
MOINC Agent, Dynamic Web Service Runtime
Environment

N. T. Baranasuriya, M. B. R. C. Boralugoda and M. S. M. A. Nafran,
Department of Computer Science and Engineering, University of Moratuwa, Sri Lanka.

B. MOINC Client agent
C. MOINC Server management module
D. Thisara Messaging Framework

Abstract - Project MOINC is an attempt to blend the web
services paradigm with the grid computing paradigm to
facilitate high available and high scalable web services
deployments. MOINC Agent is one of the four main
components of Project MOINC. This research
presents the three main research areas that were covered
during the attempt to build the MOINC Agent Component
The three main research areas are; Implementation of a
Machine State Detection Algorithm, Re-implementation of
Axis2 Kernel module and the Screensaver implementation.

This research paper presents the research areas that
were covered during the process of implementing the
MOINC Client Agent which was renamed MOINC Agent.

There were three main research areas that were covered
in implementing MOINC Agent. They can be briefly
explained as follows and each area will be thoroughly
discussed in the following topics.

paper

Index Terms - Axis2, Grid computing, Idling resources,
Volunteer computing Machine State Detection Algorithm: MOINC Agent is

an application which automatically launches itself once it
detects that the user is no longer using his/her computer.
To achieve this purpose it was necessary to build an
algorithm that detects whether the user is using the
machine or not. The research that was done to implement
this algorithm will be discussed first.

I. Introduction

[V It ORA Open Infrastructure for Network Computing
-LV-L(MOINC) is a project which focuses on designing
and developing a Java web services deployment platform
which provides high availability and scalability using the
computing power of idling computers in a network.
MOINC would ultimately enable service providers to
offer high available web services with supreme
throughput without having to deploy any mainframes,
super computers or even traditional server clusters \shich
we generally expensive, complex and difficult to
maintain.

Ax is 2 Kernel Module Re-Implementations: MOINC
Agent is the web service execution environment of the
entire platform. Axis2 is the web service runtime that was
used in this project. However the default implementation
of Axis2 did not meet our project requirements. Therefore
we modified the Axis2 code in order to integrate it with
the rest of our project artifacts. The changes were mainly
done to the Kernel module of Axis2. The remainder was
unchanged and used as it is. The research that was done to
modify the Axis2 Kernel is discussed secondly.

Similar applications to MOINC Agent can be
SETI@Home and World Community Grid (WC
aPplications use the idling computing resources
computers connected to the internet to process compe
tasks.
the ab

The main difference between MOINC Agent and Screensaver Implementation: Once MOINC Agent
application launches itself after detecting user inactivity, a
screensaver is displayed to the user. The screensaver gives
the user information about what services were deployed
and how many hits each service received. The research
that was done to implement this screensaver is discussed
thirdly.

mentioned applications is MOINC Agent is
service execution environment whereas applications
as WCG

ove a
Web
such execute tasks. Hence if any problem

Processing of complex web service executions
Agent can be a life saver by providing idling

requires
MOINC
c°mputing resources spread all over the wor

MOINC platform consists of four main componen
A. MOINC Server

103

To get around this problem we changed the existing
implementation of the code that was available.

First we added a new method to the C programme to set
a process id of which the CPU usage should be profiled
The method was added in such a way that it was visible to
the Java programme via the JNI. Hence before calling the
getProcessCPUTimeO method, we called the newly added
setPid (JNIEnv * env, jclass els, jint pid) method with the
pid variable set to zero. (System Idling Process is always
given the process id zero by the OS). The method we
added is given below.

II. Machine state detection algorithm

A. Introduction
This topic covers the research that was done to

implement the Machine State Detection algorithm. The
main purpose of this module is to monitor user activity
and run the application when it detects that the user is no
longer using the computer.

This research was done in the very first few weeks of
the project because this was the entry point to the whole
system. We came up with three different approaches to
implement this module. The three approaches varied
immensely on implementation and algorithms followed.
We considered each of them in the light of easiness of
usage, bug freeness and extensibility before selecting
which of them was the most appropriate one. Let us now
look at each of these in detail.

JNIEXPORT jint JNICALL
Java_com_vladium_utils_SystemInformation_setPid
(JNIEnv * env, jclass els, jint pid)
{

DWORD errCode;
LPVOID lpMsgBuf;
s_PID = pid;
s_currentProcess =

OpenProcess(PROCESS_ALL_ACCESS/FALSE,pid);B. JNI Based State Detection
1) Implementation
In order to check for user inactivity our initial idea was

to monitor the system idling process which exists on any
operating system. Our algorithm was very simple and it
was as follows.

if (s_currentProcess==NULL) {
errCode = GetLastError();
FormatMessage(

FORMAT_MESSAGE_ALLOCATE_BUFFER |
FORMAT_MESSAGE_FROM_SYSTEM,
NULL,
errCode,
MAKELANGID(LANG_NEUTRAL,

SUBLANG_DEFAULT) ,
(LPTSTR) SlpMsgBuf,
0, NULL);

int var = CPU_Usage_of_System_Idling_Process;
if (var > 95) (

Machine_state = inactive;
) else { printf("[CPUmon] Could not attach to

native process.\n Error code: %ld\n Error
description: %s\n",errCode,lpMsgBuf);

fflush(stdout);
LocalFree(lpMsgBuf);
return errCode;

Machine_state = active;
1

Though the algorithm was simple, the implementation
was hectic. Java is a platform independent programming
language. Hence it is not tightly bound to any OS specific
logic. In order to find the CPU usage of the system idling
process we had to tap into the OS, but this was not a
possibility through the JVM single handedly.

From the research material we went through we found
that we had to write a programme in C which interacted
with DLLs of the OS to retrieve the CPU usage of the
system idling process. This C programme was then
converted to a DLL using the MinGW C compiler [6].
Finally we coded a Java programme which got the
information through this DLL via the Java Native
Interface (JNI) [1] [2].

During our research we found a code base [2] [3] that
dealt with JNI which helped our implementation.
However we could not straightaway use the code that was
available because the final CPU usage value it returned
was of the current process which the programme
running on. In other words, it returned the CPU usage of
the Java programme instead of the System Idling Process.

}
printf("[CPUmon] Attached to native

process.\n");
fflush(stdout);
return 0;

}

2) Problems in this approach
The first problem in this approach was the OS

compatibility problem. MOINC Agent application needed
to be supported on both Windows and Linux platforms.
However this approach only worked on
platform.

The second problem
maintaining the code. Each change in the C programme
required recompiling it to a DLL and attaching it to the
Java programme via the JNI.

the Windows

the difficultness ofwas

was theThe third and the most troubling problem
inappropriateness of this approach for the MOINC Agen**
From the tests that we carried out we found that when th
user is using a light weight application (e.g. typing text m

was

104

the notepad) the CPU usage of the SIP was very close to
100%- According to our algorithm the computer is
idling but actually it is not. Due to this problem we
dropped this method of implementing the state detector
module and looked for other means of implementation.

figure out how to achieve this goal while running in the
background.

While researching thoroughly on this we came across a
Java application [12] which was used in a chat application
to set the status of the user automatically to ‘away’ when
the computer was idling.

The programme was based on the open source class
library called Java Native Access (JNA) [7]. Through
JNA it was possible to communicate with the OS specific
logic straight from Java without writing low level
programmes in C or C++ [3].

Another advantage of this approach was, as it is purely
Java it could be used both in Windows and Linux without
changing much of the existing code. Hence the code was
easily manageable and provided easy extensibility.

This programme worked on Windows by
communicating with the user32.dll and kernel32.dll
libraries. The user32.dll exposes a method called
LASTINPUTINFOO which gives the information of the
latest keyboard hit or mouse movement. Then we
programmatically found the time since the last input and if
it was above the threshold level we concluded that the
system is idling and started the MOINC Agent operations.

By the use of JNA we were able to get rid of underlying
operating system complexities. This made the state
detection a breeze and the code we used is as follows,
public static void activateStateDetector () {
MachineState state * MachineState.UNKNOWN;
for (;;) {
int idleSec = getIdleTimeMillisWin32() /

1000;
MachineState newState * MachineState.UNKNOWN;
if (idleSec < 10) {

newState » MachineState.ONLINE;
} else if (idleSec > 10) {

newState - MachineState.IDLE;

now

C. Keyboard and Mouse Monitoring
1) Implementation
In this approach we used keyboard hits and

movement monitoring programme to check for
inactivity. The algorithm we used here differed from the
earlier one slightly.

mouse
user

int var =
mins_after_latest_keyhit_or_mouse_movement;
if (var > 10) {

Machine state = inactive;
} else {

Machine_state = active;
)

To implement this we used classes from the java.awt
package. The logic was simple. Each time the programme
detected a keyboard hit or a mouse movement we reset a
timer. Once the timer runs out due to no keyboard or
mouse movements, we launched the application.

The advantage of this method of implementation was
the easiness of implementation. The programme was
100% Java and no low level programming was necessary.

The code we used was a modified version of the code
base which can be found at [11].

2) Problems in this approach
There was only one main problem in this approach and

that was the inability of running the programme in the
background. MOINC Agent had the requirement of
inning as a background process and constantly checking
the status of the computer before launching the rest of the
°Perations. In this approach in order for it to detect
j^yboard hits and mouse movements, the focus needed to

to the program thus eliminating the chances of
rUnn*ng us a background process.

^Ue this reason we had to drop this approach as well
nd move on to another method of implementation.

? Based Approach
} implementation

Usey.thls time we knew the correct approach to detect
mQr Inactlvity was to monitor keyboard hits and

ements. The remaining unsolved problem

)
if (newState !- state) {

state « newState;
Launcher launcher - Launcher.

getlnstance();
launcher.launchScreenSaver(newState);
launcher.launchAxis2(newState);

}be set try { Thread.sleep(1000); }
catch (Exception ex)

}
}

This approach provided successful results and was used
in the MOINC Agent’s state detector module
implementation. We encountered no problems in using
this method because it could run in the background while
listening for keyboard hits and mouse movements, and
that is exactly what we wanted.mouse

was to

105

Hence from these results and the above discussions on
our research we decided to develop the state detection
algorithm based on the JNA approach.

E. Evaluation
This section compares the three approaches that were

used to implement the state detection algorithm. Four
sample scenarios were created and it was checked how the
three approaches classified each of the four scenarios. The
four scenarios were:

1. User is idling i.e. no activity with the computer.
2. User typing text in the notepad.
3. User working with Adobe Photoshop, Windows

Media Player at the same time.
4. User working with Eclipse.

III. AXIS2 KERNEL RE-IMPLEMENTATION

A. Introduction
The topic will cover the research done on Apache Axis2

which is a Java-based implementation of both the client
and server side of the web service equation. Apache Axis2
provides a complete Object model and a modular
architecture that makes it easy to add functionality and
support for new Web services related specifications and
recommendations [14], [16]. This part can be considered
as the core of MOINC Agent since Axis2 is used as the
web service runtime.

After deciding to use Axis2 as our web services runtime
environment of MOINC Agent, we wanted Axis2 to meet
some of our requirements. We were able to achieve some
of these via the axis2.xml and web.xml configuration
files. To achieve the other requirements we had to dig into
the code base of Axis2 and re-implement the parts we
needed. MONIC Agent Requirements on Axis2 are listed
bellow

The test results are as follows:

TABLE I
The Results Of The Classification approaches

Correct JNI Java awt JNA
Scena Classifi Approach Approach Approach
-rio -cation Classifica Classificat Classificat

-tion -ion -ion
Idle Idle1 Idle Idle

2 Active Idle ActiveIdle
3 Active Active Idle Active

Active Active4 Idle Active
1) Work with a remote repository
2) Deploy specified web services
3) Export statistical data for the screensaver &

MOINC Server management module
4) Cluster enabled

5

B. Implementation
Work with a remote repository: MOINC Agent being an

idle computer within a network and powering itself up
when it is idle, will not have any available web services
on the machine itself to deploy. Therefore it will require a
common repository where the machine will be able to
download the services and deploy them. To achieve this
requirement we had to enable working with remote
repository on web.xml on Axis2 [4] [5].

Java awt

Fig. I. Performance Comparison of the three Approaches

Deploy only the specified list of web service: This was
one of the main requirements we had on Axis2. Since
MOINC is a project which will be working with a grid of
computers where all these computers will be pointing to 0

repository. It will be impractical to download all
the services in the repository and deploy it on each an
every computer in the grid [5]. However if we used the
default implementation of Axis2 to work with a remote

in the

The first approach (JNI) failed to classify scenario 2
correctly because it could not detect light weight
processes when they were running.

The second approach failed to classify the scenarios 2, 3
and 4 correctly due to the fact that it could not run in the
background.

The third approach which is the JNA based approach,
classified all the four sample scenarios correctly. This was
due to the high accuracy of the algorithm and its ability to
run as a background process.

common

repository, it will download all the services
repository and deploy them on the local machine [15]*

106

Therefore we had no other option other than changing
the code base of Axis2. Through our research on the
Axis2 source code, we saw that this functionality
done on the kernel module deployment package. We did
the changes on this package so that only a specified list of
services will be deployed instead of all the services in the
repository. This change gave an enormous performance
boost to the system and helped to avoid unnecessary
network traffic. The code segment given below shows the
changes we did to the loadServicesFromUrl method of the
deployment engine of Axis2.

given below shows one such instance where we capture
the information on the engine package dispatcher phase
class.was

Axis2ServiceCount
Axis2ServiceCount.getInstance();
String Serviceiist[] «
msgContext.getAxisService().
getFileNameO .toStringO .split ("/") ;

for(int i-0;i <
msgContext.getAxisService {1 .getFileName () . toStri
ng().split{"/").length;

i++) {
if (Serviceiist[i].endsWith(".aar”)) {

count.addServiceCount(msgContext.getAxisS
ervice().getName(>, Serviceiist(i]) ;

count =

servicesDir = new URL(repoURL, path);
File filepath = new File("services.list”);
URL filelisturl = new URL("file:///"+

filepath.getAbsolutePathO) ;
ArrayList files = getFileList(filelisturl);
for (Iterator filelterator = files.iteratorO;

filelterator.hasNext ();) {
String fileUrl = (String)
filelterator.next();
log.info("File URL: " + fileUrl);

}
1

We store this information in two formats, one where the
web service file name and the request information are
stored in another the service name and the number of hits
each service got. The first file was used by the server
management module and the other one was used to export
information to be displayed on the screensaver. The
structure of the file which exports information to the
screensaver is given below.

if (fileUrl.endsWith(".aar")) {

AxisServiceGroup serviceGroup = new
AxisServiceGroup();

URL servicesURL = new URL (servicesDir,
fileUrl);

<Screensaver>
<Status>Deployed Web Services</Status>
<Services>

ArrayList serviceiist =
populateService(serviceGroup,
servicesURL,
fileUrl.substring(0,
fileUrl.indexOf(".aar"))) ;

<Service
count-""></Service>
<Service
count-""></Service>
<Service
count*""></Service>

-"Version"name

name-"EchoService2"

addServiceGroup (serviceGroup, serviceiist,
servicesURL, null, axisConfig);

log. info (Messages . getMessage (Deployment Err
orMsgs. DEPLOYING_WS,

org. apache. axis2. util. Utils. getModuleName (
serviceGroup.getServiceGroupName ()) >

name-"Echoservice"

</Services>
</Screensaver>

This xml file gets updated whenever a new request is
handled by Axis2 so that the screensaver will display the
up-to-date information to the user. The file that is used to
send information to the server management module is
written only once and that is when Axis2 stops.

servicesURL. toStringO
)>;

porting Statistical data to screensaver <£ MO INC
zrver management module: The default Axis2
mPlementation does not provide any means of exporting

statistical information about the services, (i.e. what
^rvices got executed and how many requests came for
wCh service) However the MOINC Server Management

du^e required this information to be sent to it.
therefore ..

kernel ^nce current request handling
sam 6 m°^u*e en8‘ne package we did our changes on the
that6 and When Axis2 handled W recluest we captured

formation and stored it in a file. The code segment

Clustering: This was another major requirement of our
project since MOINC Agent
that Aixs2 to will plug in to the cluster of computers
without any issues. Even though Axis2 1.4.1 release did
not fully supported our requirement, releases after 1.4.3
supported the clustering requirement and we only needed
to enable the clustering settings on the axis2.xml file [17].

team needed the assurance

had to implement this requirement on
done in thewas

107

file:///"+

The following code was used to load the external
service_counts.xml file in to the screensaver application.

IV. SCREENSAVER IMPLEMENTATION

A. Introduction
Under this topic, the research that we carried out on

implementing the screensaver will be discussed. The main
purpose of the screensaver is to display the user, the
information about what services were deployed and how
many hits each service received. We started implementing
the screensaver having three goals in mind. They were:

1) The screensaver should be simple.
2) It should be interactive as well as attractive.
3) We should be able to implement it without

spending a lot of time.

function loadXML(){
screenXML = new XML();
da = new DataAccess();
invoc = new Invocator();
values = new Array();
stat = new Array();
screenXML.onLoad = checkStatus;
screenXML.load ('../service_counts.xml') ;
screenXML.ignoreWhite = true;
updateAfterEvent{);

}

In the checkStatus function, it will call two methods of
the DataAccess class to get the required data fields to the
two arrays.Having these in minds we started the research work by

looking at the BOINC screensaver.
function checkStatus(success){

if(success){
da.sendNodes(screenXML,'Status',da.handleB. 4.2 BOINC Screensaver

BOINC is a non-commercial middleware system
for volunteer and grid computing. It uses the idle time on
computers to cure diseases, study global warming,
discover pulsars, and do many other types of scientific
research [18]. Due to the great similarities shown, we
considered BOINC as one of the main resources that we
could refer on implementing MOINC.

BOINC screensaver is implemented entirely in C++ and
if you look at the source code of it you could see that there
are a number of dependencies with other BOINC modules
[19]. Furthermore the screensaver application needed
some additional libraries to display graphics. For an
example, to build the application you will need the JPEG
library, a few other image libraries, and the OpenGL and
GLUT graphics libraries. So it is clear that this sounds a
very bulky program and moreover, though it could fulfill
our first requirement of being simple, the other two goals
appeared to be impossible to achieve.
So we decided to carry out more research in order to find
another approach. There we took the path of blending
ActionScripting with XML to come up with a simple, but
attractive application that fulfils our requirements and
would not take much time for implementation.

C. 4.3 MOINC Screensaver
Keeping the attractiveness and the time factor in our

minds, we tried the approach of using Actionscripting to
load the data in an xml file which was generated by using
the Axis2 code as mentioned in the section 3.2. XML
alone may be easy. ActionScript alone may be easy.
However once they were put together things became a
little complicated. In other words this was a task of
blending two technologies to come up with our
requirement.

Status);
da.sendNodes(screenXML,'Service',

da.handleServices);
values = da.getServices ();
stat = da.getStatus(); }

}

Furthermore the sendNodes method of the DataAccess
class will traverse through the xml file in order to get the
values of the required fields as follows.

public function sendNodes(file, searchName,
callBack):Void{
for(var i = 0; i< file.childNodes.length;i++){

var currentNode = file.childNodes[i];
if (currentNode.nodeName == searchName){

callBack(currentNode);}
if(currentNode.childNodes.length > 0){

sendNodes(currentNode,searchName,
callBack);}}

This approach provided successful results and was used
in the MOINC Agent’s screensaver implementation. Thus
we were able to come with a simple but attractive
screensaver in a very short period of time which certainly
was our goal.

v. Results

A. Introduction
test results that wereThis section presents

recorded during a large scale testing of the entire MOI^c
platform. In this test we increased the number of idling
computers and tested the load the system can handle. By
the term load we mean the number of concurrent

some

service requests the system successfully executed.
The test results are as follows.

108

TABLE II
number Of Failed Requests For Each Number Of Idling

Computers And Concurrent Requests. Each Cell Represents
how Many requests Failed To Execute From The Sent Number
nc concurrent Requests._________ ___ ___________

Number of
Concurrent

Number of Idling Computers

2 4 8 16 181Requests
0 01 0 0 0 0
0 04 0 0 0 0
0____ 0 0 08 0 0

10 0 0 0 0 0 0
12 0 6 0 0 0 0 rHcO'^Ooor'jOOO^OOOOO«-ir\irNn^'«3-lnr^Cv,,_ir*iLn
16 16 8 0 0 0 0

Fig. 2. The Failed Requests against the Sent Concurrent Requests20 13 10 0 0 0
24 18 16 0 0 0 The test results indicate and represents how the load

which can be handled by the system gets increased with
the number of idling computers. Hence more the number
of idling computers, the larger the load that can be
handled by the system.

Thus it is evident that MOINC system can be used to
enhance the performance and reliability of enterprise scale
web service deployments.

28 28 21 0 1 0
30 22 1 2 0
32 24 2 2 0
36 28 19 3 0
40 40 30 5 0
44 34 5 0
48 40 6 1

Vi. Conclusion

As discussed above through our research efforts we were
able to conclude the fact that the JNA based approach is
the most suitable and recommended method to accurately
determine the current state of the computer i.e. whether it
is idling or not. Through our attempts we managed to
successfully modify' the Kernel module of the Axis2 web
service execution environment. Furthermore were able to
implement a low resource consuming, attractive as well as
an interactive screensaver using ActionScripting and
XML, as a result of our research endeavors.

50 6 241
52 7 243
60 352 8
70 61 16 10
80 71 46 20
90 89 80 55

90 88100

110 101 98
112 106120
121 118130
133 130140 ACKNOWLEDGMENT

We would like to convey our heartfelt gratitude to quite a
number of people who helped us in many ways to make
this project a success. First of all we would like to thank
Dr. Sanjiva Weerawarana, Chairman, WS02 for giving
this wonderful project concept for us to work on. We
would also like to thank our project supervisors, Mr.
Shantha Fernando and Mr. Indika Perera for guiding us
and providing us with necessary support. We would like
to thank all the employees of WS02 as well for helping us
out when we got stuck during development activities.

141 139150
160 147160

164180
191200
220220

109

[11] Handling Key Press Event in Java (2008, April)
[Online] Available:
http://www.roseindia.net/java/example/java/awt/KeyPr
esK.shtml

[12] Detect the user’s inactivity in Java using JNA (2008
April) [Online] Available:
http://ochafik.free.fr/blog/?p=98

[13] Java Native Access (JNA) (2008, April) [Online]
Available: https://jna.dev.java.net/

[14] Apache Axis2 (2008, April) [Online] Available:
http://ws.apache.org/axis2/

[15] What is an Axis2 Repository? (2008, April) [Online]
Available: http://wso2.org/library/tutorials/axis2-
repository

[16] Axis2 Architecture Guide (2008, April) [Online]
Available:
http://ws.apache.org/axis2/0_94/Axis2ArchitectureG
uide.html#servicearchive

[17] Enabling Apache Axis2 Clustering (2008, April)
[Online] Available:
http://www.swview.0rg/n0de/l 82

[18] Berkeley Open Infrastructure for Network
Computing (2008, April) [Online] Available:
http://en.wikipedia.org/wiki/Boinc

[19] BOINC Developer Trunk(2008, April) [Online]
Available:
http://boinc.berkeley.edu/trac/browser/trunk/boinc/clie
ntscr/screensaver.cpp

References

[I] Tan, A. W. Appel, S. Chakradhar, A. Raghunathan, S.
Ravi, and Daniel Wang, “Safe Java Native Interface”,
In International Symposium on Secure Software
Engineering”, March 2006.

[2] R M. Hirzel, R. Grimm, “Jeannie: Granting Java
Native Interface Developers Their Wishes”, In
International Conference on Object-Oriented
Programming,
Applications(OOPSLA), October 2007.

[3] L. Stepanian, A. D. Brown, A. Kielstra, G. Koblents,
K. Stoodley. “Inlining Java Native Calls At Runtime”,
In International Conference on Virtual Execution
Environments, June 2005

[4] S. Perera, C. Herath, J. Ekanayake, E. Chinthaka, A.
Ranabahu, D. Jayasinghe, S. Werawama, G. Daniels,
“Axis2, Middleware of Next Generation Web
Services”, April 2006.

[5] D. Jayasinghe, Quick start Apache Axis2, Packt
Publishing, first edition, May 2008.

[6] K.K.L Tong, Deploying web services with Apache
Axis2, Tip Tech Development, second edition, March
2008.

andSystems, Languages,

[7] F. Peake, “The Hidden Treasure of Action Scripting”,
In Alpha Conference, 2006.

[8] MinGW-Minimalist GNU for Windows (2008, April)
[Online] Available: http://www.mingw.org/

[9] Profiling CPU usage from within a Java Application
Available:[Online](2008,

http://www.javaworld.com/javaworld/javaqa/2002-
May)

11/01 -qa-1108-cpu.html
[10] Profiling CPU usage from within a Java Application

(2008, April) [Online] Available:
httD://www,iavaworld.com/iavaworld/iavaqa/2002-
11/01-qa-l 108-cpu.html?page=2

no

http://www.roseindia.net/java/example/java/awt/KeyPr
http://ochafik.free.fr/blog/?p=98
https://jna.dev.java.net/
http://ws.apache.org/axis2/
http://wso2.org/library/tutorials/axis2-
http://ws.apache.org/axis2/0_94/Axis2ArchitectureG
http://www.swview.0rg/n0de/l
http://en.wikipedia.org/wiki/Boinc
http://boinc.berkeley.edu/trac/browser/trunk/boinc/clie
http://www.mingw.org/
http://www.javaworld.com/javaworld/javaqa/2002-

