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ABSTRACT 

 

Design standards comprise many knowledge types such as text, rules, equations, tables, 

graphs and figures. The attempt is to encode the standard without distorting the format of 

the standard, i.e. to represent the standard clauses and tables in the same format as in the 

standard. This effort will facilitate changes to the standards without much variation to the 

programme code.  

This thesis presents a framework to model standards using the Object Oriented 

Programming paradigm. It also presents the concept of a common interface, i.e. to 

accommodate several design standards for reinforced concrete design in one module; 

however, implementation is carried out only for BS8110. The programme uses an 

inferencing mechanism for execution, which is a similar method of execution to that of a 

standard’s user; it is not a hard coded structured programme. This is a novel concept 

when compared to the available software for reinforced concrete design. 

The literature review investigates the structure of typical standards and the available 

standards processing technique such as Predicate Logic, Decision Tables, Production 

Systems and Semantic Networks before choosing Object Oriented programming as the 

preferred one. The review also compares both the provisions and design outputs of 

several reinforced concrete standards. 

The Common Interface for Design Standards (COIDS) has three main modules (or 

models), namely the Product Model, Standards Model and Interaction Model. The 

Product Model handles the product data, e.g. Frame Data. The Standards Model handles 

the standards data, i.e. it contains all the knowledge in a standard. The Interaction Model 

handles the data exchange between the user, COIDS objects and external software. It 

transfers data from the COIDS to external analysis software and maps analysis output 

files to COIDS. An Object Oriented Shell called KAPPA was used to develop the object 

oriented model.    
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CHAPTER 1 

 
INTRODUCTION 

 
1.1 Significance of Research 

 
Buildings are designed to commonly accepted norms by the engineering community 

to ensure safety and sustainability. Design standards adopted by different engineering 

communities differ based on their experience and practice.  The standards represent 

expert knowledge compiled over a long period of time. The standards are updated 

regularly with new knowledge. The knowledge is mostly stipulated by mandatory 

rules. This knowledge representation makes standards to be an ideal knowledge base 

to be utilized to build an expert system. 

 

Standards are often voluminous. British standard BS8110: Part1 (1997) “Structural 

Use of Concrete in Buildings” is 164 pages long. There are additional parts to BS8110 

each of similar size.  BS5950 (2000): “Structural use of Steel” consists of nine parts, 

each a separate document. In addition there are cross references to the other British 

Standards such as loading for buildings (BS6399), which in turn has three more parts. 

This volume of information involved requires the investment of considerable time and 

effort in becoming accustomed with a particular code (Neilson, 1997). This effort will 

not be productive if an engineer needs to use another standard for his next assignment, 

since the knowledge is not retained.  

 

Let’s look at the history of the development of Eurocodes to understand the process of 

development, the effort and the time period required to evolve a new standard. 

According Menzies and Gulvanessian (1998), a proposal to develop an international 

set of codes of practice for structural design was first agreed in 1974 by several 

technical-scientific organisations based largely in Europe. Following preparatory work 

by these organizations, the Commission of the European Communities (CEC) together 

with the European Free Trade Association (EFTA) took the initiative for developing 

the Structural Eurocodes at the end of the 1970s by establishing a steering committee 

to oversee the work. In 1989 the responsibility for their development was transferred 

to the European Committee for Standardisation (CEN). Since English was the most 

widely spoken and understood language, a decision was made in 1991 to conduct 
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meetings and to prepare the Eurocodes in English in the first instance. Once each 

Eurocode Part is approved for publication as a pre-standard (ENV) it is translated into 

the other two official CEN languages, French and German, and published in the three 

languages. A programe to convert the ENV Eurocodes to European standards (EN) 

has now been completed. 

 

The issue of European standards will lead to the withdrawal from use of the national 

codes of practice in the different European countries which are members of CEN. 

There is a period of five years during which national codes are to co-exist with the 

European standards “Eurocodes” before the national codes are to be withdrawn by the 

year 2010.  

 

Engineers will take at least another two to three years to become familiarized with the 

new standards. By that time there will be new amendments proposed by the standards 

committees with the new social requirements, international commitments and use of 

new materials for buildings. A possible amendment will be based on environmental 

issues and emergence of new nano materials.  

 

For a new standard to evolve, it will take at least twenty to thirty years. Upgrading 

existing standards will be carried out every two to five years. The effort is wasted if 

the standards are not utilized to the maximum. This effort should encourage the 

engineers to utilize the standards knowledge to the maximum and this will also result 

in safe and economical designs.  

 

The engineer needs to refer many design standards for his day to day work. The 

knowledge in design standards is under-utilized due to the complexity of the 

knowledge representation of standards and the knowledge gap between the standard’s 

knowledge and that of the average engineer. This aspect will also result in a longer 

adaptation period to implement a standard with new knowledge or using a less 

familiar standard (For example, an engineer familiar with British standards using an 

American standard).  

 

As a practicing structural engineer, the author’s estimate is that less than ten percent 

of a standard’s knowledge is utilized by engineers. Junior engineers will follow 
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standard clauses and equations without much understanding of the principles in the 

code. Such misinterpretation of code clauses will lead to unsafe designs. Senior 

engineers on the other hand hardly refer the code since their experience will assist 

them to make judgements for routine designs. In new situations, time will not permit a 

senior engineer to go through all the standard clauses and their references. Thus they 

will tend to over design the sections; this will lead to uneconomical design. Thus we 

see that the knowledge in a standard is under-utilized by both junior and senior 

engineers, leading to potentially unsafe or uneconomical designs respectively. 

Computerized modelling of design standards will contribute towards remedying this 

situation. If the model is developed to the level of an expert system that can be queried 

for explanations, then the system will serve not merely to fill the gap in engineers’ 

knowledge of standards, but to educate them as well. 

 

1.1.1 Drawbacks associated with available design software 

 
Computer software is used by engineers for analysis and design work. Most engineers 

use one software to analyse and another software for design. There are software 

packages that claim to perform both analysis and design, complying with many 

international standards. However there are the following drawbacks associated with 

such software packages; 

 The design software available is mostly a collection of templates that are 

defined to carry out a particular task such as beam, column or foundation 

section design. They are sometimes developed using electronic work sheets. 

 The above mentioned software is developed using hard coded structured 

programming techniques. Thus incorporation of revisions to the standards can 

be done only by major revision to the programming code. 

 Since the programmes are hard coded, there are many assumptions being made 

by the programmer, such as effective span of a beam being centre to centre 

distance of the supports, beam not being subject to axial force or torsion etc.. 

In most of the programmes, the engineer needs to input code data to the 

programme, such as cover based on the environmental conditions and fire 

requirements. Thus the programme plays the role of a mere calculator with 

hard coded equations.  
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 Although some programmes claim to contain both analysis and design 

facilities to many international standards, practically speaking we use them 

only for the conceptual design stage but not for the detailed design of 

elements, since they do not carry out all the design checks specified in 

standards, specially the serviceability checks. These programmes also have 

attached hard coded templates to the analysis programme which carry out pre-

defined procedures. Due to these reasons most designers are compelled to use 

separate programmes for analysis and designs. 

 
The approach presented in this work is a more fundamental approach to knowledge 

representation and is hence not limited by the above. 

 
1.2 Objectives 

 
Research is needed to find techniques to process a standard’s knowledge. This 

particular research effort is not only to process a single standard but also to encode 

many standards in a module called “Common Interface of Design Standards”, 

recognizing fact that an engineer may need to refer many standards during a particular 

design. The concept of “common interface” will assist the engineer to get familiarised 

with new standards by comparing the output of the older version or the familiar 

standard’s version. The available high level software could be used to develop a 

flexible expert system on design standards which could assist the design engineer 

effectively. Implementation has been carried out however only for one standard, 

namely BS 8110.  

 

The following main objectives were focused on to be achieved as the outcome of the 

research; 

 Develop a framework to incorporate many standards in one module. 

 Develop a structure in software to model and process a standard’s knowledge 

as an object oriented model. 

The framework and software were to have the following key features. 

 Data entry for analysis and design to be in one operation. Thus data transfer 

and storage will be handled from one module. That is data entry, data transfer 

to external analysis software, retrieving the analysis output, conformance 
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checking of a particular element according to a selected standard and the stress 

state and storage of input and output data will be carried out by one module. 

 A flexible system where revisions can be adopted with less effort. Thus the 

programme is to be developed without hard coding. 

 Object oriented techniques to be use to develop the software. This technique is 

a very popular programming technique presently adopted by software 

engineers.  

 Processing of data to simulate the procedure followed by a practicing engineer. 

 Representation of standards without distorting the standard, i.e. to represent 

text and knowledge types as represented in the standards. Thus the 

representation of code clauses will be carried out as stated in the code and the 

tables in the same format. This will give the flexibility to the system in the 

event of code revisions. The other advantage is that the debugging and 

establishing the connectivity will be very efficient. 

 

1.3 Methodology 

 
The scope of the research was to develop a common interface for reinforced concrete 

design standards, for conformance checking of structural elements, using Object 

Oriented Programming techniques. A literature review was done to investigate the 

current research work on the subject areas such as standards processing and expert 

systems. Several reinforced concrete standards were reviewed to understand their 

structure and design philosophy.  Object oriented techniques were used for the 

implementation, using the object oriented programming shell “KAPPA”. 

 

1.3.1 Thesis Structure 

 

The Thesis consists of seven chapters, the first being this Introduction. The rest of the 

thesis is as follows:- 

Chapter 2: Representation of Design standards - This chapter examines the nature and 

structuring of knowledge in standards. The discussion leads to the possibilities of 

standards representation as expert systems. An overview of existing standards 

processing techniques such as Predicate Logic, Decision Tables, Production Systems, 

Frames and Semantic Networks is given. Finally the Object Oriented representation of 
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Standards is discussed, the technique adopted to develop the “Common Interface for 

Design Standards”. 

 

Chapter 3: Comparison of Design Standards - Since the research is to develop 

techniques to model a common interface of design standards, it is important to 

compare the structure and the philosophy adopted by the standards. This chapter gives 

various comparisons of reinforced concrete design standards. 

 

Chapter 4: Common interface concept and implementation - This chapter gives an 

overview of  the concept of a common interface, highlighting the three main models 

of the Common Interface of Design Standards (COIDS), namely the product model, 

standards model and the interaction model. The respective hierarchies of each model 

are discussed in detail. The main object classes, sub-classes, instances and their tasks 

and relationship with respect to the common interface are discussed.  The structure of 

each object, i.e. the slots and methods are also discussed in detail.   

 

Chapter 5: KAPPA application development Software: - This chapter gives an 

overview of the KAPPA application development environment, Object Oriented 

programming concepts and introductions to inferencing techniques such as forward 

chaining and backward chaining which have been applied in the development of 

COIDS. This chapter demonstrates the COIDS dynamic execution process of 

instructions by message passing from one object to another based on the user input. 

 

Chapter 6: Typical COIDS sessions - This chapter gives an overview of a typical 

COIDS session in the data entry mode and the checking mode, which demonstrates 

the simulation of a practicing engineer. 

 

Chapter 7: Conclusions - This chapter presents the conclusions drawn from the 

research. Suggestions for changes and extensions that could form part of future 

research are also made. 
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CHAPTER 2 

 
DESIGN CODES AS EXPERT SYSTEMS 

 
2.1 Introduction 

 
This chapter will discuss the basic structure of design standards and the techniques 

that are used to represent them as expert systems, including finally, the author’s 

approach of representing standards as Object Oriented representation. This chapter is 

based on the excellent unpublished literature review by Kodagoda (1997) and the well 

written thesis by Neilson (1997). 

 

2.2 Design Standards 

 
Design standards are regulations or provisions that state requirements which have to 

be satisfied to ensure safe and serviceable performance of certain systems during a 

specific time period. The two basic modes in which standards are used by practising 

engineers are; 

 

 Designing  systems / components 

 Checking that a previously configured system or component conforms to a 

standard. 

 

When designing a system or component within the scope of a standard, an 

experienced engineer will select those requirements within the scope of standard that 

he or she judges will govern the design (based on the behaviours addressed by those 

requirements) and focus only on those requirements when synthesising the design. 

After synthesising the design for this subset of requirements, an engineer determines 

whether the current design also meets the applicable requirements which are not yet 

considered (Garrett, 1990). This is true for checking of a system or component.    
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2.3 Aim of building standards 
 
It is important to understand the basic aims of standards, in order to achieve the 

maximum benefit from processing standards. Generally we could outline the 

following aims; 

 

 The provisions of the standards are to ensure that all the criteria relevant to safety, 

serviceability and durability considerations are met. Thus it ensures an acceptable 

probability that the structure or part of it will not attain any specific limit state 

during its expected life. 

 To organise and express the regulations in such a manner that they are logically 

consistent and complexity is minimised.   

 To ensure that the benefits of the regulations are worth the cost and effort of 

implementing them (Blackmore, 1989). 

 
 
2.4 Properties of standards 
 
Required properties of standards have been defined by the NBS/CMU group 

(Stahl et al., 1983). They are as follows; 

 

a. Individual provisions should be: 

 

 Unique - provisions should give one and only one result for any given 

application. 

 Complete - provisions should apply in any possible situation. 

 Correct - the results of the application of the provision should be consistent 

with the intent of the standard. 

 

b. Relations between provisions should be   

 

 Connected - there should be explicit cross referencing of data items 

(variables) used within provisions. 

 Acyclic - there should be no circular reasoning or requests for data items 

which represent logical loops. 
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c. Organisation of the overall standard should be  

 
 Complete - the user should have some idea of the subjects and qualities 

covered by the standards. 

 Clear - the provisions should be arranged in such a way that checking routines 

should be easily able to locate the provisions applicable to given queries. 

 

2.5 Expert Systems 

 
Most engineers use computers for their calculation work and for drawing purposes 

using readymade software packages. These packages basically store and process data 

according to their predefined programming which is essentially executing a 

predefined task. Artificial Intelligence (AI) concepts have moved computers from 

functioning merely as data processors to functioning as knowledge processors. 

 

Computers can now incorporate the knowledge of human experts to solve difficult 

problems. These systems are called expert systems. While a significant amount of 

knowledge and knowledge types can be stored in an expert system, the power comes 

from its ability to reason beyond the knowledge directly stored. This ability is called 

inferencing. There are two main methods of reasoning when using inference rules, 

namely forward chaining and backward chaining. 

Forward chaining starts with the data available and uses the inference rules to derive 

more data until a desired goal is reached. An inference engine using forward chaining 

searches the inference rules until it finds one in which the “if “clause is known to be 

true. It then concludes the “then” clause and adds this information to its data. It would 

continue to do this until a goal is reached. The data available determines which 

inference rules are to be used. 

Backward chaining starts with a list of goals and works backwards to see if there is 

data which will allow it to conclude any of these goals. An inference engine using 

backward chaining would search the inference rules until it finds one which has a 

“then” clause that matches a desired goal.  
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2.5.1 The function of an expert system 

 
The following functions can be highlighted for an efficient expert system; 

 

 The Expert system should have the ability to store and process knowledge. 

Knowledge may be represented in different types; generally it can be text, 

numerical values, algebraic expressions, Boolean expressions, table format or 

graphical format.  

 

 The user’s ability to query the system in order to get required information, for 

example a requirement such as the minimum beam width for fire resistance. 

 

 Flexibility of the expert system is very important; this means the system should 

have the ability to grow with new knowledge and should be able to respond to new 

requirements. 

 

 The expert system should be able to link to other software in order to access and 

store required data from data bases, and to handle the properties of other software 

such as data storage, algebraic function handling, graphic handling etc. 

 

  The Expert system should have the ability to model the entire problem. 

 

2.6 Model - Based Reasoning        

 
Early expert systems were designed to produce computer solutions to problems that 

only human experts could solve. These system generally used “if – then” rules to store 

or represent the knowledge of the human experts. (Rules are pieces of knowledge that 

can be combined in various ways to solve a wide variety of problems.) 

 

For example; 

          

       If 

       The building includes shear walls to resist wind 
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      Then  

       The building is a braced building.      

 

Rules are useful to represent expert knowledge, but they express only the surface of 

the knowledge. The system does not understand what a shear wall is or its 

arrangement, how the shear wall resists wind and why shear walls are needed to brace 

the building, since the system does not have a model of how to brace buildings or how 

wind is resisted by building elements. 

 

The drawbacks of a simple rule system are such that it will fail when faced with a new 

situation; on the other hand whereas the model of a shear wall or a braced building 

will not only include descriptive representation of what a shear wall or braced 

building is, but also include detailed methods of calculating procedures to evaluate 

strength of the shear wall, bracing methods of buildings, the ability to evaluate the 

necessity to provide shear walls and the adequacy of the number of shear walls to 

brace the structure. This kind of a module can be used for checking a building 

structure against wind loading. 

 
Reasoning that incorporates a model or simulation of this kind is called model - based 

reasoning. Since Engineers are primarily concerned with the design and diagnosis of 

complex systems, it should come as no surprise that model-based reasoning is a very 

useful tool for assisting in engineering decision making (Garrett, 1990).While causal 

models can, in principle, be created using only rules, in practice it is more convenient 

to combine rule - based and method - based reasoning within a domain of structured 

objects. 

 
The domain of a knowledge - based system is the part of the world with which the 

system is concerned. The domain of COIDS is building elements. The task of COIDS 

is designing and checking building elements. The rule-based approach focuses on the 

task, not on the domain. 
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The model - based approach focuses on the domain; thus we can use the same model 

to accomplish multiple tasks without using the rules alone. An Object Oriented 

Programming problem solving strategy may be applied for creating the model.  

 

2.7 Design Standards as Expert Systems 

 
Design Standards and their regulations / provisions represent readily available 

knowledge compiled over a reasonably long period of time by domain experts and as a 

result, many of the knowledge acquisition problems could be regarded as already 

having been dealt with at a certain level. 

 
Design codes correspond reasonably well to available knowledge representation 

formalisms, and the processing of provisions could be handled using inferencing 

mechanisms available in expert systems. The chaining of provisions can also be 

handled by tools. Thus design standards linked in COIDS can be regarded as a 

comprehensive expert system. 

 

2.7.1 Standards processing 

 
The computerisation of building regulations are known as standards processing. 

Standards processing is carried out using expert system tools. We should be mindful 

not to distort the structure and properties of the standard during the encoding process. 

 

The basic building blocks of standards comprise clauses /provisions. Provisions are 

collections of one or more rules which outline the procedures to evaluate and relate 

data items (variables) of the standards. A data item may be of any of the following 

types: 

 

 Boolean, which can be evaluated to ‘TRUE’ or ‘FALSE’. 

 Numeric, which can be evaluated to a number. 

 Multi -valued, which can be evaluated to more than one value. 

 Singled - valued, which can only be evaluated to a unique value.  
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The data items in standards may need to be evaluated using algebraic or logical 

functions, or the lookup routines to be accessed from tables. This means that 

knowledge represented in standards is not homogeneous. 

 
2.7.2 Classification of Clauses 

 
For the purpose of standards processing, all the clauses could generally be classified in 

the following three categories; 

 

 Definition Clauses; these Clauses will define the situation, for example  

Cl 3.4.1.1 of BS8110 (1997)/ Part 1 defines the difference between a shallow 

beam and deep beam. 

 

 Application Clauses; these Clauses specify the requirements in order to undertake 

a particular task. For example, Cl 3.4.3 of BS8110 (1997) underlines the 

requirements for the application of table 3.6. 

 

 Performance Clauses; these Clauses state the procedures for evaluation of data 

items. For example, Cl 3.4.1.2 to Cl 3.4.1.4 of BS8110 (1997) states the relevant 

procedures to evaluate the data item named “Effective – span”. 

 

 
2.7.3 Parts of a Clause 

 
The purpose of any clause is to establish certain criteria based on the satisfaction of 

other requirements (i.e. criteria). Thus clauses consist of one or both of the following 

two types of criteria: 

 Applicability criteria 

 Performance criteria 

The applicability criteria of a clause are the required conditions to be satisfied in order 

that the performance criteria may be evaluated. The applicability criteria can be 

viewed as the If parts of a rule and the performance criteria as the Then part a rule. 

Thus clauses that could be represented as rules should consist of both criteria. 
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2.8 Standards processing techniques  

 
There are many programming techniques that can be adopted for standards processing. 

These techniques will be discussed in detail later in this chapter. They are as follows; 

 

 Predicate Logic: A formal systematic means for representing atomic variables 

and relations between them. The language Prolog supports implementation of this 

technique. 

 

 Decision Tables: This consists of a set of conditions, actions and rules. This 

technique allows a set of rules concerned with the name of the object to be 

processed simultaneously. 

 

 Production System: They are rule base systems containing condition-action rules 

called productions. A majority of the early Expert Systems were developed based 

on this technique. They have been popular since they are usually very readable and 

each rule is independent of the others, making modification easy. 

 

 Frames: This consists of a hierarchy of Frames, each Frame containing a series of 

slots which describe that Frame. Frames can inherit information from other 

Frames somewhat like a semantic network. These have been used to model 

complex data. 

 

 Semantic Networks: Represents objects and their relations by the use of nodes 

and links. The relationships between objects are in the form of a general graph. 

This involves building up a hierarchy of data items. Inheritance can be used for 

this purpose. 

 

 Object Oriented Representation: This is the technique that has been used for 

developing COIDS. The main properties of this technique are Abstract data Types, 

Inheritance, Encapsulation, Polymorphism and Message Passing. The main benefit 

of this methodology is in software maintenance and reusability. In modelling a 
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system the main emphasis is placed on development of a hierarchy of objects. An 

object can be represented as a physical object or an abstract item. The behaviour 

of each object is coded in the object itself.  Object oriented modelling has been 

used successfully to model complex systems and handle simulations. Most of the 

present high level programmes / languages are developed using object oriented 

techniques. 

 
 

2.8.1 Criteria for selecting a suitable technique and software for standards 

processing   

 
In selecting a suitable knowledge representation technique and software to process 

design standards, the following considerations apply; 

 

 The technique should be efficient and convenient to represent the  

standards 

 The software should be able to handle numerical calculations, logical 

arguments, tables, and other linked software such as analysis software 

 The techniques should be easily accommodate any changes to the 

standards, since the standards are updated frequently 

 The chosen technique should posses the ability to represent both the 

element and the element assemblies of a structure 

 

2.8.2 Predicate Logic 

 
The computer language Prolog is based on first order predicate logic. Here one stores 

data as predicates which are actually facts. It is possible to have rules where the 

conditions (antecedent) can be combined with AND, OR, NOT. If the rule is satisfied 

then the given consequent is done. 

 

Predicate logic has been used in areas like theorem proving. Rosenman and Gero 

(1985) have used Prolog to develop an Expert System which represents a building 

standard. They have used both rules and facts to build up their knowledge base. It is 

possible to interactively engage in a session with the knowledge base to query about a 

specific clause in the code. This system also demonstrates how it is possible to query 
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the knowledge base, HOW it has arrived at a solution, or ask WHY a certain question 

is being asked. These features are some of the essential features found in rule based 

systems.  

 

Fig. 2.1 demonstrates how a Table taken from a design code should be implemented 

as facts. The predicate get_cover_beams_simply_supported is an example of a rule, 

that determines the cover required for a desired fire resistance period. If we query the 

Knowledge base with get_cover_beams_simply_supported (2.0, X) then X would 

contain 40. If the query is altered to get_cover_beams_simply_supported (X, 60) then 

X would contain 3.0. 

 
 
 
 
 
 
 
 

 
Fig. 2.1, Prolog Implementation of Table 
 
 
 
Fig. 2.1:  Prolog Implementation of a Table 
 
 
 
The symbol ‘: -’ represents if, and the symbol ‘,’ represents and in Fig. 2.2. The 

representation of a rule in Prolog is similar to the use of a Procedure in a conventional 

programming language. 

  

Kumar and Topping (1989) have illustrated the utilization of Prolog to represent a 

Steel Design Code. They have proposed a technique in which they represent the entire 

code as facts. They have divided the facts stored in a code into three categories. The 

clauses are stored in such a way that the relevant rules are stored as facts separately. 

These are linked together by the clause numbers. 

 

 table_4_3 (0.5, 20, 20, 20, 20, 20, 20, 20). 

table_4_3 (1.0, 20, 20, 20, 20, 20, 20, 20). 

table_4_3 (1.5, 20, 20, 25, 20, 35, 20, 20). 

table_4_3 (2.0, 40, 30, 35, 25, 45, 35, 25). 

table_4_3 (3.0, 60, 40, 45, 35, 55, 45, 25). 

table_4_3 (4.0, 70, 50, 55, 45, 65, 55, 25). 

 

 get_cover_beams_simply_supported (Fire, Cover):- 

  table 4 3 (Fire, Cover, , , , , , ).
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Only the first two requirements are satisfied in implementing a design code. The 

knowledge representation closely follows how it is actually implemented in the 

written clause itself, although this may not necessarily be the best method for 

computer implementation.  

 

 
 
 
 
 

 

 
Fig.  2.2:  Prolog Implementation of Calculation of Tension Steel area in a Beam 
 
 
2.8.3 Decision Tables 

 
A Decision table is composed of sets of conditions, actions and rules. This provides a 

compact form of handling different actions as a result of a set of rules. Decision tables 

have been used in several projects concerning regulations and codes (Harris and 

Fenves, 1980). Fig. 2.3 shows an implementation of (x/d)lim ratio which is needed in 

the calculation of compression steel reinforcement area in the EC2 concrete code. 

 

 

 
 
 
 
 
 
 
 
 
 

 
Fig. 2.3: Calculation of (x/d)lim using a decision table 
 
 
 

 

(x/d)lim       

fck ≤ C35/45  T  F 

(x/d)lim = 
ሺఋି.ସସሻ

ଵ.ଶହ
  X   

(x/d)lim = 
ሺఋି.ହሻ

ଵ.ଶହ
    X 

beam_steel_tension_area (BM, BEW, BED, FCK, FCY, XOD, As):- 

 BG_MU  = BM/ (BEW*BED*FCK), 

 BG_W = 0.652-sqrt (0.425-1.5*BG_MU), 

 XOD = 1.918*BG_W, 

 As = BG_W*BEW*BED*FCK/ FCY 
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Fig 2.4 shows how multiple conditions can be handled by a decision table. The 

calculation of longitudinal shear spacing is done according to the EC2 concrete code.  

 
Garret and Hakim (1992) have described in detail the disadvantages of Decision 

Tables. The two main disadvantages they observe are; 

 

a) Lack of formal model to implement the design code objects (i.e., grouping 

rules together is not possible) 

 

b) Lack of methods to handle other types of data evaluation (e.g. tables) 

This technique would be unsuitable to handle a design standard with many 

requirements. 

 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Fig. 2.4: Calculation of Longitudinal Spacing for shear using a decision table 
 
 
2.8.3 Production Systems 

 

Production Systems are the most popular technique used to develop expert systems. 

This consists of a collection of rules in the form of an IF part and a THEN part. Each 

rule is independent from the other. The main disadvantage of this representation is that 

when the knowledge-base becomes larger there are inefficiencies (Rossnman and 

Is         

Vsd ≤ (1/5) VRd2  T  F  F 

(1/5) VRd2 ≤ Vsd  ≤ (1/3) VRd2  F  T  F 

Vsd  > (2/3) VRd2  F  F  T 

Is = min (0.8d,300)  X     

Is = min (0.6d,300)    X   

Is = min (0.3d,300)      X 
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Gero 1985). This methodology has been successfully applied to implement Diagnostic 

type of Expert System. 

 

Figure 2.5 shows the Production System version of the Calculation of Tensile Steel 

area in a beam. Rule based systems are very readable. These are not ideally suited for 

numerical computations. In rule based systems it’s preferable to have only one 

consequent (fact given after THEN). This is to ensure that the inference mechanism 

(Backtracking) would be implemented properly. 

 

Figure 2.6 illustrates how backtracking works. This technique is also used in Predicate 

Logic based methods. The stack is a storage location used by the inference engine.  

One feature of a Stack is that the first item popped out from the stack is the last item 

that is pushed in. (Rule 2,1) means that when Rule 2 was pushed into the Stack the 

inference engine evaluated Condition 1. 

 

Production systems are similar to Decision Tables. Their use as Design Code 

representation becomes impractical due to the enormous amounts of data and rules 

which are required to be implemented in a design code. 

 

 
Rule 1 
IF element is a Beam 
AND bending _moment is not unknown 
AND beam_effective_width is not unknown 
AND beam_effective_depth is not unknown 
AND fck is not unknown THEN 
beam_greek_mu = bending_moment/ (beam_effective_width*beam_effective_depth^2*fck) 
 

Rule 2 
IF beam_greek_mu is not unknown THEN 
beam_greek_w = 0.652-sqrt(0.425-1.5*beam_greek_mu) 
 

Rule 3 
IF beam_greek_w is not unknown THEN 
x_over_d = 1.918*beam_greek_w 
 

Rule 4 
IF x_over_d is not unknown 
AND fcy is not unknown THEN 
As = beam_greek_w * beam_effective_width*beam_effective_depth*fck/fcy 

 
 
Fig. 2.5: Production System Implementation of Calculation of Tensile Steel area 
in a Beam 
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Fig. 2.6: Details of Backtracking through a rules given in Fig. 2.5 
 
 
2.8.4 Semantic Networks 

  
These are basically graphical descriptions of knowledge that show hierarchical 

relationships between objects. An object can be a physical entity like a beam or an 

abstract entity like shear force. These are usually referred to as nodes. Nodes can be 

connected together by arcs to represent relationships between them. The IS-A 

relationship is basically a class relationship. Semantic Networks are a good medium to 

represent complex relationships. Other types of relationships can also be defined. A 

complete detailed semantic network for an element hierarchy is shown in Fig 2.7. 

Adding details to one of the objects can be carried out as shown Fig. 2.8. 

 
 

 

No  Goal  Description of what Inference engine does  Stack 

1  Find As  Rule 4 can be used to obtain a value for As  Nil 

2  Evaluate Rule 4 
X_over_d value needed, if not available get value, 
store Rule 4 in the stack 

(Rule 4,1) 

3  Find x_over_d  Backtracking, Rule 3 contains a value for x_over_d (Rule 4,1) 

4  Evaluation Rule 3 
beam_greek_w value needed, if not available get 
value, store Rule 3 in the stack 

(Rule 3,1),  (Rule 4,1) 

5  Find beam_greek_w 
Backtracking, Rule 2 contains a value for 
beam_greek_w 

(Rule 3,1),  (Rule 4,1) 

6  Evaluate Rule 2 
beam_greek_mu value needed, if not available get 
value, store Rule 2 in the stack 

(Rule 2,1), (Rule 3,1),  
(Rule 4,1) 

7  Find beam_greek_mu 
Backtracking, Rule 1 contains a value for 
beam_greek_mu 

(Rule 2,1), (Rule 3,1),  
(Rule 4,1) 

8  Evaluate Rule1 
element value needed, if not available and since no 
rules are available to get value, get value from user 

(Rule 2,1), (Rule 3,1),  
(Rule 4,1) 

9  Evaluate Rule 1 
Bending moment value needed, if not available and 
since no rules are available to get value, get value 
from user 

(Rule 2,1), (Rule 3,1),  
(Rule 4,1) 

…  …  …  … 

13  Calculate As 
Rule 1 complete, Pop rule from stack, Backtrack to 
earlier rule (Rule 2) 

 (Rule 3,1),  (Rule 4,1) 

14 
Calculate 
beam_greek_w 

Rule 2 complete, Pop rule from stack, Backtrack to 
earlier rule (Rule 3) 

(Rule 4,1) 

15  Calculate x_over_d 
Rule 3 complete, Pop rule from stack, Backtrack to 
earlier rule (Rule 4)  

Nil 

16  Find Fcy 
Fcy value needed, if not available and since no rules 
are available to get value, get value from user 

Nil 

17  Calculate As  Goal finally satisfied   
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Fig. 2.7: Semantic network which shows the relationship of physical objects in a 
design standard 

 

 
 
Fig. 2.8: Semantic network that shows details of one particular object 
 
 
 
2.8.5 Frames 

  
A frame contains a large chunk of knowledge about a particular object. A frame 

provides a means of organizing knowledge in slots that contain characteristics of that 
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object. Some slots can contain default values; some could contain a procedural 

attachment. It is possible to use a slot to link to another frame. It’s possible to develop 

a hierarchy of objects (see Fig. 2.9). For example the continuous beam frame inherits 

all the properties of a general beam frame and a more general element. 

 

Frames have been used to implement Expert Systems to assess damages caused to 

existing structures (Zhang and Yao, 1989). By attaching a procedure to a slot one can 

handle numerical calculations. Its ability to use a slot to link to another frame allows it 

to be used to even implement aggregates of elements. Frames provide a mechanism of 

storing all the relevant information of an object in one location which also includes 

calculations (see Fig. 2.10). This makes modifications easier. Frames satisfy all four 

conditions mentioned earlier and are a suitable technique to implement a design code. 

The principles adopted in this technique are very similar to the Object Oriented 

Programming techniques which have been used to develop COIDS.   

 
 

 
 
Fig. 2.9: Knowledge Representation in a hierarchy of frames that show 
inheritances 
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Fig. 2.10: Frame of a Beam 
 
 
2.8.6 Object Oriented Programming Technique  
 
Object Oriented Programming (OOP) is a relatively new way of organising 

programming code and data. Its underlying concepts are Data Abstraction, 

Inheritance, Encapsulation and Polymorphism. These concepts have been around for 

some time, for example in languages such as Simula67 and Smalltalk.    

 

Object Oriented Programming is part of a long process of improving programmer 

productivity that has moved from standard programming to structured programming to 

OOPs. For years, all professional programmers have reused the programming code. A 

very common approach to a new programming assignment is to copy an existing 

program and modify it to solve the new problem. This approach has both benefits and 

problems. The major benefit is that you start with a body of working programming 

code. This is particularly useful in areas like Windows programming, where 

applications inevitably require the same basic programming code for things like 

handling windows, menus, and other common elements. However, there are also 

drawbacks, most notably that every time you change your code, you risk introducing a 

new bug. As programmers grew in experience and knowledge, the problems of 

dealing with reuse of traditional procedural programming code were addressed by 

following specific rules, called structured programming, for creating blocks of 

code. This was an improvement, because it made code easier to understand and easier 

to debug, but still did not accomplish the ultimate goals of allowing you to add to 
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existing programming code easily and reliably. Object Oriented Programming evolved 

to solve this problem.  

 

In conventional Procedure Oriented Programming in a language such as C, you view a 

problem as a sequence of things to do. You organise the related data items into C 

structures and write the necessary functions (procedures) to manipulate data and, in 

the process, complete the sequence of tasks that solve your problem. Although the 

data may be organised into structures, the primary focus is on the functions. Each C 

function transforms data in some way. For example, you may have a function that 

calculates the average value of a set of numbers, another that computes the square 

root, and one that prints a string; C-function libraries are implemented in this manner. 

 

OOP is more about program organisation than programming code techniques and it 

has nothing to do with any programming language. A programming language that 

supports OOP makes it easier to implement OOP techniques. Object oriented 

programming looks at a problem as a collection of data, rather than collections of 

processes or functions. When you are working with OOP, you think first about what 

data is required, rather than on what needs to happen to the data.  

 

Object oriented programming enables you to remain close to the conceptual, high-

level model of the real-world problem which you are trying to solve. You can take the 

advantage of the modularity of objects and implement the program in relatively 

independent units that are easier to maintain and extend. You can also share 

programming code through inheritance. The entire objective of OOP is in fact the 

defining of objects in an object-oriented manner that is in a unit that combines both 

data and functionality together.           

 

There are four main features of OOP, namely, Data Abstraction, Inheritance, 

Encapsulation and Polymorphism; 

 

 Data Abstraction: Fundamentally, to understand a complex system of data and 

its behaviour, macro level perception of the system is very essential.  For 

example a building structure consists of beam, columns, walls and foundations. 

If we further observe in detail, there are simply supported beams, continuous 
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beams and cantilever beams (see fig. 2.11). Data abstraction is to tie data and 

functions together, which effectively defines a new data type with its own set of 

operations. Such a data type is called an abstract data type (ADT), also referred 

to as a “Class”. Probably the most difficult part of OOP is organising and 

understanding the object classes that make up your application. Defining the 

objects and setting up the relationship between them is a new task for the 

programmer. The novelty of this approach makes it harder initially than 

designing a traditional application. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.11: Data Abstraction levels of Building Structures 
 
 
 Inheritance: Real - world objects do not exist in isolation. Each object is related 

to other objects. In fact, we can describe a new kind of object by pointing out how 

the new object's characteristics and behaviour differ from that of a class of objects 

that already exists. This option of defining a new object in terms of an old one is 

an integral part of OOP. The term inheritance is used for this concept, because we 

can think of one class of objects inheriting the data and behaviour from another. 

Inheritance imposes a hierarchical relationship among classes in which a child 

Building 
Structure 

Columns Beams  Walls Foundations

Simply 
Supported 

Beams 

Continuous 
Beams 

Cantilevered 
Beams 
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class (derived class) inherits from its parent class (base class) - see Fig. 2.12. 

For example, Beams class is derived from Element Data class. Thus it inherits all 

the data and functions (methods) from the base class Element Data class.  

 

 If an object inherits from only one parent object, it is known as single inheritance 

(see Fig. 2.13). Real-world objects often exhibit characteristics that they inherit 

from more than one object. For instance a one way spanning slab may exhibit both 

beam and slab characteristics. This example illustrates multiple inheritances (see 

Fig. 2.13), the idea that a class can be derived from more than one base class. The 

hierarchical structure generated by the single inheritance is simple where as in 

multiple inheritances the hierarchical structure is much more complicated. Thus 

single inheritance is more popular among the programmers as the programme 

debugging is much easier. An individual representation of a class is known as an 

Instance (see Fig. 2.14). Thus all instances of a class will respond to the same 

instructions and perform in a similar manner. 

 

 

 

 
 

Fig. 2.12: Object oriented representation of Parent Class and the Child Class 
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Fig. 2.13: Object oriented representation of single inheritance and the multiple 
inheritances 
 
 
 

 
 
Fig. 2.14: Object oriented representation of object instances 
 
 
 Encapsulation: Once we have determined the type of object in a class, we need to 

define its components or slot values, and how it is accessed. One of the most 

powerful and important features of OOP is that the access to a class is strictly 

regulated. The user of a class does not need to know details of how the class is 
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organised internally; all access to the class data is through a series of external 

function calls (messages), or internal methods. The process of binding class 

organisation so that it is not directly accessible to the user is called encapsulation 

(see Fig. 2.15) 

 

Encapsulation has three important features: 

 

1.  It provides a clear boundary that defines and protects all of an object’s 

internal structure. 

2.  It defines an interface that describes and controls how other users work 

with an object. 

3.  It provides a protected, internal implementation of the object’s behaviour 

and structure of the class itself. 

 

 

 
 
Fig. 2.15: Object Orientated representation of Objects, which includes both slot 
value (attribute) and the method to evaluate the attribute (Encapsulation) 
 
 
 

 Polymorphism: In a literal sense, “polymorphism” means the quality of 

having more than one form. In the context of OOP, polymorphism refers to the 

fact that a single operation can have different behaviour in different objects. 

That is, different objects react differently to the same message. For example, 
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suppose a number of geometrical shapes all respond to the same message, 

draw. Each object reacts to this message by displaying its shape on a display 

screen (see Fig. 2.16). The actual mechanism for displaying the object differs 

from one shape to another, but all shapes perform this task in response to the 

same message. The idea of polymorphism is that subclasses can have different 

functions that respond to the same message as base class, but they can perform 

different functions. Polymorphism helps by simplifying the syntax of 

performing the same operation on a collection of objects. 

 
 

 
 
Fig. 2.16: Object oriented representation of concept polymorphism. A single 
message to carryout multiple task  
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CHAPTER 3 
 
 
COMPARISON OF DESIGN STANDARDS 
 
3.1 Introduction 
 
Common interface for design standards (COIDS) is an attempt to accommodate 

several design standards in a single model. Study of several reinforced concrete 

standards indicates there are similarities and dissimilarities between the standards. In 

order to address this aspect we ask the question, “Do different design standards 

perceive the basic reinforced concrete frame differently?” The study also attempts to 

understand the structure of the standards, design philosophy and the design approach 

with respect to element design. The author has reviewed several reinforced concrete 

design standards namely, British Standard BS8110 (1997), European Standard EC2 

(1992), American Standard ACI 318 (2008), Australian Standard AS 3600 (1988), 

German Standard DIN 1045 (1978) and Indian Standard IS456 (2000). In general all 

standards follow the same design philosophy and approach to design of elements, i.e. 

the limit state philosophy. However there are many differences when we examine 

design standards at a micro scale. All these similarities and differences should be 

taken into account when formulating the common interface of design standards.   

 

The main discussion of this chapter will be of BS 8110 (1997) and EC2 (1992); 

however the discussion will also highlight aspects of other standards in tabular format 

(See. Table 3.1). 

 
 
3.2 The structure of design standards  

 
Design standards are structured as element types, stress states (phenomena) or  a 

combination of  both types. For example, British Standard BS 8110 (1987) , under 

Section 3 (see Fig. 3.1), “Design and detailing of reinforced concrete”  deals with 

structural elements design such as  beams, slabs , columns, walls, staircases and bases. 

In Chapter 6 (see Fig. 3.2) of European Standard, Euro Code 2 (BS EN 1992-1-

1:2004), “Ultimate Limit States”, sub sections are divided as bending with or without 

axial force, shear, torsion, punching, design with strut and tie models etc... Thus EC2 

(1992) has by and large arranged its chapters on the basis of stress states (phenomena)  
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whereas BS8110 (1997) has been structured based on element type (Narayanan, 

1994). Eurocode 2 does not contain derived formulae or specific guidance on 

determining moments and shear forces. This has arisen because it has been European 

practice to give principles in the codes and for the detailed applications to be 

presented in other sources such as textbooks (Moss & Webster, 2004). 

 

 
 
Fig. 3.1: Part of the Contents (Section 3) of BS8110 Part 1 (1997) structured 
based on element type 
 

 
 
Fig. 3.2: Part of the Contents (Section 6) of Euro Code 2 (BS EN 1992-1-1:2004) 
structured based on stress states 
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Table 3.1:  Structure and Philosophy of Design Standards 
 
 

 
 
3.3   Basis of Design  
 
The basis of design of different design standards may differ depending on scope and 

the philosophy, for example, the Principles in EC2 Part 1 are meant to be applicable to 

all structures, therefore the character of the code is more general  than it would need to 

be were it to be applied to buildings only. On the other hand, BS8110 is basically 

applicable to buildings. Thus it is able to provide information directly and in 

prescriptive form (Narayana, 1994). Thus encoding the BS8110 provisions in a 

computer module is easier than encoding provisions in EC2.  Both standards uses limit 

state philosophy, i.e the ultimate limit state and serviceability limit state of design. 

Macro scale observations are made since there are many differences in micro structure 

of the standards. 

 

3.4  Loads, Load Combinations and Partial Safety Factors 
 

 Loads: The magnitude of loads to be used is the characteristic value of loads. 

The magnitudes of the characteristic values recommended by different 

standards differ. Table 3.2 highlights differences in typical recommended 

loading for residential and office buildings. 

 Load combination and partial safety factors: The basic approach to 

establishing the design load is similar in most standards. The load 

combinations are considered for the dominant loads and the most unfavourable 

effect which is to be used for design. The patterns recommended to be 

considered and the load combinations to be adopted by different standards 

differ (see. Table 3.3).  

Standard 
BS8110 
(1997) 

EC2 
(1992) 

ACI318 
(2008) 

AS3600 
(1988) 

DIN1045 
(1978) 

IS456 
(2000) 

Philosophy 
Limit 
State 

Limit 
State 

Limit 
State 

Limit 
State 

Limit 
State 

Limit 
State 

Structure 
Element 

Type 
Stress 
States 

Stress 
States 

Element 
Type 

Element 
Type 

Element 
Type 

Units SI SI Imperial SI SI SI 
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Table 3.2:  Recommended Live loads  
 
 

Standard BS6399(1996) EC1 (1991) ASCE 7 AS1170.1(1988) IS875[2](1986) 
 

Loads Characteristic 
Load 

Characteristic 
Load 

Characteristic 
Load 

Characteristic 
Load 

Characteristic 
Load 

Residential 1.5 kN/m2 1.5-2.0 
kN/m2 

1.92 
kN/m2 

1.5 kN/m2 2.0 kN/m2 

Office 2.5 kN/m2 2.0-3.0 
kN/m2 

2.4 kN/m2 3.0 kN/m2 2.5kN/m2 

 
 
 
Table 3.3: Recommended basic load safety factors 
 
 
Standard BS8110 

(1997) 
EC2 

(1992) 
ACI318 
(2008) 

AS1170.1 
(1988) 

DIN1045 
(1978) 

IS456 
(2000) 

 
Dead 
Load 

1.4 1.35 1.4 1.25  1.5 

Imposed 
Load 

1.6 1.5 1.7 1.5 1.75[1] 1.5 

 
[1] Overall safety factor of 1.75 is adopted by DIN standards 
 
 
 
3.5 Materials Properties 
 
Material strength limits and the partial safety factors defined by different standards 

differ (see Tables 3.4 and 3.5). 

 

 Concrete: Constituents of cement, minimum cement content for a particular 

grade, maximum w/c ratio and concrete strength is not generally agreed among 

standards. Design formulae of different standards are based on cylinder 

strength of concrete (for example ACI318) or cube strength of concrete (for 

example BS8110). EC2 allows benefits to be derived from using high strength 

concretes, which BS8110 does not. The maximum characteristic cylinder 

strength fck permitted in EC2 is 90N/mm
2
, which corresponds to characteristic 

cube strength of 105 N/mm
2
 (Moss and Webster, 2004). Concrete density 

assumed by the different codes also differ, for example, EC2 assumes a 
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densities of 25 kN/m3 for reinforced concrete and BS8110 assumes a density 

of 24 kN/m3 for reinforced concrete.  

 
 Reinforcement: In general characteristic yield stress is used in design 

formulae. Different standards stipulate different steel grades, for example, 

BS8110 defines two steel grades, namely grade 460  for high yield steel and 

grade 250, whereas EC2 specifies only Grade 500 steel. 

 

Table 3.4: Recommended Material Properties  
 
Standard BS8110 

(1997) 
EC2 

(1992) 
ACI318 
(2008) 

AS3600 
(1988) 

DIN1045 
(1978) 

IS456 
(2000) 

 
Concrete 
Strength 
is based 
on 

Cube 
Strength 

Cylinder 
Strength 

Cylinder 
Strength 

Cylinder 
Strength 

Cube 
Strength[1] 

Cube 
Strength 

Yield 
Strength 
of R/F 

250 
N/mm2 

and 
460N/mm2 

500 
kN/m2 

275N/mm2

413 
N/mm2 

and 482 
N/mm2[2] 

250 
N/mm2 

400 
N/mm2 

and 
450 

N/mm2 

220N/mm2/4
20 N/mm 2 

and 
500N/mm2 

250N/mm2

/ 
415 

N/mm2 
500N/mm2 

 
[1] Side of a cube is 200mm in DIN standards where as other standards adopt a cube 

side length of 150mm 
[2] ACI318 (2008) has assign a yield strength value of 60000 psi (413 N/mm2), but 

makes provision for the use of higher strengths provided the stress corresponds to 
strain of 0.35 percent. However ASTM A 82 has a specified a minimum yield 
strength of 70,000 psi (482 N/mm2)  

 
 
Table 3.5: Recommended Material safety factors 
 
Standard BS8110 

(1997) 
EC2 

(1992) 
ACI318 
(2008) 

AS3600 
(1988) 

IS456 
(2000) 

 
Concrete 
 

1.5 1.5 1.11-
1.538 

1.25-1.67[1] 1.5 

Steel 1.05 1.15 1.15 
 
[1] Overall material safety factor has been applied based on the stress state 
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3.6 Physical geometry of structures 

Although the structure is identical whatever code is used to check it, structural 

definitions may differ from code to code – e.g. effective length and flange width of a 

beam (see Fig 3.3, Fig 3.4 and Table 3.6). 

 

 

Fig.  3.3:  Definition of Dimensions (Figure 2.2 of EC2)  

 

 

Fig. 3.4:  Approximate effective span for calculation of effective breadth ratio 

(Figure 2.3 of EC2) 

 

Table 3.6: Recommended equations to calculate the flange width of a beam 

 

Standards Recommended Flange width 

BS8110(1997) ܾ݂݂݁ ൌ 

ହ
  where lo = the distance between zero moments ,ݓܾ

EC2(2004) ܾ݂݂݁ ൌ 

ହ
  where lo = the distance between zero moments ,ݓܾ

IS456(2000) ܾ݂݂݁ ൌ 


 ݓܾ   where lo = the distance between zero ,ݐ6݄

moments 
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3.7 Other Key aspects of Design Standards 

 

 Durability: Different design standards employ different approaches for defining 

the environmental condition of an element. Some standards provide general 

guidance, for example BS8110 (1997) Table 3.4 gives a general guide line on 

environmental conditions. Other standards define more specific guidelines on this 

aspect, for example, EC2 (1991) and AS3600 (1988). According to Narayanan 

(1994) BS8110 and EC2 have major disagreements. First, the principal parameters 

such as cement content, water/cement ratio, concrete strength and cover are not 

generally agreed on. Second, as noted above, the definitions of exposure 

conditions in the two documents are different and are entirely qualitative. 

 

 Analysis: With respect to analysis there is a consensus about the commonly used 

method of analysis, for example elastic analysis with and without redistribution, 

plastic analysis and non-linear analysis methods. However different loading 

arrangements are prescribed (Ref. Table 3.7). According to Narayanan (1994), 

EC2 provides only the basic information required, whereas BS8110 gives 

considerably more detailed information. Thus bending moment coefficients for 

slabs and beams are given in BS8110, whereas EC2 expects the user to refer text 

books or manuals.  

 
 Design: Plastic method of analysis is allowed in most standards but the 

recommended plastic stress diagrams differ (see fig. 3.5 and table 3.8). There has 

been some debate as to what is the most appropriate value to take for αcc in EC2. 

The recommended value in the code is 1.0 but it is likely that the UK National 

Annex will require a value of 0.85 to be used. The parameter η has been 

introduced into EC2 and in combination with modification of the value for λ has 

the effect of reducing the allowable concrete force for higher strength concrete 

grades above C50/60 (Moss and Webster, 2004).   

 
 Symbols: Symbols too differ from standard to standard. This difference also 

should be considered when creating the common interface for design standards. 
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Table 3.7:  Recommended Pattern loading in BS8110 and EC2 

BS8110 

 EC2 
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Fig. 3.5: Stress block used in EC2 is compared with that in BS8110 (Moss and 
Webster, 2004) 
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Table 3.8:  Recommended stress block diagrams by other standards 
 
Standards Recommended plastic stress diagram 

ACI318 

 

AS3600 

DIN1045 
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3.8 Design Example  

This design example was selected from the reference Graded examples in reinforced 

concrete design (Dias, 1998), for the comparison of codes with respect to the design of 

a reinforced concrete beam section. This particular beam arrangement was chosen to 

avoid the code differences with respect to the analysis loading cases. Figure 3.6 shows 

the loading arrangements. Load values are at characteristic values and must have 

appropriate safety factors applied to them. The output from this exercise is given in 

Table 3.9. Wide disparities in output values can be observed.  

 

 

 

Fig. 3.6: Service loading arrangement (Example 7, of Graded Examples in 
reinforced concrete design by W.P.S.Dias,1998) 
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Table 3.9:  Summary of output of the design example 
 

 
 
 
When considering the above mentioned similarities and differences in different 

reinforced concrete standards, we observe that the data items of most of the standards 

are similar in nature but the methods of evaluating these data items differ. We could 

also observe that the building elements and their functions have been treated in by 

broadly similar fashion by different standards. Thus these similarities could be used in 

COIDS. 
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CHAPTER 4 
  
 
COMMON INTERFACE CONCEPT AND IMPLEMENTATION 
 
 
4.1 Introduction 
 
The Common Interface for Design Standards (COIDS) is called “common” because it 

is designed to accommodate several design standards. Since the Standards are 

upgraded with new knowledge, the program is designed to accommodate this 

flexibility. Hence, even a new standard could be plugged in to the common interface. 

The word “interface” is used because there are three modules (in fact called “models”) 

that interact with it (see Fig.4.1), namely the Standards Model, referred to above and 

which can contain more than one standard; the Product Model, which is a description 

of the structure; and the Interaction Model, through which interaction between models 

and between these and external entities (including user input and analysis software) is 

handled. The term “interface” is therefore not used in a narrow programming context, 

but rather as explained above.   

 

One of the key the aspects of the approach adopted here is that inputs, such as beam or 

column data input, are fed to the program only once – i.e. once the element data is 

entered for the analysis phase, it does not have to be entered again for the design 

checking phase. This is a feature of the Interaction Model. 

 

The main feature of the Product Model is that its data is independent of the standards 

used to check the structure. The data consists of geometry, sectional properties and 

load data. Some load data, such as load combinations, will be standards specific and 

hence handled by the Interaction Model.  

 

The Standards Model is the model that handles the standards that are included in the 

COIDS. One of the key features of the COIDS is that it represents the standards in the 

same format as in such standards. For example the Class Clauses represent Clauses of 

the standards, Class Symbols represents the Symbols of the standards and Class Table 

represents the Tables of the standards. The change of a clause or a table can be 

accommodated without major changes to the programme code.   
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The most significant feature of this approach is that in the Standards Model, the data 

processing will simulate the procedure followed by a practicing engineer – e.g. in 

checking a beam for flexure; the program will follow the code clauses similar to an 

engineer. In other words, the program procedures are not “hard coded” and code 

clauses are encoded as separate methods. A user request for a particular design check 

will be processed by picking the right clauses and tables to execute the request. This is 

the main innovation in this work. This approach has great practical efficiency, in that 

code changes can be very easily accommodated. In addition, the notion of staying as 

close as possible to the way human experts work can be seen as being conceptually 

“authentic”.  

 

Product                          Common                              Standards 
Model                                  Interface                             Models 
 
 
 
                                            Interaction 
                                               Model       
 
 
 
Fig.  4.1: Conceptual Model of the COIDS 
 
 
The COIDS concept is implemented in the object oriented shell, KAPPA, described in 

detail in Chapter 5. However, screen images from KAPPA are used in this chapter too, 

as they are often useful for describing the structure of the common interface COIDS. 

For example, Fig. 4.2 shows how the three different models are linked to the common 

interface object. 
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Fig. 4.2: KAPPA representation of the Conceptual Model of the COIDS as an 
Object Hierarchy 
 
4.2 Product Model 
 
The Product Model represents product data, i.e. the frame data, such as node data, 

element data, support properties, and section properties. The basic product data is fed 

to COIDS through the basic data input session window, details of which are given in 

Chapter 6. Based on this data input, the corresponding KAPPA Product Model object 

hierarchy instances are dynamically generated (see Fig. 4.3 and Fig. 4.4). It holds the 

classes such as Nodes, Elements, Supports and Section properties. Load data is 

included within the Element class. This model is independent of design standards. The 

methods to generate the necessary instances are included in both classes Nodes and 

Elements.  

 

The frame data is fed only in one session, unlike the current practice where the 

element data needs to be entered in the analysis session and during the design session. 

The data items like element dimensional properties, material properties and element 

loadings need to be entered during this session. This input data is stored in the slots of 

the Product Data Instances. The data will be used by the Interaction Model of COIDS 

to generate an input file for the Analysis package (MFEAP).  
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Fig. 4.3: Product Data Object Hierarchy 
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Fig. 4.4: Typical Element Instance 
 
 
 
4.3. Standards Model 
 
The Standards Model represents the data items in the standards. This class is designed 

to hold several standards. Thus the development of this model has considered 

common features of different standards and their basic structure so that many codes 

could be accommodated in COIDS. Chapter 3 identifies the common features of codes 

and their basic structure. According to Chapter 3, there are many differences in 

different standards, when considering the features at the micro-scale, but at the macro-

scale, they all follow the same design philosophy - that is the limit state philosophy 

and the same design intents such as durability considerations and fire considerations. 

This common feature is captured in designing this model.   

 

There are two main sub classes (see Fig. 4.5) in this model, namely class Basic Data 

and class Derived Data. The class Basic Data object represents data item types that do 

not need any equation or procedure to derive them, and include constants, durability 

data, material data and tables.  
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The Derived data object represents data items that need equations or a procedure to 

derive them. Each of them will have a different form of evaluation - e.g. by executing 

sets of equations, or through inferencing using sets of rules. The main Objects in this 

hierarchy are Clauses and Symbols classes. This hierarchy is standard dependent. A 

new standard can be plugged in as a subclass to the appropriate class objects. 

 
Two features of the Standards Model hierarchy are that (i) it does not have any 

instances, as in the Product Data Hierarchy; and that (ii) many of the classes are 

empty, apart from the “leaf” classes – i.e. those at the end (or bottom) of the hierarchy, 

which are code dependent. The hierarchy then serves mostly as a classifier. It is also a 

structure that can incorporate any common features if any, as demonstrated below. 

 
 

 
 
Fig. 4.5: Standards Data Object Hierarchy 
 
 
4.3.1. Basic Data hierarchy: Class Basic Data is a root class for all the data items 

that do not have an explicit method of evaluation expressed within the standards. 

Values for these data items are either provided in the standard or by the user. It holds 

the subclasses such as Constant, Durability, Material and Tables (see Fig. 4.6).  
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Fig. 4.6: Basic Data Object Hierarchy 
 
Class Constant: A constant can be of any data type such as numeric, symbolic, 

Boolean or linguistic. An example is a constant such as α, the angle assumed for the 

compression strut in the shear resistance calculation for bent up bars in BS 8110.  

 

Class Durability: The durability data refers to requirements, such as the exposure 

class “mild” in BS 8110.  The class also contains the fire resistance (another type of 

durability) requirements in required exposure duration in hours (see Fig. 4.7). These 

are provided by the user at the design checking stage. The user may be assisted by a 

dialog box which will be displayed at run time. 

 

 
 
Fig. 4.7: Sub Class Durability_BS 
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Class Material: The materials data are provided by the user. The class Material Data 

has two subclasses for Steel and Concrete. These contain material properties such as 

density and E value. It should be noted that strength will vary from code to code. For 

example, BS 8110 specifies steel strength as 460 MPa and EC2 as 500 MPa. Also, 

concrete strength is specified as cube strength in BS 8110 and cylinder strength in 

EC2. Hence, they will have to be stored in the code specific subclasses such as 

Steel_BS, Steel_EC2, Concrete_BS and Concrete_EC2 see Fig.4.8 and Fig. 4.9 for the 

difference between the Steel and the Steel_BS classes. The latter inherits the values of 

Elastic modulus and density from the former, but the value of strength is declared only 

in the latter. 

 

 
 
Fig. 4.8: Common Steel Class 
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Fig. 4.9:  Steel_BS Sub Class 
 
 
Class Table: The class Table represents those data items whose values are obtained 

from lookup tables within the standard. This will hold the methods like table lookup 

routines and methods for interpolation etc. As there is no facility to represent a table in 

KAPPA we represent these tables in a spreadsheet (Lotus123 or Excel) or in a 

database. The access to these data files is through the DDE (Dynamic Data Exchange) 

facility provided by KAPPA. Fig. 4.10 shows how Table 3.4 of BS 8110 represented 

in a spreadsheet, and Fig. 4.11 the way it is implemented in KAPPA. It should be 

noted that the same class Table_BS can be used to process information from more 

than one table – in this case Table 3.4 for long term durability and Table 3.5 for fire 

resistance – by using a different method for each. The slots that are included in the 

class Table is to temporarily store the rows and column values that are needed to 

locate the value in the table. Note also note that Table can contain both numeric and 

alpha-numeric values.  
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Fig. 4.10: Lotus 123 representation of the BS Table 3.4 (BS34) 
 
 

 
 
Fig. 4.11: Sub Class Table_BS and the Method BS34 look up routines  
 
 
4.3.2 Derived Data hierarchy: Class Derived Data is a root class for all the data 

items that have explicit methods of evaluation expressed within the standards. This 

root class has two main subclasses, namely Clauses and Symbols (see Fig, 4.12).  The 

main standards features are included in this hierarchy, namely clauses and symbols. 

As explained above, COIDS attempts to encode the design standards in the same high 

level format as in the standards. It is even possible to include the text format into the 

method, and the “post message” command will inform the user during the checking 

mode if any clause is violated. However this hybrid approach is only partially 

implemented in COIDS to demonstrate the concept. 
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Fig. 4.12: Derived Data Object Hierarchy 
 
 
Class Clauses: This is the parent class of Clauses BS and Clauses EC2, which are the 

code dependent classes. All clauses, as explained in Chapter 3, consist of an “If” part 

and a “Then” part. The “If” part will specify the condition to execute the “Then” part 

of the clause. Thus a programme can be written for each clause to execute the 

instructions of the clauses. Following standards features were utilized to structure the 

class Clause. 

 

 It was observed that there is a common procedure adopted for designing and 

checking elements by different standards. For example in order to calculate the 

design resistance moment of a flanged beam, first the effective span of the 

beam needs to be calculated, then the flange width of the beam needs  to be 

calculate and thereafter equations are provided to calculate the design 

resistance moment.  

 There are one or more clauses needed to find a particular data item. When the 

data item needs more than one clause to evaluate the value, a set of clauses 

needs to be subjected to inferencing; for example to calculate the effective 

span of a beam, according to clause BS 8110, Clause numbers 3.4.1.2 -3.4.1.4  

are needed. 

Since most standards follow a similar procedure, class Clauses holds common slots to 

hold the data items needed for inferencing (see Fig. 4.13). 

 

 Clauses BS will include all the British Standard’s clauses as methods (see Fig. 4.14), 

which are executed on the instructions (messages) send by the Interaction Model 

based on the user request.  The slots of Clauses_BS holds the clause numbers that 

refer to KAPPA methods, which include the program code for the method (see fig. 

4.15). The methods are not hard coded, and are independent of each other, 
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representing clauses by their clause numbers. For example clause 3.4.1.2 of BS 8110, 

is represented as a method in the object Clauses_BS as BS3412. This representation of 

code clauses makes it much easier to change the programme following standards 

revisions. 

The slots seen in the Clauses_BS are the data items that need to be evaluated by 

inferencing. They hold the clause numbers that will be subjected to inferencing (see 

Fig. 4.16).  

 

 
 
 Fig. 4.13:  Class Clause Object which includes the common slots clauses  
 
 

 
 
Fig. 4.14: Sub Class Clause_BS Object: slots for inferencing and BS 8110 clauses 
as methods  
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Fig. 4.15: KAPPA Method BS3415 represents the BS8110 clause 3.4.1.5  
 
 

 
 
Fig. 4.16: Clause_BS effective_span slots  
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Class Symbols: This is the parent class of the Class Symbols BS and Class Symbols 

EC2. This class holds only the common initialization method to initialize the KAPPA 

slot values, since there are no common symbols among different standards. The data 

items that are defined under symbols are handled by these classes. Most of these data 

items do not have specific clauses to derive their values. They may be a user input or 

an item that can be executed using a simple equation (no clauses). For example “As” 

is defined in BS8110 as area of tension reinforcement, which is a user input and “d” is 

defined in BS8110 as effective depth of the tension reinforcement, which can be 

calculated by deducting from the overall depth the cover, diameter of the shear link 

and half of the diameter of the tension reinforcement. Some of the symbols such as 

“v”, defined in BS8110 as design shear stress at a rectangular cross section, have 

calculation procedures (in this case in Cl 3.4.5.2 of BS8110). The Class Symbols_BS 

slots hold the values of the symbols temporarily during the checking mode and the 

KAPPA methods in the same class are used to derive the corresponding value. The 

processing of the values will be dynamically derived based on the user request (see 

Fig. 4.17). 

 

 
  
Fig. 4.17: Sub Class Symbol BS, which handles the Symbols data Items in the 
Object’s Slots and the corresponding methods in the Object’s Methods  
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4.4 Interaction Model 

 

The Interaction Model is the main module that links the user and the common 

interface “COIDS”.  User Interface session windows and the other modules such as 

the Product Model and the Standards Model are linked to this module. All the 

messages are generated from the Interaction Model Objects. Interaction Model 

consists of two main sub classes namely; Interaction Data and Processed Data objects 

(see Fig. 4.18).     

 

 
 
Fig. 4.18: Interaction Model Object hierarchy 
 
 
4.4.1 Class Interaction Data hierarchy: This object hierarchy, as the name implies, 

will interact with the user and the other COIDS objects. The object hierarchy includes 

objects that communicate with the user and external programs, access and process 

other data files and communicate with the internal objects of COIDS. 

 

Class UserQuery: The main task of this object will be to communicate with the user 

through KAPPA dialog boxes. Initially the user needs to give the product model data 

such as Frame data, Node data, Element data, Support data and Section Properties. 

The main KAPPA session windows discussed earlier in this chapter, will lead the user 

by the buttons included in the window. These buttons are linked to the KAPPA 

functions, which include methods to send the messages to the COIDS objects. For 

example when the user presses the frame data input button, messages will be 

originated from the KAPPA function editor (further discussed in Chapter 5) to the 
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COIDS UserQuery object to post a dialog box to obtain the initial frame parameters 

such as job name, frame type, number of nodes, number of elements, number of 

supports and number of section properties.  

 

Based on the user input, KAPPA Function “Input Frame Data” will send messages to 

corresponding objects to generate instances (see Fig. 4.19). The User Query object 

also posts dialog boxes to the user for input data to the Product Model Instances (see 

Fig. 4.20), and a typical durability data input dialog box is shown in figure 4.21. The 

slots of the UserQuery object are to hold the main user inputs such as frame data 

inputs, analysis software execution file location list and the user’s element check 

condition lists. 

 
 
 
 
 
 

 
 
Fig. 4.19:  KAPPA Function’s Input Frame Data Method 
 

Message to User Query 
Object of the interaction 
Model to post a message to 
the user to input basic frame 
Data 

Message to Nodes 
Object to Generate 
Node Instances 

Message to 
Elements Object to 
Generate Element 
Instances 

Message to Supports 
Object to Generate 
Support Instances 

Message to Section 
Property Object to 
Generate Section 
Property Instances 
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Fig. 4.20: Class User Query Methods 
 
 
 
 
 
 
 
 
 
 

 
 
Fig. 4.21: Durability Data dialog box posted to the user by the User Query object 
 
 
 

Method to post a 
dialog box to the user 
to input concrete 
properties 

Method to post a 
dialog box to the 
user to input 
durability data 

Method to post a 
dialog box to the 
user to input 
durability data 

Method to post a 
dialog box to the 
user to input element 
data

Method to post a dialog box 
to the user to input frame data 
 Method to post a dialog box 

to the user to input steel 
properties 
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Class Mapping: The task of this object is create the input file for the Analysis 

Package (MFEAP) using COIDS object data which is fed by the user,  and to map the 

MFEAP output data file (see Fig. 4.22) to instances created under the class Processed_ 

Data, such as element axial forces, bending moments and shear forces. The slots in 

this object will hold the data file locations and the field names, row and column 

numbers to generate the input file for the analysis package and to map the output data 

file to the COIDS instances. 

 
 
 

 
 
Fig. 4.22: Class Mapping  
 
 
Class Draw_Data: This object handles the graphical user interface (GUI) of COIDS. 

In today’s programming context the graphical user interfaces are an important aspect, 

since the graphical user interface will give an opportunity for the user to check the 

input and graphically observe the output result. We may note that the output is a direct 

result of the input. COIDS also has a capability to display the input of the user (see 

Fig. 4.23). This facility could be further developed to display the output results too. 

 
Class Draw_Data is independent of standards, and holds the methods such as show 

nodes and show elements to display nodes and elements respectively (see Fig. 4.24). 

The slots of this object temporarily hold the node numbers and their co-ordinates, and 
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Package (MFEAP) 
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data file to COIDS 
objects 
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data file location 
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element numbers, which will be utilized by the above show nodes and show elements 

methods.   

 

 
 
Fig. 4.23: COIDS Graphical User Interface 
 
 

 
 
Fig. 4.24: Class Draw_Data  
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Class Data_Item_Network: This is the main class that handles the checking mode of 

COIDS. The capacity checking of elements is dependent on standards; thus there are 

standards dependent sub-classes. These classes hold the methods that include the 

inferencing procedure to evaluate the user request (see Fig. 4.25).  In checking an 

element complying to a particular standard for a user requested stress state, the 

programe needs to identify the member (whether it is a beam or a column), the 

standard that needs to be complied with, and the stress state that the element is to be 

checked for. Based on the user request, COIDS generates flags to identify the request. 

For example, if a rectangular beam is to be checked for flexure according to British 

Standards, a “RecBeamForFlexure” flag will be used (see Fig. 4.26). User has the 

option to define more than one check state, which will be stored in the corresponding 

slots of the class Data Item Network. Since most standards have a common approach 

for evaluating the frame elements, most of the methods and the slots are inherited by 

the sub classes Data Item Net_BS and Data Item Net_EC2. 

 
 

 
 
 
  
Fig. 4.25: Class Data Item Network 
 
 

Method to 
evaluate the check 
element that the 
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Fig. 4.26: Class Data Item Network, slot Check Condition stores flags to identify 
the check state 
 
4.4.2 Class Processed_Data: As the name implies Class Processed_Data will handle 

the processed data of the COIDS.  Element classes such as Beams and Columns serve 

as sub classes. These classes will hold the processed data of the respective element 

instances, which will be generated based on the user request. Class Processed_Data 

will have the common methods to generate element instances and initialize slots and 

instances. The slots of the class Processed_Data will hold the data items such as 

element number and element type, which are used to generate the element instances 

under the Beam_BS or Beam_EC objects (see Fig. 4.27). The sub classes Beams and 

Columns handle element dependent (but standards independent) data items. Standards 

dependent data items are introduced at the next level, e.g. Beam_BS or Column_BS.  

Class Beams will handle common data items such and width “b” and the height “h” of 

the beams ( see fig. 4.28), while sub class Beam_BS will handle the code specific data 

items such as effective span “le” (see Fig. 4.29). The effective length of the beam will 

be evaluated by inferencing the clauses (written as methods) that are stored in a list in 

the slot “effective span” in the class Clauses_BS. The class Beam_BS will also hold 

the steel provided by the user and the calculated minimum steel required by the British 

Standards. The comparison of the provided and the minimum requirements will 

indicate whether the element conforms to the standards or violates any code clauses. 

 

Flags to identify the 
check status  
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It should be noted that the element instances in the Processed Data part of COIDS are 

dynamic in nature and “exist” only when that element is being checked. Data is 

imported to it from various other parts of COIDS. It also interacts with the clauses in 

the Standards Model. Some typical interactions are described below: 

 

1. Relevant data is imported from the (static) instance of the same element in the 

Product Model such as width and height, already defined when the Product 

Model is generated. 

2. Data such as Bending Moments and Shear Forces from the output data file of 

the Analysis Package (held outside the KAPPA environment) are obtained 

through the Mapping object. 

3. Data for checking such as reinforcement provided can be obtained from the 

User Query object. 

4. The actual checking itself is carried out by accessing the clauses written as 

methods in the Standards Model. 

 

 

 
 
Fig. 4.27: Class Processed Data  
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Fig. 4.28: Class Beams  
 
 
 

 
 
Fig. 4.29: Class Beams_BS 
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CHAPTER 5 
 
KAPPA APPLICATION DEVELOPMENT SOFTWARE 
 
 
5.1 Introduction 
 
This chapter highlights the features of KAPPA and how the KAPPA facilities are used 

to develop knowledge based applications such as COIDS. The main source of 

reference to this chapter is from KAPPA Manuals. 

 

KAPPA is used to build knowledge-based applications, systems that capture the 

knowledge necessary to understand some complex system or domain.  Building a 

knowledge-based system means building a realistic model of the actual system. 

Knowledge-based systems are used for tasks such as planning, diagnosis, design, 

scheduling, training, data interpretation (processing) and configuration.  

 

KAPPA knowledge bases are built around the important components, behaviour and 

relationships in a system. A good candidate for a KAPPA knowledge-based system is 

one where you understand how the components interact, but where there is too much 

complexity for one to predict the behaviour of the entire system. Another good 

candidate for a KAPPA knowledge base is a situation where there is a the need to 

distribute the knowledge of a few experts to a broader group of people. 

 
5.1.1 Introducing KAPPA Knowledge Elements: KAPPA provides a wide range of 

tools for constructing and using knowledge-based systems. Since KAPPA is an Object 

oriented programming shell, the components of the domain are represented by the 

object oriented structures called objects, which can be a class or an instance. They can 

represent physical things like “Beams” and “Column” or concepts such as 

“Durability”. 

 
The relationships among the objects in a model can be represented by linking them 

together into a structure called a “hierarchy”. Object oriented programming tools 

within KAPPA will help the user to create objects and the object hierarchy, write 

“methods” to specify the behaviour of the objects, and create “slots” to represent the 

properties of objects.  
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Once the real world problem is represented in the object oriented format, then a set of 

rules can be specified to get the desired outputs from the complex system that was 

specified earlier. 

 
In rule-based programming, each rule specifies a set of conditions and a set of 

conclusions to be made if the conditions are true. Each rule is a relatively independent 

module, thus a reasoning systems could be built gradually, rule by rule. 

 
Rules can be set in two basic ways, “forward chaining” and “backward chaining”. In 

forward chaining, conclusions are drawn from known facts and these conclusions 

become facts from which to draw further conclusions, for example if there are several 

clauses that need to be used to evaluate a data item (i.e. there are several rules to 

determine the data items), the those clauses (rules) need to be forward chained. In 

backward chaining, a desired conclusion is specified and the conditions of the rules 

are used to determine if the conclusion is true or how it may be made true. Backward 

chaining is used as the “Goal” finding mechanism or the programme ending 

mechanism. 

 

5.1.2 KAPPA Applications: Applications written in KAPPA can perform two 

important tasks; 

 

1. Help human decision making: Thus, the application should enable the user to 

understand how a result or a proposed decision was derived. 

2. Using as a learning tool:  A user can examine parts of a domain that are 

inaccessible to the user in the real world, and conduct experiments which are 

dangerous, expensive, impractical, or impossible in reality. 

 
In order to observe and control the operation of a knowledge base, we can also use a 

variety of graphic images in building the KAPPA interface. The Active Images 

package contains buttons, bitmaps, drawings, state boxes, meters, line plots and sliders 

(see figs. 5.5- 5.6). These indicators can be used to display the values of important 

parameters and observe how they change while the system is in operation. These 

Active Images assist the user to control the object oriented model. These images are 

linked to the KAPPA Functions, which will be discussed in detail later in this chapter. 
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The KAPPA programming language, KAL is used to develop the knowledge base. 

KAL language is used to develop KAPPA’s rules, methods and functions. Adding and 

retrieving information to the knowledge base is also done using KAPPA. It is called a 

4th generation language since its syntax is fairly close to the English Language. For 

example, to send a message to a particular object, the KAL syntax is “ SendMessage 

(Object Name, Method Name)”. The root language used to develop KAL is C 

language, thus the KAPPA application development system uses C source code. This 

allows KAPPA to extend its capabilities.  

 
5.2 The KAPPA Interface 
 
 KAPPA provides a powerful interface for the application developer. The interfaces 

consist of tools for viewing and modifying the various KAPPA elements. The KAPPA 

interface also contains tools to build, customized displays and browsers. The KAPPA 

Main Window consists of several icons (see Fig. 5.1). Each icon represents one of the 

windows in KAPPA: 

 

 Object Browser 

 Session Window 

 Editing Tools 

 KAL Interpreter 

 KAL View Debugger 

 Find Replace 

 Rule Relations 

 Rule Trace 

 Inference Browser 

 

 
 
Fig. 5.1: KAPPA Main Window with several Icons 
 
 
 



 

68 
 

5.2.1 Object Browser: Object Browser is the most intuitive method of interacting 

with KAPPA. There are four main classes and a Global Instance in KAPPA (see fig. 

5.2), namely Root Class, subclass Menu, sub class Image and subclass KWindow. 

Object Browser Editing menus may be used to create objects. The object editors are 

used to create methods and slots which define the behaviour and the properties of the 

object respectively. Figures 5.3 and 5.4 demonstrate how COIDS is connected to the 

KAPPA main object hierarchy. 

 Root Class: is the fundamental class from which all other classes in KAPPA 

are defined. It cannot be renamed or deleted. This class does not consist of any 

slots or methods (see Fig. 5.4). 

 Menu Subclass: This subclass handles the KAPPA main menus  

 Image Subclass: KAPPA images are handled by this class 

 KWindow Subclass: All the session Windows are handled by this object 

 

 
 
Fig. 5.2: KAPPA’s Main Object hierarchy 
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Fig. 5.3: KAPPA’s Extended Object Hierarchy which indicates the image object 
hierarchy 
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Fig. 5.4: COIDS Object Connected to the Class Root 
 
 
5.2.2 Session Windows: KAPPA Session windows are very important tools to 

develop the graphic user interface of the knowledge base. These Image tools will help 

the user to interact with the knowledge base. These tools will also be used to display 

the output result of the complex knowledge base. 

 

These windows are provided with Active Image tool boxes (see fig. 5.5). This tool 

box package contains Buttons, Edit box, Bitmap, State Box, Line Plot, Single List 

Box, Check Boxes group, Check box, Text, Transcript, Drawing, Meter, Slider, 

Multiple list box, Radio Button Group and Combo Box (see Fig. 5.6). Most of these 

active images are used in the development of COIDS graphic user interface. 

COIDS Object 
hierarchy connected 
to the Main Class 
Root.
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Fig. 5.5: KAPPA Active Images Tool Box 
 
 
 

 
 

Fig. 5.6: KAPPA Active Images package 
 

5.2.3 Editing Tools: The Class and Instance Editor in KAPPA, represented as icons in 

the knowledge Tools window, provide a faster and more efficient means of creating, 

editing and saving the knowledge base. The Knowledge Tools window displays icons 

for the five principal editors in KAPPA, namely Class Editor, Instance Editor, 

Function Editor, Rule Editor and the Goal Editor (see Fig. 5.7).  

 Class Editor can be used to create a new Class or edit, delete and rename a 

Class Object. 
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 Instance Editor can be used to create a new Instance or edit, delete and rename 

a Instance. 

 Function Editor is used to edit the KAPPA Active Image package functions. 

 Rule Editor is used to Edit rules that will be subjected to Forward Channing 

 Goal Editor is used to edit rules to that will be subjected to Backward 

Chaining. 

 

 

 
 
Fig. 5.7:  KAPPA Knowledge Tool Window 
 
                                                                                                                     
5.3 Knowledge processing Techniques in KAPPA 
 
The knowledge base built in KAPPA needs to be accessed and executed. The 

knowledge in KAPPA is stored in objects as method or slot values. The execution of 

the KAPPA knowledge base is carried out by two separate inferencing processes: 

“Forward chaining”, activated by the Forward chaining function and “Backward 

chaining”, activated by the “Backward chaining” function. The graphic user interface 

is activated by KAPPA “functions”.  

 

 Forward chaining attempts to discover a matching rule from the sets of rules in 

the agenda, by comparing the “If” part of the rule to the new fact. If the new 

fact matches the pattern of one of the conditions in the rule’s “If” part, then the 

chosen rule will be activated.  Since standards clauses in COIDS are 

represented as methods in class Clauses, these methods are activated by 

KAPPA rules which are named by the same name as the corresponding clause. 
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For example the rule BS3444, states that if the check condition is rectangular 

beam for flexure according to the British Standards, check then evaluates 

clause BS 3.4.4.4 (see Fig. 5.8). The class Clauses slots hold the agenda or the 

list of clause numbers that need to be subjected for inferencing (see Fig. 5.9). 

For example if the effective span of a beam is to be evaluated according to 

British Standards, one of the following clauses BS 3.4.1.2, BS 3.4.1.3, BS 

3.4.1.4 shall be evaluated, the criteria for selection of the particular clause 

being based on the support conditions, i.e. whether the  beam is simply 

supported, continuous or cantilever (see fig. 5.9). This data is provided in the 

product model; thus when forward chaining the above clauses, the clause that 

matches the support condition will be picked and evaluated. A conventional 

programe by contrast, has to indicate explicitly when given conditional 

statements should apply.    

 

 In backward chaining, or goal driven reasoning, the inference engine tries to 

verify a fact (reach a goal) by finding rules that can prove the fact and then 

attempting to verify their premises. The premises in turn become new facts to 

be verified by other rules, and the process goes on. Backward chaining is 

appropriate when there is a specific question to be asked (that is, a specific 

goal to be reached); it is often used in diagnosis and classification applications. 

The KAPPA backward chainer attempts to verify a hypothesis by comparing 

the “Then” part of the rule. If the goal matches the pattern of one of the 

expressions in a rule’s “Then” part and if all the expressions in the rule’s “If” 

part are variables, the rule can apply. This means that the actions represented 

by expressions in the “then” part of the rule are taken. Typically, these actions 

add new information to the system in the form of slot values. 

 

Every time a rule premise having to do with the value of a single-valued slot 

cannot be immediately verified during the backward chaining, the premise 

itself becomes a new goal to be resolved by further backward chaining. By 

repeating this cycle over and over until all goals are resolved, a rule chain is 

created that starts with one goal and ends by adding additional facts inferred 

by the rules. The backward chaining technique is also used to terminate a 

Forward chaining process. 
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COIDS uses a goal “CheckCondition” to find the stress state for which to 

check the element. Thus the backward chaining process will be continued until 

the goal is reached (see Fig. 5.10).  

 

  
 
Fig. 5.8:  KAPPA Rules linked to the COIDS standards clause BS3444 
 
 
 

 
Fig. 5.9: COIDS strategy to execute standards clauses using KAPPA rules  
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Fig. 5.10: COIDS Goal “CheckCondition” to find the stress state of the element 
to be checked. 
 
5.4 Execution process of COIDS in checking mode 
 
The standards processing procedure adopted by COIDS will simulate the procedure 

followed by a practicing engineer. This involves, first the selection of the element to 

be checked, then the selection of the standard that the element shall conform to, 

selecting the critical stress states to be checked and going through the relevant clauses 

of the standard to calculate the minimum reinforcement requirement and compare 

with the provided reinforcement.  

 

When user presses the Checking Mode the following instructions will be generated 

from the KAPPA Functions to the COIDS objects as per Fig. 5.11. The subsequent 

message/ instruction flow between the user and   COIDS is demonstrated by the 

following flow charts. 
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Fig. 5.11: Instruction flow from KAPPA Functions to COIDS (Stage 1) 
 
 
 
 Assume the user decided to check a beam to British Standards; then the program will 

Identify the element is a “Beams” and will be stored in the Data_Item_Network 

Object “CheckElement” slot.  “CheckElement” method in the Data_Item_Network 

Object will specify to forward chain the “CheckElement” Slot value. When the 

KAPPA Functions sends the message to Data_Item_Network objects to execute the 

method “CheckElement”, since the slot will indicate “Beams” (because the user 

chosen element is a beam), KAPPA Beam rules will be forward chained (see Fig. 

5.12). 
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Fig. 5.12: Data Item Network Object sends a message to forward chain the 
KAPPA rules (Stage 2) 

 
 

When forward chaining the KAPPA rule “Beams”, the rule will check whether the 

chosen element is a “beam” and send the message to the class Processed_Data to get 

the beam type (rectangular), percentage redistribution and reinforcement data from the 

user (see Fig. 5.13). Here the user query was generated by the Processed Data Object, 

since the all the Processed Data (calculated reinforcement) will be stored in this 

object. 

 

If the user selected standard is British Standards, then the D_Item net_BS, 

CheckElement  slot  will have a flag named CheckBSBeams selected and forward 

chained. Then the corresponding KAPPA rule CheckBSBeams will be forward 

chained. This process will activate the CheckBeamData Method in the 

Data_Item_Network_BS. This method will calculate the required reinforcement 

specified by the standard, by sending messages to the COIDS Standard Model (see 

Fig. 5.14). 
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Fig. 5.13: Forward Chaining KAPPA Rule Beams will execute the method Get_ 
CheckBeamData to get data from the user (Stage 3) 

 
 
 
 
 
 
 

 
Fig. 5.14: Forward Chaining rule CheckBSBeams will calculate the requirement 
specified by the standard (Stage 4) 
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CHAPTER 6 

 
TYPICAL COIDS SESSIONS 

 
This chapter will demonstrate a typical COIDS session. The step by step approach will 

highlight the concepts described earlier. Graphic User interfaces (GUI) of COIDS will 

facilitate the user to interact with COIDS. There are three main session windows for 

the user, namely the Common Interface, Basic Data Input and Interaction Window. 

Common Interface session window is called the main window (see Fig. 6.1), since the 

all the operating modes such as Data Input Mode, Analysis Mode, Checking Mode 

and Design Mode (not implemented) are initiated by this session window. Activation 

of the modes will lead the user to subsequent session windows and to the dialog boxes 

generated by COIDS. 

 

6.1 Data Input Mode 

This mode will assist the user to input the product data to COIDS. The Data Input 

Mode button will bring up the Basic data input session window (see Fig. 6.2). 

 

 
 
Fig. 6.1: Common Interface Session Window 
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Fig. 6.2: Basic Data Input Session Window 
 
 
The Basic Data Input mode will assist the user to input the product data such as Frame 

Data, Element Data, Material Data and Data Base Location (not implemented).  

The first step of the user session will be to initialise the Product Model hierarchy (see 

Fig. 6.3), which is to delete all the instances of class Nodes, Elements, Supports and 

Section Properties. The KAPPA function editor’s initialise method “INIT” (see Fig. 

6.4) will send a series of messages to COIDS objects to delete slots and instances. 

This action will also delete the slot values of the parent classes and delete slot values 

of the Class UserQuery to accommodate the new user input. After initialising, this 

method will post a message to the user stating that the initialisation is complete (see 

Fig. 6.5). The “INIT” method demonstrates a key Object Oriented Programming 

(OOP) concept called “polymorphism”, which means that the same massage will 

perform different task in different objects.  
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Fig. 6.3: KAPPA Product Model Hierarchy 
 
 
 

 
 
Fig. 6.4: KAPPA Function Editor “INIT” method will send messages to COIDS 
Objects 
 
 
 
After Initialising the Product Model, the Frame Data button of the Basic Data Input 

Session Window can be activated. The Basic Product Data Dialog Box will be posted 

to the user (see Fig. 6.6). 

 

The user inputs frame type, number of nodes, number of elements, number of supports 

and number of section properties that will be used to generate the Product Model 

instances (see Fig. 6.7).   
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The next step is to input data to the Object Instances such as Node Data, Element 

Data, Support Data, Section Properties, Element Loads and Nodal Loads. The Figures 

6.8 to 6.17 illustrate the typical user input sessions. Material Data is the next input 

data to COIDS (see Fig 6.18 and Fig. 6.19). The Durability Data Inputs such as fire 

resistance and the exposure conditions can be input to the code by activating the 

Durability Data button in the Basic Data Input session window (see Fig. 6.20 and Fig. 

6.21). The product data will be used to generate the Input Data File to the Analysis 

Package, in our case MFEAP, using the COIDS Class Mapping. 

 

  

 
 
Fig. 6.5: Basic Data Input Session Window, Initialise button will initialise the 
COIDS  
 

Message to the 
user stating the 
initialisation is 
complete. 
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Fig. 6.6: Basic Product Data Dialog Box 
 
 
 

 
 
Fig. 6.7: Product Model hierarchy with the Instances generated based on the 
frame data user input  



 

84 
 

 
 
Fig. 6.8: Typical Node Data User Input  
 
 
 

 
 
Fig. 6.9: Display User Node Inputs 
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Fig. 6.10: Typical Element Data User Input 
 
 

 
 
Fig. 6.11: Display User Element Inputs 
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Fig. 6.12: Typical Support Data User Input 
 
 

 

Fig. 6.13: Typical Section Property Data User Input 
 
 

 

Fig. 6.14: Element number to input Element Load 
 
 

 
 
Fig. 6.15: Number of Load types on the Element 
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Fig. 6.16: Load types on the Element to be defined 
  

 
 
Fig. 6.17: Typical Uniform Load Input data 
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Fig. 6.18: Typical Material Data User Input 
 
 

 
 
Fig. 6.19: Typical Material Data User Input for concrete 
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Fig. 6.20: Typical Durability Data User Input for Fire Resistance 
 
 

 
 
Fig. 6.21: Typical Durability Data User Input for Exposure Condition 
 
 
 
6.2 Analysis Mode 
       
The Product Data Analysis file will be used by the analysis package to analyse the 

input file. The Analysis Mode button of the main window will be used to activate the 

analysis session. COIDS will post a dialog box to define the path (location) of the 

executive file (exe file) of the Analysis Package (see Fig. 6.22). This user input will 

activate the analysis software (see Fig. 6.23), where the input data file could be 

accessed and processed into an output file.  The processed file or the output file of the 

analysis session will be used by COIDS for conformance checking. 

 

 



 

90 
 

 
 
Fig. 6.22: User Define Path of the Analysis Package executive path 
 
 

 
 
Fig. 6.23:  MICROFEAP-11 Analysis Software 
 
 
6.3 Checking Mode 
 
The conformance checking of elements against different standards is the main task of 

COIDS.  Checking mode of the Main Session Window will activate the checking 

process. Firstly, the user needs to input the element number to be checked (see Fig. 

6.24). Then the user needs to specify which standard to be used in order to check the 

element (see Fig. 6.25). This action will generate the corresponding element instance 

in the Processed Data hierarchy under the relevant element type which has the 

specified standard tag (see Fig. 6.26).  COIDS identifies the element type from the 

Product Data Information which is stored in the element instance. Then COIDS will 

post a dialog box to the user asking the user to insert the stress states such as Flexure, 
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Shear and Torsion or Serviceability Limit states such as Deflection and Crack width to 

be checked (see Fig. 6.27). Then the user needs to enter the path of the Analysis Data 

File in order to map the analysis data to the Processed Data Instance (see Fig. 6.28). 

After mapping the data to the relevant instance COIDS will post a message to the user 

stating that the task is complete (see Fig. 6.29). Where beams are concerned, after 

obtaining the element forces the user needs to input the percentage redistribution (see 

Fig.6.30) and reinforcement data for three critical sections (i.e., two supports and the 

middle section of the element). Here the section sizes are obtained from the product 

data and the user has the option to change if necessary - this is common in practice 

(see Fig. 6.31 to Fig. 6.33). 

After completing all the input data for the checking stage, COIDS will compute the 

standards specified minimum reinforcement requirement and store this together with 

the user provided reinforcement in the slots of the element instance, e.g. Ele_9 (see 

Fig. 6.34) . The user provided values will be compared with the standards specified 

required value and messages sent to the user stating that the section is “satisfactory” or 

“unsatisfactory” according to the user specified standard (see Figures 6.35 to 6.38). 

 
 

 
 
Fig. 6.24:  User to insert the element number 
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Fig. 6.25: User to insert which standard to be used for checking the element 
 
 
    

 
 
Fig. 6.26: Ele_9 Instance is generated based on the user input 
 
 

 
 
Fig. 6.27: User to input the stress states or  
Serviceability Limit States to be checked 
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Fig. 6.28: User to input the path of the Analysis Data File 
 
 
 

 
 
Fig. 6.29: Message to the user by COIDS indicating that Mapping is complete 
 
 
 
 

  
 
Fig. 6.30: User to input the percentage redistribution 
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Fig. 6.31: Reinforcement data at section 1 (Support)  
 
 
 
 

  
 
Fig. 6.32: Reinforcement data at section 2 (Middle Section) 
 

Negative Moment       
(Hogging Moment) 

Positive Moment  
(Sagging Moment) 
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Fig. 6.33: Reinforcement data at section 3 (Support) 
 

 
 
 
Fig. 6.34: Ele_9 Instance which included the processed data items   
 
 

 
 
Fig. 6.35: COIDS message to user: Section 1 of the  

Negative Moment 
(Hogging Moment) 

Calculated reinforcement 
area (mm2) requirement 
according to BS8110 (1985) 

User Provided 
Reinforcement area 
(mm2) 
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is satisfactory in Flexure  
 

 
 
Fig. 6.36: COIDS message to user: Section 1 is satisfactory in Shear 
 

 
 
Fig. 6.37: COIDS message to user regarding shear reinforcement  
 
 
 

 
 
Fig. 6.38: COIDS message to the user stating that the task is completed 
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CHAPTER 7 
 
 
 
CONCLUSIONS AND RECOMMENDATIONS 
 
 
Although the objective of all reinforced concrete design codes is to provide 

specifications for safe structures, we have shown that there are wide variations in the 

actual provisions that lead to significant differences in design outputs. 

 

It has been demonstrated that the Object Oriented Programming technique is able to 

represent reinforced concrete design codes in such a way that the structure of the code 

can be preserved and in a way that is faithful to the knowledge in and formats of code 

clauses and tables. 

 

This has resulted in the standards knowledge not being hard coded into the 

programming code. Changes in knowledge arising from code updates can be easily 

made. 

 

Inferencing techniques such as forward chaining and backward chaining were used to 

ensure that the design checking followed the procedure that would be adopted by a 

human expert. 

  

The framework developed is also able to incorporate design checking to a number of 

codes, because the standards specific information is stored separately from the 

information regarding the structure. This concept has been termed “Common Interface 

for Design Standards” (COIDS). 

 

Although the COIDS concept has been formulated, it has been tested using only a 

single standard, namely BS8110. The most immediate and relevant recommendation 

for future work is to test the concept with another standard. This would ideally be 

EC2, because Sri Lankan structural design practice is in the process of changing from 

BS8110 to EC2, and there would be many instances where structures designed to one 

code may need to be checked against the provisions of the other. 
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Another avenue for future work is to introduce some expert system features into the 

model based representation described here, so that the system is able to give 

explanations to users if and when queried. 
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