

All events are fired sequentially in the given
order. Each event is handled by the framework and

continues the framework until the next event. These
events are asynchronous so that the framework waits
for the event without any execution. Event 1 handles
only one call as there is only one DSPL file but in
event 2 it can be many dependencies as the
framework may need many dependencies for further
execution. Event 3 may be one or more calls as there
may be one or more types of data to be loaded. As
there can be many visualization components used in
the framework Event 4 can be many events.

C. Visualization Component Interaction

Although each visualization component is built
isolated from each other using adapters, there is a
global mechanism for visualization components to
interact with each other at run time. This mechanism
is achieved using a global event mechanism. For
example, as shown in Figure 3, assume a location of
a map visualization component is selected. That on-
click event is wrapped with a global event with the
relevant longitude and latitude and fired globally. If a
table visualization component has previously
subscribed for that event, it can catch the event and
select the related row asynchronously.

Figure 3 - Visualization Component Communication

VI. CONCLUSION

The problem of generic data visualization
requirement can be successfully fulfilled with the
solution of a client side data visualization framework.
There are external on the shelf visualization
components that can be integrated to the framework
using a custom adapter. All the visualization
components can be filled with data from a single type
of data structure independent from the data source.
Multiple visualization components are loaded
asynchronously because of the application of event
driven architecture.

A common data source definition is achieved with
the open standard, DSPL. It enables the framework to
provide data as slices from the data table improving
the isolation of data for the requirements of security.
And also DSPL acts as a single configuration for all

the data sources and their mapping to each
visualization component.

Interaction among visualization components is a
major requirement when it comes to complex
dashboards. This problem is handled in this
framework with the use of global event system
accessible for all visualization components.
Requirements of access control and generality can be
achieved with the wrapping of global events with a
restricted event object.

ACKNOWLEDGEMENT

At this very important achievement of our
academic careers we would like to remember all the
members in our families for their undying support in
every endeavor in our lives.

Next we would like to acknowledge our project
supervisor, Dr. Shahani Weerawarana for the support
from beginning, providing the initial project idea and
guiding us to make the geo-data visualization
framework a reality.

Then our special thanks go to Level 4 Project
Coordinator, Dr. Shantha Fernando for commitment
from scheduling all the project related evaluations in
the correct time to providing correct feedback after
careful review of the project.

Then our gratitude goes to all the lecturers and
Staff members of the Computer Science and
Engineering Department for their dedicated support
in educating us to become more knowledgeable
human beings.

Last but not least, we would like to remember all
our batch mates in the department for the
unforgettable time we had as CSE family members.

REFERANCES

[1] F. B. Viégas, M. Wattenberg, F. V. Ham, J. Kriss, M.

McKeon, “Many Eyes: A Site for Visualization at Internet

Scale”

[2] “Introducing JSON”. [Online]. Available:

http://www.json.org/. [Accessed: 10-Oct-2011].

[3] “DSPL: Dataset Publishing Language”. [Online]. Available:

http://code.google.com/apis/publicdata/. [Accessed: 10-Oct-

2011].

[4] “Product Information”. [Online]. Available:

http://sharepoint.microsoft.com/en-

us/product/Pages/Features.aspx. [Accessed: 10-Oct-2011].

[5] “What is GIS? | GPS Systems,” 25-Aug-2011. [Online].

Available: http://gpssystems.net/what-is-gis/. [Accessed: 25-

Aug-2011].

[6] “Introducing the Google Visualization API” 19-Mar-2008.

[Online]. Available:

http://googlecode.blogspot.com/2008/03/introducing-google-

visualization-api.html. [Accessed: 10-Oct-2011].

http://www.json.org/
http://code.google.com/apis/publicdata/
http://sharepoint.microsoft.com/en-us/product/Pages/Features.aspx
http://sharepoint.microsoft.com/en-us/product/Pages/Features.aspx
http://googlecode.blogspot.com/2008/03/introducing-google-visualization-api.html
http://googlecode.blogspot.com/2008/03/introducing-google-visualization-api.html

[7] “Transparency, choice and control — now complete with a

Dashboard!” 05-Nov-2009. [Online]. Available:

http://googleblog.blogspot.com/2009/11/transparency-

choice-and-control-now.html. [Accessed: 10-Oct-2011].

[8] C. Weisgerber and S. H. Butler. “Visualizing the Future of

Interaction Studies: Data Visualization Applications as a

Research, Pedagogical, and Presentational Tool for

Interaction Scholars” The Electronic Journal of

Communication, vol. 19, pp. 1-2, Nov. 2009.

[9] “Highcharts JS”. [Online]. Available:

http://www.highcharts.com/. [Accessed: 10-Oct-2011].

[10] “Ovi by Nokia”. [Online]. Available: http://www.ovi.com/.

[Accessed: 10-Oct-2011].

[11] “Bing Maps”. [Online]. Available:

http://www.bing.com/maps/. [Accessed: 10-Oct-2011].

[12] “Google Public Data Explorer”. [Online]. Available:

http://www.google.com/publicdata/home. [Accessed: 10-Oct-

2011].

[13] J. Heer, F. B. Viégas and M. Wattenberg. “Voyagers and

Voyeurs: Supporting Asynchronous Collaborative

Information Visualization”.

http://googleblog.blogspot.com/2009/11/transparency-choice-and-control-now.html
http://googleblog.blogspot.com/2009/11/transparency-choice-and-control-now.html
http://www.highcharts.com/
http://www.highcharts.com/
http://www.bing.com/maps/
http://www.google.com/publicdata/home

