

REPRESENTATION OF A REINFORCED CONCRETE DESIGN
CODE AS AN OBJECT ORIENTED MODEL

M.Phil. Thesis

W J B Shiromal Fernando

UNIVERSITY OF MORATUWA

SRI LANKA

May 2010

REPRESENTATION OF A REINFORCED CONCRETE DESIGN
CODE AS AN OBJECT ORIENTED MODEL

by

W J B Shiromal Fernando

A thesis submitted to University of Moratuwa

for the Degree of Master of Philosophy

Research supervised

by

Professor Priyan Dias

DEPARTMENT OF CIVIL ENGINEERING

UNIVERSITY OF MORATUWA

MORATUWA

SRI LANKA

May 2010

i

ABSTRACT

Design standards comprise many knowledge types such as text, rules, equations, tables,

graphs and figures. The attempt is to encode the standard without distorting the format of

the standard, i.e. to represent the standard clauses and tables in the same format as in the

standard. This effort will facilitate changes to the standards without much variation to the

programme code.

This thesis presents a framework to model standards using the Object Oriented

Programming paradigm. It also presents the concept of a common interface, i.e. to

accommodate several design standards for reinforced concrete design in one module;

however, implementation is carried out only for BS8110. The programme uses an

inferencing mechanism for execution, which is a similar method of execution to that of a

standard’s user; it is not a hard coded structured programme. This is a novel concept

when compared to the available software for reinforced concrete design.

The literature review investigates the structure of typical standards and the available

standards processing technique such as Predicate Logic, Decision Tables, Production

Systems and Semantic Networks before choosing Object Oriented programming as the

preferred one. The review also compares both the provisions and design outputs of

several reinforced concrete standards.

The Common Interface for Design Standards (COIDS) has three main modules (or

models), namely the Product Model, Standards Model and Interaction Model. The

Product Model handles the product data, e.g. Frame Data. The Standards Model handles

the standards data, i.e. it contains all the knowledge in a standard. The Interaction Model

handles the data exchange between the user, COIDS objects and external software. It

transfers data from the COIDS to external analysis software and maps analysis output

files to COIDS. An Object Oriented Shell called KAPPA was used to develop the object

oriented model.

ii

ACKNOWLEDGEMENT

I am most grateful to my research supervisor, Prof. Priyan Dias, Head of Civil

Engineering, University of Moratuwa for selecting me for carryout this research on

Representation of a Reinforced Concrete Design code as an Object Oriented Expert

system. He guided the research work presented in this thesis with much dedication and

enthusiasm. I also wish to thank him for his valuable advice and the tedious task of

correcting the study, helping me on weekends sacrificing holidays. If not for his

continuous persuasion and encouragement, I would not have completed this thesis with

my office work load.

I wish to thank the members of the progress review committees, Prof. Saman Bandara,

Dr. (Mrs.) Premini Hettiarachchi, Prof. SAS Kulathileke, Prof. UGA Puswewala and Dr.

Ruwan Weerasekara for their valuable advice.

I would also like to thank Nuwan Kodagoda for the initial work he had carried out on this

research. I have incorporated some of his initial work in this thesis.

I would also like to thank Prof. Lakshman Alwis, Chairman, Design Consortium Limited,

for granting duty leave for my research work. I would also thank my DCL colleagues for

continuously supporting me with my office work, during the final stages of the research.

Finally, I would like to thank my family members for the support and encouragement,

specially our parents for looking after my domestic responsibilities, without their support

I would not have been able to finish this work.

iii

DECLARATION

This thesis is a report of research carried out in the Department of Civil Engineering,

University of Moratuwa, between July 1996 and December 2009. Except where

references are made to other work, the work has not been submitted in part or whole to

any other university. This thesis contains 102 pages.

Weliserage Jude Basil Shiromal Fernando

Department of Civil Engineering

University of Moratuwa

vi

LIST OF FIGURES

Fig.2.1 Prolog Implementation of a Table ... 16

Fig.2.2 Prolog Implementation of Calculation of Tension Steel area in a Beam 17

Fig.2.3 Calculation of (x/d)lim using a decision table ... 17

Fig.2.4 Calculation of Longitudinal Spacing for shear using a decision table 18

Fig.2.5 Production System Implementation of Calculation of

Tensile Steel area in a Beam .. 19

Fig.2.6 Details of Backtracking through a rules given in fig. 2.5 20

Fig.2.7 Semantic network which shows the relationship of physical

objects in a design standard ... 21

Fig.2.8 Semantic network that shows details of one particular object 21

Fig.2.9 Knowledge Representation in a hierarchy of frames that show inheritances .. 22

Fig.2.10 Frame of a Beam .. 23

Fig.2.11 Data Abstraction Levels of Building Structures .. 25

Fig.2.12 Object oriented representation of Parent Class and the Child Class 26

Fig.2.13 Object oriented representation of single inheritance and the

 multiple inheritances .. 27

Fig.2.14 Object oriented representation of object instances .. 27

Fig.2.15 Object Orientated representation of Objects,

 which includes both slot value (attribute) and the

 method to evaluate the attribute (Encapsulation) ... 28

Fig.2.16 Object oriented representation of concept polymorphism,

 A single message to carryout multiple task ... 29

Fig.3.1 Part of the Contents (Section 3) of BS8110 Part 1 (1997)

structured based on element type ... 31

Fig.3.2 Part of the Contents (Section 6) of Euro Code 2

(BS EN 1992-1-1:2004) structured based on stress states 31

Fig.3.3 Definition of Dimensions (Figure 2.2 of EC2) .. 35

Fig.3.4 Approximate effective span for calculation of effective breadth ratio

 (Figure 2.3 of EC2) ... 35

Fig.3.5 Stress block used in EC2 is compared with that in BS110 38

vii

Fig.3.6 Service Loading arrangement (Example 7, of Graded Example in reinforced

concrete design by W.P.S.Dias, 1998) ... 40

Fig.4.1 Conceptual Model of the COIDS .. 43

Fig.4.2 KAPPA representation of the Conceptual Model of the COIDS as an Object

Hierarchy .. 44

Fig.4.3 Product Data Object Hierarchy .. 45

Fig.4.4 Typical Element Instance .. 46

Fig.4.5 Standards Data Object Hierarchy .. 47

Fig.4.6 Basic Data Object Hierarchy ... 48

Fig.4.7 Sub Class Durability_BS ... 48

Fig.4.8 Common Steel Class .. 49

Fig.4.9 Steel_BS Sub Class ... 50

Fig.4.10 Lotus 123 representation of the BS Table 3.4 (BS34) 51

Fig.4.11 Class Table_BS and the Method BS34 look up routines 51

Fig.4.12 Derived Data Object Hierarchy ... 52

Fig.4.13 Class Clause Object which includes the common slots clauses 53

Fig.4.14 Sub Class Clause_BS Object, slots for inferencing and

 BS 8110 clauses as methods ... 53

Fig.4.15 KAPPA Method BS3415 represents the BS8110 clause 3.4.1.5 54

Fig.4.16 CLAUSE_BS effective_span slots ... 54

Fig.4.17 Sub Class Symbol BS, which handles the Symbols data

 Items in the Object’s Slots and the corresponding methods in the

 Object’s Methods ... 55

Fig.4.18 Interaction Model Object hierarch ... 56

Fig.4.19 KAPPA Function’s Input Frame Data Method ... 57

Fig.4.20 Class User Query Methods .. 58

Fig.4.21 Durability Data dialog box posted to the user by the User Query object 58

Fig.4.22 Class Mapping ... 59

Fig.4.23 COIDS Graphical User Interface ... 60

Fig.4.24 Class Draw Data .. 60

Fig.4.25 Class Data Item Network ... 61

Fig.4.26 Class Data Item Network, slot Check Condition store

 flags to identify the check state .. 62

Fig.4.27 Class Processed Data ... 63

viii

Fig.4.28 Class Beams ... 64

Fig.4.29 Class Beams_BS .. 64

Fig.5.1 KAPPA Main Window with seven Icons .. 67

Fig.5.2 KAPPA’s Main Object hierarchy .. 68

Fig.5.3 KAPPA’s Extended Object Hierarchy which

indicates the image object hierarchy .. 69

Fig.5.4 COIDS Object Connected to the Class Root ... 70

Fig.5.5 KAPPA Active Images Tool Box .. 71

Fig.5.6 KAPPA Active Images package .. 71

Fig.5.7 KAPPA Knowledge Tool Window ... 72

Fig.5.8 KAPPA Rules linked to the COIDS standards clause BS3444 74

Fig.5.9 COIDS strategy to execute standards clauses using KAPPA rules 74

Fig.5.10 COIDS Goal “CheckCondition” to find the stress state of the

 element to be checked .. 75

Fig.5.11 Instruction flow from KAPPA Functions to COIDS (Stage 1) 76

Fig.5.12 Data Item Network Object sends a message to forward chain the

 KAPPA rules (Stage 2) .. 77

Fig.5.13 Forward Chaining KAPPA Rule Beams will execute the method

 Get_ CheckBeamData to get data from user (Stage 3) 78

Fig.5.14 Forward Chaining rule CheckBSBeams will calculate the

 requirement specified by the standard (Stage 4) ... 78

Fig.6.1 Common Interface Session Window ... 79

Fig.6.2 Basic Data Input Session Window .. 80

Fig.6.3 KAPPA Product Model Hierarchy .. 81

Fig.6.4 KAPPA Function Editor INIT method will send messages to

COIDS Objects ... 81

Fig.6.5 Basic Data Input Session Window, Initialise button will

initialise the COIDS ... 82

Fig.6.6 Basic Product Data Dialog Box ... 83

Fig.6.7 Product Model hierarchy with the Instances generated

based on the frame data user input ... 83

Fig.6.8 Typical Node Data User Input ... 84

Fig.6.9 Display User Node Inputs .. 84

Fig.6.10 Typical Element Data User Input .. 85

ix

Fig.6.11 Display User Element Inputs ... 85

Fig.6.12 Typical Support Data User Input ... 86

Fig.6.13 Typical Section Property Data User Input ... 86

Fig.6.14 Element number to input Element Load .. 86

Fig.6.15 Number of Load types on the Element .. 86

Fig.6.16 Load types on the Element to be defined... 87

Fig.6.17 Typical Uniform Load Input data .. 87

Fig.6.18 Typical Material Data User Input .. 88

Fig.6.19 Typical Material Data User Input for concrete .. 88

Fig.6.20 Typical Durability Data User Input for Fire Resistance 89

Fig.6.21 Typical Durability Data User Input for Exposure Condition 89

Fig.6.22 User Define Path of the Analysis Package executive path 90

Fig.6.23 MICROFEAP-11 Analysis Software ... 90

Fig.6.24 User to insert the element number ... 91

Fig.6.25 User to insert which standard to be used for checking the element............... 92

Fig.6.26 Ele_9 Instance is generated based on the user input...................................... 92

Fig.6.27 User to input the stress states or Serviceability Limit States to be checked .. 92
Fig.6.28 User to input the path of the Analysis Data File .. 93

Fig.6.29 Message to the user by COIDS Indicating the

 Mapping is complete .. 93

Fig.6.30 User to input the percentage redistribution .. 93

Fig.6.31 Reinforcement data at section 1 (Support) .. 94

Fig.6.32 Reinforcement data at section 2 (Middle Section) .. 94

Fig.6.33 Reinforcement data at section 3 (Support) .. 95

Fig.6.34 Ele_9 Instance which included the processed data-items 95

Fig.6.35 COIDS message to user Section 1 is satisfactory in Flexure 95

Fig.6.36 COIDS message to user Section 1 satisfactory in Shear 96

Fig.6.37 COIDS message to user regarding shear reinforcement 96

Fig.6.38 COIDS message to the user stating that the Task is completed 96

x

LIST OF TABLES

Table 3.1 Structure and Philosophy of Design Standards .. 32

Table 3.2 Recommended Live loads .. 33

Table 3.3 Recommended basic load safety factors .. 33

Table 3.4 Recommended Material Properties .. 34

Table 3.5 Recommended Material safety factors... 34

Table 3.6 Recommended equations to calculate the flange width of a beam 35

Table 3.7 Recommended pattern loading in BS8110 and EC2 37

Table 3.8 Recommended stress block diagrams by other standards 39

Table 3.9 Summary of output of the design example .. 41

LIST OF KEY WORDS

Common Interface, Expert Systems, Knowledge Base, Object Oriented Programming,
Standards Processing, Reinforced Concrete Design

iv

TABLE OF CONTENTS

Abstract .. i

Acknowledgements ... ii

Declaration .. iii

Table of Contents ... iv

CHAPTER 1 – INTRODUCTION ... 1

 1.1 Significance of Research .. 1

 1.2 Objectives ... 4

 1.3 Methodology .. 5

CHAPTER 2 – DESIGN CODES AS EXPERT SYSTEMS .. 7

 2.1 Introduction .. 7

 2.2 Design Standards ... 7

 2.3 Aim of Building Standards ... 8

2.4 Properties of Standards ... 8

2.5 Expert Systems ... 9

2.6 Model-Based Reasoning ... 10

2.7 Design Standards as Expert Systems .. 12

2.8 Standards processing techniques ... 14

CHAPTER 3 – COMPARISON OF DESIGN STANDARDS 30

 3.1 Introduction .. 30

 3.2 The Structure of Design Standards .. 30

 3.3 Basis of Design .. 32

3.4 Loads, Load Combinations and Partial Safety Factors 32

3.5 Material Properties .. 33

3.6 Physical Geometry of Structures ... 35

3.7 Other Key aspects of design standards ... 36

3.8 Design Example ... 40

v

CHAPTER 4 - COMMON INTERFACE CONCEPT AND IMPLEMENTATION .. 42

 4.1 Introduction .. 42

 4.2 Product Model .. 44

4.3 Standards Model .. 46

4.4 Interaction Model ... 56

CHAPTER 5 – KAPPA APPLICATION DEVELOPMENT SOFTWARE 65

 5.1 Introduction .. 65

5.2 The KAPPA Interface ... 67

5.3 Knowledge Processing Techniques in KAPPA ... 72

5.4 Execution process of COIDS in Checking Mode .. 75

CHAPTER 6 – TYPICAL COIDS SESSIONS .. 79

 6.1 Data Input Mode .. 79

6.2 Analysis Mode ... 89

6.3 Checking Mode .. 90

CHAPTER 7 – CONCLUSIONS AND RECOMMENDATIONS 97

REFERENCES .. 99

1

CHAPTER 1

INTRODUCTION

1.1 Significance of Research

Buildings are designed to commonly accepted norms by the engineering community

to ensure safety and sustainability. Design standards adopted by different engineering

communities differ based on their experience and practice. The standards represent

expert knowledge compiled over a long period of time. The standards are updated

regularly with new knowledge. The knowledge is mostly stipulated by mandatory

rules. This knowledge representation makes standards to be an ideal knowledge base

to be utilized to build an expert system.

Standards are often voluminous. British standard BS8110: Part1 (1997) “Structural

Use of Concrete in Buildings” is 164 pages long. There are additional parts to BS8110

each of similar size. BS5950 (2000): “Structural use of Steel” consists of nine parts,

each a separate document. In addition there are cross references to the other British

Standards such as loading for buildings (BS6399), which in turn has three more parts.

This volume of information involved requires the investment of considerable time and

effort in becoming accustomed with a particular code (Neilson, 1997). This effort will

not be productive if an engineer needs to use another standard for his next assignment,

since the knowledge is not retained.

Let’s look at the history of the development of Eurocodes to understand the process of

development, the effort and the time period required to evolve a new standard.

According Menzies and Gulvanessian (1998), a proposal to develop an international

set of codes of practice for structural design was first agreed in 1974 by several

technical-scientific organisations based largely in Europe. Following preparatory work

by these organizations, the Commission of the European Communities (CEC) together

with the European Free Trade Association (EFTA) took the initiative for developing

the Structural Eurocodes at the end of the 1970s by establishing a steering committee

to oversee the work. In 1989 the responsibility for their development was transferred

to the European Committee for Standardisation (CEN). Since English was the most

widely spoken and understood language, a decision was made in 1991 to conduct

2

meetings and to prepare the Eurocodes in English in the first instance. Once each

Eurocode Part is approved for publication as a pre-standard (ENV) it is translated into

the other two official CEN languages, French and German, and published in the three

languages. A programe to convert the ENV Eurocodes to European standards (EN)

has now been completed.

The issue of European standards will lead to the withdrawal from use of the national

codes of practice in the different European countries which are members of CEN.

There is a period of five years during which national codes are to co-exist with the

European standards “Eurocodes” before the national codes are to be withdrawn by the

year 2010.

Engineers will take at least another two to three years to become familiarized with the

new standards. By that time there will be new amendments proposed by the standards

committees with the new social requirements, international commitments and use of

new materials for buildings. A possible amendment will be based on environmental

issues and emergence of new nano materials.

For a new standard to evolve, it will take at least twenty to thirty years. Upgrading

existing standards will be carried out every two to five years. The effort is wasted if

the standards are not utilized to the maximum. This effort should encourage the

engineers to utilize the standards knowledge to the maximum and this will also result

in safe and economical designs.

The engineer needs to refer many design standards for his day to day work. The

knowledge in design standards is under-utilized due to the complexity of the

knowledge representation of standards and the knowledge gap between the standard’s

knowledge and that of the average engineer. This aspect will also result in a longer

adaptation period to implement a standard with new knowledge or using a less

familiar standard (For example, an engineer familiar with British standards using an

American standard).

As a practicing structural engineer, the author’s estimate is that less than ten percent

of a standard’s knowledge is utilized by engineers. Junior engineers will follow

3

standard clauses and equations without much understanding of the principles in the

code. Such misinterpretation of code clauses will lead to unsafe designs. Senior

engineers on the other hand hardly refer the code since their experience will assist

them to make judgements for routine designs. In new situations, time will not permit a

senior engineer to go through all the standard clauses and their references. Thus they

will tend to over design the sections; this will lead to uneconomical design. Thus we

see that the knowledge in a standard is under-utilized by both junior and senior

engineers, leading to potentially unsafe or uneconomical designs respectively.

Computerized modelling of design standards will contribute towards remedying this

situation. If the model is developed to the level of an expert system that can be queried

for explanations, then the system will serve not merely to fill the gap in engineers’

knowledge of standards, but to educate them as well.

1.1.1 Drawbacks associated with available design software

Computer software is used by engineers for analysis and design work. Most engineers

use one software to analyse and another software for design. There are software

packages that claim to perform both analysis and design, complying with many

international standards. However there are the following drawbacks associated with

such software packages;

 The design software available is mostly a collection of templates that are

defined to carry out a particular task such as beam, column or foundation

section design. They are sometimes developed using electronic work sheets.

 The above mentioned software is developed using hard coded structured

programming techniques. Thus incorporation of revisions to the standards can

be done only by major revision to the programming code.

 Since the programmes are hard coded, there are many assumptions being made

by the programmer, such as effective span of a beam being centre to centre

distance of the supports, beam not being subject to axial force or torsion etc..

In most of the programmes, the engineer needs to input code data to the

programme, such as cover based on the environmental conditions and fire

requirements. Thus the programme plays the role of a mere calculator with

hard coded equations.

4

 Although some programmes claim to contain both analysis and design

facilities to many international standards, practically speaking we use them

only for the conceptual design stage but not for the detailed design of

elements, since they do not carry out all the design checks specified in

standards, specially the serviceability checks. These programmes also have

attached hard coded templates to the analysis programme which carry out pre-

defined procedures. Due to these reasons most designers are compelled to use

separate programmes for analysis and designs.

The approach presented in this work is a more fundamental approach to knowledge

representation and is hence not limited by the above.

1.2 Objectives

Research is needed to find techniques to process a standard’s knowledge. This

particular research effort is not only to process a single standard but also to encode

many standards in a module called “Common Interface of Design Standards”,

recognizing fact that an engineer may need to refer many standards during a particular

design. The concept of “common interface” will assist the engineer to get familiarised

with new standards by comparing the output of the older version or the familiar

standard’s version. The available high level software could be used to develop a

flexible expert system on design standards which could assist the design engineer

effectively. Implementation has been carried out however only for one standard,

namely BS 8110.

The following main objectives were focused on to be achieved as the outcome of the

research;

 Develop a framework to incorporate many standards in one module.

 Develop a structure in software to model and process a standard’s knowledge

as an object oriented model.

The framework and software were to have the following key features.

 Data entry for analysis and design to be in one operation. Thus data transfer

and storage will be handled from one module. That is data entry, data transfer

to external analysis software, retrieving the analysis output, conformance

5

checking of a particular element according to a selected standard and the stress

state and storage of input and output data will be carried out by one module.

 A flexible system where revisions can be adopted with less effort. Thus the

programme is to be developed without hard coding.

 Object oriented techniques to be use to develop the software. This technique is

a very popular programming technique presently adopted by software

engineers.

 Processing of data to simulate the procedure followed by a practicing engineer.

 Representation of standards without distorting the standard, i.e. to represent

text and knowledge types as represented in the standards. Thus the

representation of code clauses will be carried out as stated in the code and the

tables in the same format. This will give the flexibility to the system in the

event of code revisions. The other advantage is that the debugging and

establishing the connectivity will be very efficient.

1.3 Methodology

The scope of the research was to develop a common interface for reinforced concrete

design standards, for conformance checking of structural elements, using Object

Oriented Programming techniques. A literature review was done to investigate the

current research work on the subject areas such as standards processing and expert

systems. Several reinforced concrete standards were reviewed to understand their

structure and design philosophy. Object oriented techniques were used for the

implementation, using the object oriented programming shell “KAPPA”.

1.3.1 Thesis Structure

The Thesis consists of seven chapters, the first being this Introduction. The rest of the

thesis is as follows:-

Chapter 2: Representation of Design standards - This chapter examines the nature and

structuring of knowledge in standards. The discussion leads to the possibilities of

standards representation as expert systems. An overview of existing standards

processing techniques such as Predicate Logic, Decision Tables, Production Systems,

Frames and Semantic Networks is given. Finally the Object Oriented representation of

6

Standards is discussed, the technique adopted to develop the “Common Interface for

Design Standards”.

Chapter 3: Comparison of Design Standards - Since the research is to develop

techniques to model a common interface of design standards, it is important to

compare the structure and the philosophy adopted by the standards. This chapter gives

various comparisons of reinforced concrete design standards.

Chapter 4: Common interface concept and implementation - This chapter gives an

overview of the concept of a common interface, highlighting the three main models

of the Common Interface of Design Standards (COIDS), namely the product model,

standards model and the interaction model. The respective hierarchies of each model

are discussed in detail. The main object classes, sub-classes, instances and their tasks

and relationship with respect to the common interface are discussed. The structure of

each object, i.e. the slots and methods are also discussed in detail.

Chapter 5: KAPPA application development Software: - This chapter gives an

overview of the KAPPA application development environment, Object Oriented

programming concepts and introductions to inferencing techniques such as forward

chaining and backward chaining which have been applied in the development of

COIDS. This chapter demonstrates the COIDS dynamic execution process of

instructions by message passing from one object to another based on the user input.

Chapter 6: Typical COIDS sessions - This chapter gives an overview of a typical

COIDS session in the data entry mode and the checking mode, which demonstrates

the simulation of a practicing engineer.

Chapter 7: Conclusions - This chapter presents the conclusions drawn from the

research. Suggestions for changes and extensions that could form part of future

research are also made.

7

CHAPTER 2

DESIGN CODES AS EXPERT SYSTEMS

2.1 Introduction

This chapter will discuss the basic structure of design standards and the techniques

that are used to represent them as expert systems, including finally, the author’s

approach of representing standards as Object Oriented representation. This chapter is

based on the excellent unpublished literature review by Kodagoda (1997) and the well

written thesis by Neilson (1997).

2.2 Design Standards

Design standards are regulations or provisions that state requirements which have to

be satisfied to ensure safe and serviceable performance of certain systems during a

specific time period. The two basic modes in which standards are used by practising

engineers are;

 Designing systems / components

 Checking that a previously configured system or component conforms to a

standard.

When designing a system or component within the scope of a standard, an

experienced engineer will select those requirements within the scope of standard that

he or she judges will govern the design (based on the behaviours addressed by those

requirements) and focus only on those requirements when synthesising the design.

After synthesising the design for this subset of requirements, an engineer determines

whether the current design also meets the applicable requirements which are not yet

considered (Garrett, 1990). This is true for checking of a system or component.

8

2.3 Aim of building standards

It is important to understand the basic aims of standards, in order to achieve the

maximum benefit from processing standards. Generally we could outline the

following aims;

 The provisions of the standards are to ensure that all the criteria relevant to safety,

serviceability and durability considerations are met. Thus it ensures an acceptable

probability that the structure or part of it will not attain any specific limit state

during its expected life.

 To organise and express the regulations in such a manner that they are logically

consistent and complexity is minimised.

 To ensure that the benefits of the regulations are worth the cost and effort of

implementing them (Blackmore, 1989).

2.4 Properties of standards

Required properties of standards have been defined by the NBS/CMU group

(Stahl et al., 1983). They are as follows;

a. Individual provisions should be:

 Unique - provisions should give one and only one result for any given

application.

 Complete - provisions should apply in any possible situation.

 Correct - the results of the application of the provision should be consistent

with the intent of the standard.

b. Relations between provisions should be

 Connected - there should be explicit cross referencing of data items

(variables) used within provisions.

 Acyclic - there should be no circular reasoning or requests for data items

which represent logical loops.

9

c. Organisation of the overall standard should be

 Complete - the user should have some idea of the subjects and qualities

covered by the standards.

 Clear - the provisions should be arranged in such a way that checking routines

should be easily able to locate the provisions applicable to given queries.

2.5 Expert Systems

Most engineers use computers for their calculation work and for drawing purposes

using readymade software packages. These packages basically store and process data

according to their predefined programming which is essentially executing a

predefined task. Artificial Intelligence (AI) concepts have moved computers from

functioning merely as data processors to functioning as knowledge processors.

Computers can now incorporate the knowledge of human experts to solve difficult

problems. These systems are called expert systems. While a significant amount of

knowledge and knowledge types can be stored in an expert system, the power comes

from its ability to reason beyond the knowledge directly stored. This ability is called

inferencing. There are two main methods of reasoning when using inference rules,

namely forward chaining and backward chaining.

Forward chaining starts with the data available and uses the inference rules to derive

more data until a desired goal is reached. An inference engine using forward chaining

searches the inference rules until it finds one in which the “if “clause is known to be

true. It then concludes the “then” clause and adds this information to its data. It would

continue to do this until a goal is reached. The data available determines which

inference rules are to be used.

Backward chaining starts with a list of goals and works backwards to see if there is

data which will allow it to conclude any of these goals. An inference engine using

backward chaining would search the inference rules until it finds one which has a

“then” clause that matches a desired goal.

10

2.5.1 The function of an expert system

The following functions can be highlighted for an efficient expert system;

 The Expert system should have the ability to store and process knowledge.

Knowledge may be represented in different types; generally it can be text,

numerical values, algebraic expressions, Boolean expressions, table format or

graphical format.

 The user’s ability to query the system in order to get required information, for

example a requirement such as the minimum beam width for fire resistance.

 Flexibility of the expert system is very important; this means the system should

have the ability to grow with new knowledge and should be able to respond to new

requirements.

 The expert system should be able to link to other software in order to access and

store required data from data bases, and to handle the properties of other software

such as data storage, algebraic function handling, graphic handling etc.

 The Expert system should have the ability to model the entire problem.

2.6 Model - Based Reasoning

Early expert systems were designed to produce computer solutions to problems that

only human experts could solve. These system generally used “if – then” rules to store

or represent the knowledge of the human experts. (Rules are pieces of knowledge that

can be combined in various ways to solve a wide variety of problems.)

For example;

 If

 The building includes shear walls to resist wind

11

 Then

 The building is a braced building.

Rules are useful to represent expert knowledge, but they express only the surface of

the knowledge. The system does not understand what a shear wall is or its

arrangement, how the shear wall resists wind and why shear walls are needed to brace

the building, since the system does not have a model of how to brace buildings or how

wind is resisted by building elements.

The drawbacks of a simple rule system are such that it will fail when faced with a new

situation; on the other hand whereas the model of a shear wall or a braced building

will not only include descriptive representation of what a shear wall or braced

building is, but also include detailed methods of calculating procedures to evaluate

strength of the shear wall, bracing methods of buildings, the ability to evaluate the

necessity to provide shear walls and the adequacy of the number of shear walls to

brace the structure. This kind of a module can be used for checking a building

structure against wind loading.

Reasoning that incorporates a model or simulation of this kind is called model - based

reasoning. Since Engineers are primarily concerned with the design and diagnosis of

complex systems, it should come as no surprise that model-based reasoning is a very

useful tool for assisting in engineering decision making (Garrett, 1990).While causal

models can, in principle, be created using only rules, in practice it is more convenient

to combine rule - based and method - based reasoning within a domain of structured

objects.

The domain of a knowledge - based system is the part of the world with which the

system is concerned. The domain of COIDS is building elements. The task of COIDS

is designing and checking building elements. The rule-based approach focuses on the

task, not on the domain.

12

The model - based approach focuses on the domain; thus we can use the same model

to accomplish multiple tasks without using the rules alone. An Object Oriented

Programming problem solving strategy may be applied for creating the model.

2.7 Design Standards as Expert Systems

Design Standards and their regulations / provisions represent readily available

knowledge compiled over a reasonably long period of time by domain experts and as a

result, many of the knowledge acquisition problems could be regarded as already

having been dealt with at a certain level.

Design codes correspond reasonably well to available knowledge representation

formalisms, and the processing of provisions could be handled using inferencing

mechanisms available in expert systems. The chaining of provisions can also be

handled by tools. Thus design standards linked in COIDS can be regarded as a

comprehensive expert system.

2.7.1 Standards processing

The computerisation of building regulations are known as standards processing.

Standards processing is carried out using expert system tools. We should be mindful

not to distort the structure and properties of the standard during the encoding process.

The basic building blocks of standards comprise clauses /provisions. Provisions are

collections of one or more rules which outline the procedures to evaluate and relate

data items (variables) of the standards. A data item may be of any of the following

types:

 Boolean, which can be evaluated to ‘TRUE’ or ‘FALSE’.

 Numeric, which can be evaluated to a number.

 Multi -valued, which can be evaluated to more than one value.

 Singled - valued, which can only be evaluated to a unique value.

13

The data items in standards may need to be evaluated using algebraic or logical

functions, or the lookup routines to be accessed from tables. This means that

knowledge represented in standards is not homogeneous.

2.7.2 Classification of Clauses

For the purpose of standards processing, all the clauses could generally be classified in

the following three categories;

 Definition Clauses; these Clauses will define the situation, for example

Cl 3.4.1.1 of BS8110 (1997)/ Part 1 defines the difference between a shallow

beam and deep beam.

 Application Clauses; these Clauses specify the requirements in order to undertake

a particular task. For example, Cl 3.4.3 of BS8110 (1997) underlines the

requirements for the application of table 3.6.

 Performance Clauses; these Clauses state the procedures for evaluation of data

items. For example, Cl 3.4.1.2 to Cl 3.4.1.4 of BS8110 (1997) states the relevant

procedures to evaluate the data item named “Effective – span”.

2.7.3 Parts of a Clause

The purpose of any clause is to establish certain criteria based on the satisfaction of

other requirements (i.e. criteria). Thus clauses consist of one or both of the following

two types of criteria:

 Applicability criteria

 Performance criteria

The applicability criteria of a clause are the required conditions to be satisfied in order

that the performance criteria may be evaluated. The applicability criteria can be

viewed as the If parts of a rule and the performance criteria as the Then part a rule.

Thus clauses that could be represented as rules should consist of both criteria.

14

2.8 Standards processing techniques

There are many programming techniques that can be adopted for standards processing.

These techniques will be discussed in detail later in this chapter. They are as follows;

 Predicate Logic: A formal systematic means for representing atomic variables

and relations between them. The language Prolog supports implementation of this

technique.

 Decision Tables: This consists of a set of conditions, actions and rules. This

technique allows a set of rules concerned with the name of the object to be

processed simultaneously.

 Production System: They are rule base systems containing condition-action rules

called productions. A majority of the early Expert Systems were developed based

on this technique. They have been popular since they are usually very readable and

each rule is independent of the others, making modification easy.

 Frames: This consists of a hierarchy of Frames, each Frame containing a series of

slots which describe that Frame. Frames can inherit information from other

Frames somewhat like a semantic network. These have been used to model

complex data.

 Semantic Networks: Represents objects and their relations by the use of nodes

and links. The relationships between objects are in the form of a general graph.

This involves building up a hierarchy of data items. Inheritance can be used for

this purpose.

 Object Oriented Representation: This is the technique that has been used for

developing COIDS. The main properties of this technique are Abstract data Types,

Inheritance, Encapsulation, Polymorphism and Message Passing. The main benefit

of this methodology is in software maintenance and reusability. In modelling a

15

system the main emphasis is placed on development of a hierarchy of objects. An

object can be represented as a physical object or an abstract item. The behaviour

of each object is coded in the object itself. Object oriented modelling has been

used successfully to model complex systems and handle simulations. Most of the

present high level programmes / languages are developed using object oriented

techniques.

2.8.1 Criteria for selecting a suitable technique and software for standards

processing

In selecting a suitable knowledge representation technique and software to process

design standards, the following considerations apply;

 The technique should be efficient and convenient to represent the

standards

 The software should be able to handle numerical calculations, logical

arguments, tables, and other linked software such as analysis software

 The techniques should be easily accommodate any changes to the

standards, since the standards are updated frequently

 The chosen technique should posses the ability to represent both the

element and the element assemblies of a structure

2.8.2 Predicate Logic

The computer language Prolog is based on first order predicate logic. Here one stores

data as predicates which are actually facts. It is possible to have rules where the

conditions (antecedent) can be combined with AND, OR, NOT. If the rule is satisfied

then the given consequent is done.

Predicate logic has been used in areas like theorem proving. Rosenman and Gero

(1985) have used Prolog to develop an Expert System which represents a building

standard. They have used both rules and facts to build up their knowledge base. It is

possible to interactively engage in a session with the knowledge base to query about a

specific clause in the code. This system also demonstrates how it is possible to query

16

the knowledge base, HOW it has arrived at a solution, or ask WHY a certain question

is being asked. These features are some of the essential features found in rule based

systems.

Fig. 2.1 demonstrates how a Table taken from a design code should be implemented

as facts. The predicate get_cover_beams_simply_supported is an example of a rule,

that determines the cover required for a desired fire resistance period. If we query the

Knowledge base with get_cover_beams_simply_supported (2.0, X) then X would

contain 40. If the query is altered to get_cover_beams_simply_supported (X, 60) then

X would contain 3.0.

Fig. 2.1, Prolog Implementation of Table

Fig. 2.1: Prolog Implementation of a Table

The symbol ‘: -’ represents if, and the symbol ‘,’ represents and in Fig. 2.2. The

representation of a rule in Prolog is similar to the use of a Procedure in a conventional

programming language.

Kumar and Topping (1989) have illustrated the utilization of Prolog to represent a

Steel Design Code. They have proposed a technique in which they represent the entire

code as facts. They have divided the facts stored in a code into three categories. The

clauses are stored in such a way that the relevant rules are stored as facts separately.

These are linked together by the clause numbers.

 table_4_3 (0.5, 20, 20, 20, 20, 20, 20, 20).

table_4_3 (1.0, 20, 20, 20, 20, 20, 20, 20).

table_4_3 (1.5, 20, 20, 25, 20, 35, 20, 20).

table_4_3 (2.0, 40, 30, 35, 25, 45, 35, 25).

table_4_3 (3.0, 60, 40, 45, 35, 55, 45, 25).

table_4_3 (4.0, 70, 50, 55, 45, 65, 55, 25).

 get_cover_beams_simply_supported (Fire, Cover):-

 table 4 3 (Fire, Cover, , , , , ,).

17

Only the first two requirements are satisfied in implementing a design code. The

knowledge representation closely follows how it is actually implemented in the

written clause itself, although this may not necessarily be the best method for

computer implementation.

Fig. 2.2: Prolog Implementation of Calculation of Tension Steel area in a Beam

2.8.3 Decision Tables

A Decision table is composed of sets of conditions, actions and rules. This provides a

compact form of handling different actions as a result of a set of rules. Decision tables

have been used in several projects concerning regulations and codes (Harris and

Fenves, 1980). Fig. 2.3 shows an implementation of (x/d)lim ratio which is needed in

the calculation of compression steel reinforcement area in the EC2 concrete code.

Fig. 2.3: Calculation of (x/d)lim using a decision table

(x/d)lim

fck ≤ C35/45 T F

(x/d)lim =
ሺఋି.ସସሻ

ଵ.ଶହ
 X

(x/d)lim =
ሺఋି.ହሻ

ଵ.ଶହ
 X

beam_steel_tension_area (BM, BEW, BED, FCK, FCY, XOD, As):-

 BG_MU = BM/ (BEW*BED*FCK),

 BG_W = 0.652-sqrt (0.425-1.5*BG_MU),

 XOD = 1.918*BG_W,

 As = BG_W*BEW*BED*FCK/ FCY

18

Fig 2.4 shows how multiple conditions can be handled by a decision table. The

calculation of longitudinal shear spacing is done according to the EC2 concrete code.

Garret and Hakim (1992) have described in detail the disadvantages of Decision

Tables. The two main disadvantages they observe are;

a) Lack of formal model to implement the design code objects (i.e., grouping

rules together is not possible)

b) Lack of methods to handle other types of data evaluation (e.g. tables)

This technique would be unsuitable to handle a design standard with many

requirements.

Fig. 2.4: Calculation of Longitudinal Spacing for shear using a decision table

2.8.3 Production Systems

Production Systems are the most popular technique used to develop expert systems.

This consists of a collection of rules in the form of an IF part and a THEN part. Each

rule is independent from the other. The main disadvantage of this representation is that

when the knowledge-base becomes larger there are inefficiencies (Rossnman and

Is

Vsd ≤ (1/5) VRd2 T F F

(1/5) VRd2 ≤ Vsd ≤ (1/3) VRd2 F T F

Vsd > (2/3) VRd2 F F T

Is = min (0.8d,300) X

Is = min (0.6d,300) X

Is = min (0.3d,300) X

19

Gero 1985). This methodology has been successfully applied to implement Diagnostic

type of Expert System.

Figure 2.5 shows the Production System version of the Calculation of Tensile Steel

area in a beam. Rule based systems are very readable. These are not ideally suited for

numerical computations. In rule based systems it’s preferable to have only one

consequent (fact given after THEN). This is to ensure that the inference mechanism

(Backtracking) would be implemented properly.

Figure 2.6 illustrates how backtracking works. This technique is also used in Predicate

Logic based methods. The stack is a storage location used by the inference engine.

One feature of a Stack is that the first item popped out from the stack is the last item

that is pushed in. (Rule 2,1) means that when Rule 2 was pushed into the Stack the

inference engine evaluated Condition 1.

Production systems are similar to Decision Tables. Their use as Design Code

representation becomes impractical due to the enormous amounts of data and rules

which are required to be implemented in a design code.

Rule 1
IF element is a Beam
AND bending _moment is not unknown
AND beam_effective_width is not unknown
AND beam_effective_depth is not unknown
AND fck is not unknown THEN
beam_greek_mu = bending_moment/ (beam_effective_width*beam_effective_depth^2*fck)

Rule 2
IF beam_greek_mu is not unknown THEN
beam_greek_w = 0.652-sqrt(0.425-1.5*beam_greek_mu)

Rule 3
IF beam_greek_w is not unknown THEN
x_over_d = 1.918*beam_greek_w

Rule 4
IF x_over_d is not unknown
AND fcy is not unknown THEN
As = beam_greek_w * beam_effective_width*beam_effective_depth*fck/fcy

Fig. 2.5: Production System Implementation of Calculation of Tensile Steel area
in a Beam

20

Fig. 2.6: Details of Backtracking through a rules given in Fig. 2.5

2.8.4 Semantic Networks

These are basically graphical descriptions of knowledge that show hierarchical

relationships between objects. An object can be a physical entity like a beam or an

abstract entity like shear force. These are usually referred to as nodes. Nodes can be

connected together by arcs to represent relationships between them. The IS-A

relationship is basically a class relationship. Semantic Networks are a good medium to

represent complex relationships. Other types of relationships can also be defined. A

complete detailed semantic network for an element hierarchy is shown in Fig 2.7.

Adding details to one of the objects can be carried out as shown Fig. 2.8.

No Goal Description of what Inference engine does Stack

1 Find As Rule 4 can be used to obtain a value for As Nil

2 Evaluate Rule 4
X_over_d value needed, if not available get value,
store Rule 4 in the stack

(Rule 4,1)

3 Find x_over_d Backtracking, Rule 3 contains a value for x_over_d (Rule 4,1)

4 Evaluation Rule 3
beam_greek_w value needed, if not available get
value, store Rule 3 in the stack

(Rule 3,1), (Rule 4,1)

5 Find beam_greek_w
Backtracking, Rule 2 contains a value for
beam_greek_w

(Rule 3,1), (Rule 4,1)

6 Evaluate Rule 2
beam_greek_mu value needed, if not available get
value, store Rule 2 in the stack

(Rule 2,1), (Rule 3,1),
(Rule 4,1)

7 Find beam_greek_mu
Backtracking, Rule 1 contains a value for
beam_greek_mu

(Rule 2,1), (Rule 3,1),
(Rule 4,1)

8 Evaluate Rule1
element value needed, if not available and since no
rules are available to get value, get value from user

(Rule 2,1), (Rule 3,1),
(Rule 4,1)

9 Evaluate Rule 1
Bending moment value needed, if not available and
since no rules are available to get value, get value
from user

(Rule 2,1), (Rule 3,1),
(Rule 4,1)

… … … …

13 Calculate As
Rule 1 complete, Pop rule from stack, Backtrack to
earlier rule (Rule 2)

 (Rule 3,1), (Rule 4,1)

14
Calculate
beam_greek_w

Rule 2 complete, Pop rule from stack, Backtrack to
earlier rule (Rule 3)

(Rule 4,1)

15 Calculate x_over_d
Rule 3 complete, Pop rule from stack, Backtrack to
earlier rule (Rule 4)

Nil

16 Find Fcy
Fcy value needed, if not available and since no rules
are available to get value, get value from user

Nil

17 Calculate As Goal finally satisfied

21

Fig. 2.7: Semantic network which shows the relationship of physical objects in a
design standard

Fig. 2.8: Semantic network that shows details of one particular object

2.8.5 Frames

A frame contains a large chunk of knowledge about a particular object. A frame

provides a means of organizing knowledge in slots that contain characteristics of that

22

object. Some slots can contain default values; some could contain a procedural

attachment. It is possible to use a slot to link to another frame. It’s possible to develop

a hierarchy of objects (see Fig. 2.9). For example the continuous beam frame inherits

all the properties of a general beam frame and a more general element.

Frames have been used to implement Expert Systems to assess damages caused to

existing structures (Zhang and Yao, 1989). By attaching a procedure to a slot one can

handle numerical calculations. Its ability to use a slot to link to another frame allows it

to be used to even implement aggregates of elements. Frames provide a mechanism of

storing all the relevant information of an object in one location which also includes

calculations (see Fig. 2.10). This makes modifications easier. Frames satisfy all four

conditions mentioned earlier and are a suitable technique to implement a design code.

The principles adopted in this technique are very similar to the Object Oriented

Programming techniques which have been used to develop COIDS.

Fig. 2.9: Knowledge Representation in a hierarchy of frames that show
inheritances

23

Fig. 2.10: Frame of a Beam

2.8.6 Object Oriented Programming Technique

Object Oriented Programming (OOP) is a relatively new way of organising

programming code and data. Its underlying concepts are Data Abstraction,

Inheritance, Encapsulation and Polymorphism. These concepts have been around for

some time, for example in languages such as Simula67 and Smalltalk.

Object Oriented Programming is part of a long process of improving programmer

productivity that has moved from standard programming to structured programming to

OOPs. For years, all professional programmers have reused the programming code. A

very common approach to a new programming assignment is to copy an existing

program and modify it to solve the new problem. This approach has both benefits and

problems. The major benefit is that you start with a body of working programming

code. This is particularly useful in areas like Windows programming, where

applications inevitably require the same basic programming code for things like

handling windows, menus, and other common elements. However, there are also

drawbacks, most notably that every time you change your code, you risk introducing a

new bug. As programmers grew in experience and knowledge, the problems of

dealing with reuse of traditional procedural programming code were addressed by

following specific rules, called structured programming, for creating blocks of

code. This was an improvement, because it made code easier to understand and easier

to debug, but still did not accomplish the ultimate goals of allowing you to add to

24

existing programming code easily and reliably. Object Oriented Programming evolved

to solve this problem.

In conventional Procedure Oriented Programming in a language such as C, you view a

problem as a sequence of things to do. You organise the related data items into C

structures and write the necessary functions (procedures) to manipulate data and, in

the process, complete the sequence of tasks that solve your problem. Although the

data may be organised into structures, the primary focus is on the functions. Each C

function transforms data in some way. For example, you may have a function that

calculates the average value of a set of numbers, another that computes the square

root, and one that prints a string; C-function libraries are implemented in this manner.

OOP is more about program organisation than programming code techniques and it

has nothing to do with any programming language. A programming language that

supports OOP makes it easier to implement OOP techniques. Object oriented

programming looks at a problem as a collection of data, rather than collections of

processes or functions. When you are working with OOP, you think first about what

data is required, rather than on what needs to happen to the data.

Object oriented programming enables you to remain close to the conceptual, high-

level model of the real-world problem which you are trying to solve. You can take the

advantage of the modularity of objects and implement the program in relatively

independent units that are easier to maintain and extend. You can also share

programming code through inheritance. The entire objective of OOP is in fact the

defining of objects in an object-oriented manner that is in a unit that combines both

data and functionality together.

There are four main features of OOP, namely, Data Abstraction, Inheritance,

Encapsulation and Polymorphism;

 Data Abstraction: Fundamentally, to understand a complex system of data and

its behaviour, macro level perception of the system is very essential. For

example a building structure consists of beam, columns, walls and foundations.

If we further observe in detail, there are simply supported beams, continuous

25

beams and cantilever beams (see fig. 2.11). Data abstraction is to tie data and

functions together, which effectively defines a new data type with its own set of

operations. Such a data type is called an abstract data type (ADT), also referred

to as a “Class”. Probably the most difficult part of OOP is organising and

understanding the object classes that make up your application. Defining the

objects and setting up the relationship between them is a new task for the

programmer. The novelty of this approach makes it harder initially than

designing a traditional application.

Fig. 2.11: Data Abstraction levels of Building Structures

 Inheritance: Real - world objects do not exist in isolation. Each object is related

to other objects. In fact, we can describe a new kind of object by pointing out how

the new object's characteristics and behaviour differ from that of a class of objects

that already exists. This option of defining a new object in terms of an old one is

an integral part of OOP. The term inheritance is used for this concept, because we

can think of one class of objects inheriting the data and behaviour from another.

Inheritance imposes a hierarchical relationship among classes in which a child

Building
Structure

Columns Beams Walls Foundations

Simply
Supported

Beams

Continuous
Beams

Cantilevered
Beams

26

class (derived class) inherits from its parent class (base class) - see Fig. 2.12.

For example, Beams class is derived from Element Data class. Thus it inherits all

the data and functions (methods) from the base class Element Data class.

 If an object inherits from only one parent object, it is known as single inheritance

(see Fig. 2.13). Real-world objects often exhibit characteristics that they inherit

from more than one object. For instance a one way spanning slab may exhibit both

beam and slab characteristics. This example illustrates multiple inheritances (see

Fig. 2.13), the idea that a class can be derived from more than one base class. The

hierarchical structure generated by the single inheritance is simple where as in

multiple inheritances the hierarchical structure is much more complicated. Thus

single inheritance is more popular among the programmers as the programme

debugging is much easier. An individual representation of a class is known as an

Instance (see Fig. 2.14). Thus all instances of a class will respond to the same

instructions and perform in a similar manner.

Fig. 2.12: Object oriented representation of Parent Class and the Child Class

27

Fig. 2.13: Object oriented representation of single inheritance and the multiple
inheritances

Fig. 2.14: Object oriented representation of object instances

 Encapsulation: Once we have determined the type of object in a class, we need to

define its components or slot values, and how it is accessed. One of the most

powerful and important features of OOP is that the access to a class is strictly

regulated. The user of a class does not need to know details of how the class is

28

organised internally; all access to the class data is through a series of external

function calls (messages), or internal methods. The process of binding class

organisation so that it is not directly accessible to the user is called encapsulation

(see Fig. 2.15)

Encapsulation has three important features:

1. It provides a clear boundary that defines and protects all of an object’s

internal structure.

2. It defines an interface that describes and controls how other users work

with an object.

3. It provides a protected, internal implementation of the object’s behaviour

and structure of the class itself.

Fig. 2.15: Object Orientated representation of Objects, which includes both slot
value (attribute) and the method to evaluate the attribute (Encapsulation)

 Polymorphism: In a literal sense, “polymorphism” means the quality of

having more than one form. In the context of OOP, polymorphism refers to the

fact that a single operation can have different behaviour in different objects.

That is, different objects react differently to the same message. For example,

29

suppose a number of geometrical shapes all respond to the same message,

draw. Each object reacts to this message by displaying its shape on a display

screen (see Fig. 2.16). The actual mechanism for displaying the object differs

from one shape to another, but all shapes perform this task in response to the

same message. The idea of polymorphism is that subclasses can have different

functions that respond to the same message as base class, but they can perform

different functions. Polymorphism helps by simplifying the syntax of

performing the same operation on a collection of objects.

Fig. 2.16: Object oriented representation of concept polymorphism. A single
message to carryout multiple task

30

CHAPTER 3

COMPARISON OF DESIGN STANDARDS

3.1 Introduction

Common interface for design standards (COIDS) is an attempt to accommodate

several design standards in a single model. Study of several reinforced concrete

standards indicates there are similarities and dissimilarities between the standards. In

order to address this aspect we ask the question, “Do different design standards

perceive the basic reinforced concrete frame differently?” The study also attempts to

understand the structure of the standards, design philosophy and the design approach

with respect to element design. The author has reviewed several reinforced concrete

design standards namely, British Standard BS8110 (1997), European Standard EC2

(1992), American Standard ACI 318 (2008), Australian Standard AS 3600 (1988),

German Standard DIN 1045 (1978) and Indian Standard IS456 (2000). In general all

standards follow the same design philosophy and approach to design of elements, i.e.

the limit state philosophy. However there are many differences when we examine

design standards at a micro scale. All these similarities and differences should be

taken into account when formulating the common interface of design standards.

The main discussion of this chapter will be of BS 8110 (1997) and EC2 (1992);

however the discussion will also highlight aspects of other standards in tabular format

(See. Table 3.1).

3.2 The structure of design standards

Design standards are structured as element types, stress states (phenomena) or a

combination of both types. For example, British Standard BS 8110 (1987) , under

Section 3 (see Fig. 3.1), “Design and detailing of reinforced concrete” deals with

structural elements design such as beams, slabs , columns, walls, staircases and bases.

In Chapter 6 (see Fig. 3.2) of European Standard, Euro Code 2 (BS EN 1992-1-

1:2004), “Ultimate Limit States”, sub sections are divided as bending with or without

axial force, shear, torsion, punching, design with strut and tie models etc... Thus EC2

(1992) has by and large arranged its chapters on the basis of stress states (phenomena)

31

whereas BS8110 (1997) has been structured based on element type (Narayanan,

1994). Eurocode 2 does not contain derived formulae or specific guidance on

determining moments and shear forces. This has arisen because it has been European

practice to give principles in the codes and for the detailed applications to be

presented in other sources such as textbooks (Moss & Webster, 2004).

Fig. 3.1: Part of the Contents (Section 3) of BS8110 Part 1 (1997) structured
based on element type

Fig. 3.2: Part of the Contents (Section 6) of Euro Code 2 (BS EN 1992-1-1:2004)
structured based on stress states

32

Table 3.1: Structure and Philosophy of Design Standards

3.3 Basis of Design

The basis of design of different design standards may differ depending on scope and

the philosophy, for example, the Principles in EC2 Part 1 are meant to be applicable to

all structures, therefore the character of the code is more general than it would need to

be were it to be applied to buildings only. On the other hand, BS8110 is basically

applicable to buildings. Thus it is able to provide information directly and in

prescriptive form (Narayana, 1994). Thus encoding the BS8110 provisions in a

computer module is easier than encoding provisions in EC2. Both standards uses limit

state philosophy, i.e the ultimate limit state and serviceability limit state of design.

Macro scale observations are made since there are many differences in micro structure

of the standards.

3.4 Loads, Load Combinations and Partial Safety Factors

 Loads: The magnitude of loads to be used is the characteristic value of loads.

The magnitudes of the characteristic values recommended by different

standards differ. Table 3.2 highlights differences in typical recommended

loading for residential and office buildings.

 Load combination and partial safety factors: The basic approach to

establishing the design load is similar in most standards. The load

combinations are considered for the dominant loads and the most unfavourable

effect which is to be used for design. The patterns recommended to be

considered and the load combinations to be adopted by different standards

differ (see. Table 3.3).

Standard
BS8110
(1997)

EC2
(1992)

ACI318
(2008)

AS3600
(1988)

DIN1045
(1978)

IS456
(2000)

Philosophy
Limit
State

Limit
State

Limit
State

Limit
State

Limit
State

Limit
State

Structure
Element

Type
Stress
States

Stress
States

Element
Type

Element
Type

Element
Type

Units SI SI Imperial SI SI SI

33

Table 3.2: Recommended Live loads

Standard BS6399(1996) EC1 (1991) ASCE 7 AS1170.1(1988) IS875[2](1986)

Loads Characteristic
Load

Characteristic
Load

Characteristic
Load

Characteristic
Load

Characteristic
Load

Residential 1.5 kN/m2 1.5-2.0
kN/m2

1.92
kN/m2

1.5 kN/m2 2.0 kN/m2

Office 2.5 kN/m2 2.0-3.0
kN/m2

2.4 kN/m2 3.0 kN/m2 2.5kN/m2

Table 3.3: Recommended basic load safety factors

Standard BS8110

(1997)
EC2

(1992)
ACI318
(2008)

AS1170.1
(1988)

DIN1045
(1978)

IS456
(2000)

Dead
Load

1.4 1.35 1.4 1.25 1.5

Imposed
Load

1.6 1.5 1.7 1.5 1.75[1] 1.5

[1] Overall safety factor of 1.75 is adopted by DIN standards

3.5 Materials Properties

Material strength limits and the partial safety factors defined by different standards

differ (see Tables 3.4 and 3.5).

 Concrete: Constituents of cement, minimum cement content for a particular

grade, maximum w/c ratio and concrete strength is not generally agreed among

standards. Design formulae of different standards are based on cylinder

strength of concrete (for example ACI318) or cube strength of concrete (for

example BS8110). EC2 allows benefits to be derived from using high strength

concretes, which BS8110 does not. The maximum characteristic cylinder

strength fck permitted in EC2 is 90N/mm
2
, which corresponds to characteristic

cube strength of 105 N/mm
2
 (Moss and Webster, 2004). Concrete density

assumed by the different codes also differ, for example, EC2 assumes a

34

densities of 25 kN/m3 for reinforced concrete and BS8110 assumes a density

of 24 kN/m3 for reinforced concrete.

 Reinforcement: In general characteristic yield stress is used in design

formulae. Different standards stipulate different steel grades, for example,

BS8110 defines two steel grades, namely grade 460 for high yield steel and

grade 250, whereas EC2 specifies only Grade 500 steel.

Table 3.4: Recommended Material Properties

Standard BS8110

(1997)
EC2

(1992)
ACI318
(2008)

AS3600
(1988)

DIN1045
(1978)

IS456
(2000)

Concrete
Strength
is based
on

Cube
Strength

Cylinder
Strength

Cylinder
Strength

Cylinder
Strength

Cube
Strength[1]

Cube
Strength

Yield
Strength
of R/F

250
N/mm2

and
460N/mm2

500
kN/m2

275N/mm2

413
N/mm2

and 482
N/mm2[2]

250
N/mm2

400
N/mm2

and
450

N/mm2

220N/mm2/4
20 N/mm 2

and
500N/mm2

250N/mm2

/
415

N/mm2
500N/mm2

[1] Side of a cube is 200mm in DIN standards where as other standards adopt a cube

side length of 150mm
[2] ACI318 (2008) has assign a yield strength value of 60000 psi (413 N/mm2), but

makes provision for the use of higher strengths provided the stress corresponds to
strain of 0.35 percent. However ASTM A 82 has a specified a minimum yield
strength of 70,000 psi (482 N/mm2)

Table 3.5: Recommended Material safety factors

Standard BS8110

(1997)
EC2

(1992)
ACI318
(2008)

AS3600
(1988)

IS456
(2000)

Concrete

1.5 1.5 1.11-
1.538

1.25-1.67[1] 1.5

Steel 1.05 1.15 1.15

[1] Overall material safety factor has been applied based on the stress state

35

3.6 Physical geometry of structures

Although the structure is identical whatever code is used to check it, structural

definitions may differ from code to code – e.g. effective length and flange width of a

beam (see Fig 3.3, Fig 3.4 and Table 3.6).

Fig. 3.3: Definition of Dimensions (Figure 2.2 of EC2)

Fig. 3.4: Approximate effective span for calculation of effective breadth ratio

(Figure 2.3 of EC2)

Table 3.6: Recommended equations to calculate the flange width of a beam

Standards Recommended Flange width

BS8110(1997) ܾ݂݂݁ ൌ

ହ
 where lo = the distance between zero moments ,ݓܾ

EC2(2004) ܾ݂݂݁ ൌ

ହ
 where lo = the distance between zero moments ,ݓܾ

IS456(2000) ܾ݂݂݁ ൌ

 ݓܾ where lo = the distance between zero ,ݐ6݄

moments

36

3.7 Other Key aspects of Design Standards

 Durability: Different design standards employ different approaches for defining

the environmental condition of an element. Some standards provide general

guidance, for example BS8110 (1997) Table 3.4 gives a general guide line on

environmental conditions. Other standards define more specific guidelines on this

aspect, for example, EC2 (1991) and AS3600 (1988). According to Narayanan

(1994) BS8110 and EC2 have major disagreements. First, the principal parameters

such as cement content, water/cement ratio, concrete strength and cover are not

generally agreed on. Second, as noted above, the definitions of exposure

conditions in the two documents are different and are entirely qualitative.

 Analysis: With respect to analysis there is a consensus about the commonly used

method of analysis, for example elastic analysis with and without redistribution,

plastic analysis and non-linear analysis methods. However different loading

arrangements are prescribed (Ref. Table 3.7). According to Narayanan (1994),

EC2 provides only the basic information required, whereas BS8110 gives

considerably more detailed information. Thus bending moment coefficients for

slabs and beams are given in BS8110, whereas EC2 expects the user to refer text

books or manuals.

 Design: Plastic method of analysis is allowed in most standards but the

recommended plastic stress diagrams differ (see fig. 3.5 and table 3.8). There has

been some debate as to what is the most appropriate value to take for αcc in EC2.

The recommended value in the code is 1.0 but it is likely that the UK National

Annex will require a value of 0.85 to be used. The parameter η has been

introduced into EC2 and in combination with modification of the value for λ has

the effect of reducing the allowable concrete force for higher strength concrete

grades above C50/60 (Moss and Webster, 2004).

 Symbols: Symbols too differ from standard to standard. This difference also

should be considered when creating the common interface for design standards.

37

Table 3.7: Recommended Pattern loading in BS8110 and EC2

BS8110

 EC2

38

Fig. 3.5: Stress block used in EC2 is compared with that in BS8110 (Moss and
Webster, 2004)

39

Table 3.8: Recommended stress block diagrams by other standards

Standards Recommended plastic stress diagram

ACI318

AS3600

DIN1045

40

3.8 Design Example

This design example was selected from the reference Graded examples in reinforced

concrete design (Dias, 1998), for the comparison of codes with respect to the design of

a reinforced concrete beam section. This particular beam arrangement was chosen to

avoid the code differences with respect to the analysis loading cases. Figure 3.6 shows

the loading arrangements. Load values are at characteristic values and must have

appropriate safety factors applied to them. The output from this exercise is given in

Table 3.9. Wide disparities in output values can be observed.

Fig. 3.6: Service loading arrangement (Example 7, of Graded Examples in
reinforced concrete design by W.P.S.Dias,1998)

41

Table 3.9: Summary of output of the design example

When considering the above mentioned similarities and differences in different

reinforced concrete standards, we observe that the data items of most of the standards

are similar in nature but the methods of evaluating these data items differ. We could

also observe that the building elements and their functions have been treated in by

broadly similar fashion by different standards. Thus these similarities could be used in

COIDS.

42

CHAPTER 4

COMMON INTERFACE CONCEPT AND IMPLEMENTATION

4.1 Introduction

The Common Interface for Design Standards (COIDS) is called “common” because it

is designed to accommodate several design standards. Since the Standards are

upgraded with new knowledge, the program is designed to accommodate this

flexibility. Hence, even a new standard could be plugged in to the common interface.

The word “interface” is used because there are three modules (in fact called “models”)

that interact with it (see Fig.4.1), namely the Standards Model, referred to above and

which can contain more than one standard; the Product Model, which is a description

of the structure; and the Interaction Model, through which interaction between models

and between these and external entities (including user input and analysis software) is

handled. The term “interface” is therefore not used in a narrow programming context,

but rather as explained above.

One of the key the aspects of the approach adopted here is that inputs, such as beam or

column data input, are fed to the program only once – i.e. once the element data is

entered for the analysis phase, it does not have to be entered again for the design

checking phase. This is a feature of the Interaction Model.

The main feature of the Product Model is that its data is independent of the standards

used to check the structure. The data consists of geometry, sectional properties and

load data. Some load data, such as load combinations, will be standards specific and

hence handled by the Interaction Model.

The Standards Model is the model that handles the standards that are included in the

COIDS. One of the key features of the COIDS is that it represents the standards in the

same format as in such standards. For example the Class Clauses represent Clauses of

the standards, Class Symbols represents the Symbols of the standards and Class Table

represents the Tables of the standards. The change of a clause or a table can be

accommodated without major changes to the programme code.

43

The most significant feature of this approach is that in the Standards Model, the data

processing will simulate the procedure followed by a practicing engineer – e.g. in

checking a beam for flexure; the program will follow the code clauses similar to an

engineer. In other words, the program procedures are not “hard coded” and code

clauses are encoded as separate methods. A user request for a particular design check

will be processed by picking the right clauses and tables to execute the request. This is

the main innovation in this work. This approach has great practical efficiency, in that

code changes can be very easily accommodated. In addition, the notion of staying as

close as possible to the way human experts work can be seen as being conceptually

“authentic”.

Product Common Standards
Model Interface Models

 Interaction
 Model

Fig. 4.1: Conceptual Model of the COIDS

The COIDS concept is implemented in the object oriented shell, KAPPA, described in

detail in Chapter 5. However, screen images from KAPPA are used in this chapter too,

as they are often useful for describing the structure of the common interface COIDS.

For example, Fig. 4.2 shows how the three different models are linked to the common

interface object.

44

Fig. 4.2: KAPPA representation of the Conceptual Model of the COIDS as an
Object Hierarchy

4.2 Product Model

The Product Model represents product data, i.e. the frame data, such as node data,

element data, support properties, and section properties. The basic product data is fed

to COIDS through the basic data input session window, details of which are given in

Chapter 6. Based on this data input, the corresponding KAPPA Product Model object

hierarchy instances are dynamically generated (see Fig. 4.3 and Fig. 4.4). It holds the

classes such as Nodes, Elements, Supports and Section properties. Load data is

included within the Element class. This model is independent of design standards. The

methods to generate the necessary instances are included in both classes Nodes and

Elements.

The frame data is fed only in one session, unlike the current practice where the

element data needs to be entered in the analysis session and during the design session.

The data items like element dimensional properties, material properties and element

loadings need to be entered during this session. This input data is stored in the slots of

the Product Data Instances. The data will be used by the Interaction Model of COIDS

to generate an input file for the Analysis package (MFEAP).

45

Fig. 4.3: Product Data Object Hierarchy

46

Fig. 4.4: Typical Element Instance

4.3. Standards Model

The Standards Model represents the data items in the standards. This class is designed

to hold several standards. Thus the development of this model has considered

common features of different standards and their basic structure so that many codes

could be accommodated in COIDS. Chapter 3 identifies the common features of codes

and their basic structure. According to Chapter 3, there are many differences in

different standards, when considering the features at the micro-scale, but at the macro-

scale, they all follow the same design philosophy - that is the limit state philosophy

and the same design intents such as durability considerations and fire considerations.

This common feature is captured in designing this model.

There are two main sub classes (see Fig. 4.5) in this model, namely class Basic Data

and class Derived Data. The class Basic Data object represents data item types that do

not need any equation or procedure to derive them, and include constants, durability

data, material data and tables.

47

The Derived data object represents data items that need equations or a procedure to

derive them. Each of them will have a different form of evaluation - e.g. by executing

sets of equations, or through inferencing using sets of rules. The main Objects in this

hierarchy are Clauses and Symbols classes. This hierarchy is standard dependent. A

new standard can be plugged in as a subclass to the appropriate class objects.

Two features of the Standards Model hierarchy are that (i) it does not have any

instances, as in the Product Data Hierarchy; and that (ii) many of the classes are

empty, apart from the “leaf” classes – i.e. those at the end (or bottom) of the hierarchy,

which are code dependent. The hierarchy then serves mostly as a classifier. It is also a

structure that can incorporate any common features if any, as demonstrated below.

Fig. 4.5: Standards Data Object Hierarchy

4.3.1. Basic Data hierarchy: Class Basic Data is a root class for all the data items

that do not have an explicit method of evaluation expressed within the standards.

Values for these data items are either provided in the standard or by the user. It holds

the subclasses such as Constant, Durability, Material and Tables (see Fig. 4.6).

48

Fig. 4.6: Basic Data Object Hierarchy

Class Constant: A constant can be of any data type such as numeric, symbolic,

Boolean or linguistic. An example is a constant such as α, the angle assumed for the

compression strut in the shear resistance calculation for bent up bars in BS 8110.

Class Durability: The durability data refers to requirements, such as the exposure

class “mild” in BS 8110. The class also contains the fire resistance (another type of

durability) requirements in required exposure duration in hours (see Fig. 4.7). These

are provided by the user at the design checking stage. The user may be assisted by a

dialog box which will be displayed at run time.

Fig. 4.7: Sub Class Durability_BS

49

Class Material: The materials data are provided by the user. The class Material Data

has two subclasses for Steel and Concrete. These contain material properties such as

density and E value. It should be noted that strength will vary from code to code. For

example, BS 8110 specifies steel strength as 460 MPa and EC2 as 500 MPa. Also,

concrete strength is specified as cube strength in BS 8110 and cylinder strength in

EC2. Hence, they will have to be stored in the code specific subclasses such as

Steel_BS, Steel_EC2, Concrete_BS and Concrete_EC2 see Fig.4.8 and Fig. 4.9 for the

difference between the Steel and the Steel_BS classes. The latter inherits the values of

Elastic modulus and density from the former, but the value of strength is declared only

in the latter.

Fig. 4.8: Common Steel Class

50

Fig. 4.9: Steel_BS Sub Class

Class Table: The class Table represents those data items whose values are obtained

from lookup tables within the standard. This will hold the methods like table lookup

routines and methods for interpolation etc. As there is no facility to represent a table in

KAPPA we represent these tables in a spreadsheet (Lotus123 or Excel) or in a

database. The access to these data files is through the DDE (Dynamic Data Exchange)

facility provided by KAPPA. Fig. 4.10 shows how Table 3.4 of BS 8110 represented

in a spreadsheet, and Fig. 4.11 the way it is implemented in KAPPA. It should be

noted that the same class Table_BS can be used to process information from more

than one table – in this case Table 3.4 for long term durability and Table 3.5 for fire

resistance – by using a different method for each. The slots that are included in the

class Table is to temporarily store the rows and column values that are needed to

locate the value in the table. Note also note that Table can contain both numeric and

alpha-numeric values.

51

Fig. 4.10: Lotus 123 representation of the BS Table 3.4 (BS34)

Fig. 4.11: Sub Class Table_BS and the Method BS34 look up routines

4.3.2 Derived Data hierarchy: Class Derived Data is a root class for all the data

items that have explicit methods of evaluation expressed within the standards. This

root class has two main subclasses, namely Clauses and Symbols (see Fig, 4.12). The

main standards features are included in this hierarchy, namely clauses and symbols.

As explained above, COIDS attempts to encode the design standards in the same high

level format as in the standards. It is even possible to include the text format into the

method, and the “post message” command will inform the user during the checking

mode if any clause is violated. However this hybrid approach is only partially

implemented in COIDS to demonstrate the concept.

52

Fig. 4.12: Derived Data Object Hierarchy

Class Clauses: This is the parent class of Clauses BS and Clauses EC2, which are the

code dependent classes. All clauses, as explained in Chapter 3, consist of an “If” part

and a “Then” part. The “If” part will specify the condition to execute the “Then” part

of the clause. Thus a programme can be written for each clause to execute the

instructions of the clauses. Following standards features were utilized to structure the

class Clause.

 It was observed that there is a common procedure adopted for designing and

checking elements by different standards. For example in order to calculate the

design resistance moment of a flanged beam, first the effective span of the

beam needs to be calculated, then the flange width of the beam needs to be

calculate and thereafter equations are provided to calculate the design

resistance moment.

 There are one or more clauses needed to find a particular data item. When the

data item needs more than one clause to evaluate the value, a set of clauses

needs to be subjected to inferencing; for example to calculate the effective

span of a beam, according to clause BS 8110, Clause numbers 3.4.1.2 -3.4.1.4

are needed.

Since most standards follow a similar procedure, class Clauses holds common slots to

hold the data items needed for inferencing (see Fig. 4.13).

 Clauses BS will include all the British Standard’s clauses as methods (see Fig. 4.14),

which are executed on the instructions (messages) send by the Interaction Model

based on the user request. The slots of Clauses_BS holds the clause numbers that

refer to KAPPA methods, which include the program code for the method (see fig.

4.15). The methods are not hard coded, and are independent of each other,

53

representing clauses by their clause numbers. For example clause 3.4.1.2 of BS 8110,

is represented as a method in the object Clauses_BS as BS3412. This representation of

code clauses makes it much easier to change the programme following standards

revisions.

The slots seen in the Clauses_BS are the data items that need to be evaluated by

inferencing. They hold the clause numbers that will be subjected to inferencing (see

Fig. 4.16).

 Fig. 4.13: Class Clause Object which includes the common slots clauses

Fig. 4.14: Sub Class Clause_BS Object: slots for inferencing and BS 8110 clauses
as methods

54

Fig. 4.15: KAPPA Method BS3415 represents the BS8110 clause 3.4.1.5

Fig. 4.16: Clause_BS effective_span slots

55

Class Symbols: This is the parent class of the Class Symbols BS and Class Symbols

EC2. This class holds only the common initialization method to initialize the KAPPA

slot values, since there are no common symbols among different standards. The data

items that are defined under symbols are handled by these classes. Most of these data

items do not have specific clauses to derive their values. They may be a user input or

an item that can be executed using a simple equation (no clauses). For example “As”

is defined in BS8110 as area of tension reinforcement, which is a user input and “d” is

defined in BS8110 as effective depth of the tension reinforcement, which can be

calculated by deducting from the overall depth the cover, diameter of the shear link

and half of the diameter of the tension reinforcement. Some of the symbols such as

“v”, defined in BS8110 as design shear stress at a rectangular cross section, have

calculation procedures (in this case in Cl 3.4.5.2 of BS8110). The Class Symbols_BS

slots hold the values of the symbols temporarily during the checking mode and the

KAPPA methods in the same class are used to derive the corresponding value. The

processing of the values will be dynamically derived based on the user request (see

Fig. 4.17).

Fig. 4.17: Sub Class Symbol BS, which handles the Symbols data Items in the
Object’s Slots and the corresponding methods in the Object’s Methods

56

4.4 Interaction Model

The Interaction Model is the main module that links the user and the common

interface “COIDS”. User Interface session windows and the other modules such as

the Product Model and the Standards Model are linked to this module. All the

messages are generated from the Interaction Model Objects. Interaction Model

consists of two main sub classes namely; Interaction Data and Processed Data objects

(see Fig. 4.18).

Fig. 4.18: Interaction Model Object hierarchy

4.4.1 Class Interaction Data hierarchy: This object hierarchy, as the name implies,

will interact with the user and the other COIDS objects. The object hierarchy includes

objects that communicate with the user and external programs, access and process

other data files and communicate with the internal objects of COIDS.

Class UserQuery: The main task of this object will be to communicate with the user

through KAPPA dialog boxes. Initially the user needs to give the product model data

such as Frame data, Node data, Element data, Support data and Section Properties.

The main KAPPA session windows discussed earlier in this chapter, will lead the user

by the buttons included in the window. These buttons are linked to the KAPPA

functions, which include methods to send the messages to the COIDS objects. For

example when the user presses the frame data input button, messages will be

originated from the KAPPA function editor (further discussed in Chapter 5) to the

57

COIDS UserQuery object to post a dialog box to obtain the initial frame parameters

such as job name, frame type, number of nodes, number of elements, number of

supports and number of section properties.

Based on the user input, KAPPA Function “Input Frame Data” will send messages to

corresponding objects to generate instances (see Fig. 4.19). The User Query object

also posts dialog boxes to the user for input data to the Product Model Instances (see

Fig. 4.20), and a typical durability data input dialog box is shown in figure 4.21. The

slots of the UserQuery object are to hold the main user inputs such as frame data

inputs, analysis software execution file location list and the user’s element check

condition lists.

Fig. 4.19: KAPPA Function’s Input Frame Data Method

Message to User Query
Object of the interaction
Model to post a message to
the user to input basic frame
Data

Message to Nodes
Object to Generate
Node Instances

Message to
Elements Object to
Generate Element
Instances

Message to Supports
Object to Generate
Support Instances

Message to Section
Property Object to
Generate Section
Property Instances

58

Fig. 4.20: Class User Query Methods

Fig. 4.21: Durability Data dialog box posted to the user by the User Query object

Method to post a
dialog box to the user
to input concrete
properties

Method to post a
dialog box to the
user to input
durability data

Method to post a
dialog box to the
user to input
durability data

Method to post a
dialog box to the
user to input element
data

Method to post a dialog box
to the user to input frame data
 Method to post a dialog box

to the user to input steel
properties

59

Class Mapping: The task of this object is create the input file for the Analysis

Package (MFEAP) using COIDS object data which is fed by the user, and to map the

MFEAP output data file (see Fig. 4.22) to instances created under the class Processed_

Data, such as element axial forces, bending moments and shear forces. The slots in

this object will hold the data file locations and the field names, row and column

numbers to generate the input file for the analysis package and to map the output data

file to the COIDS instances.

Fig. 4.22: Class Mapping

Class Draw_Data: This object handles the graphical user interface (GUI) of COIDS.

In today’s programming context the graphical user interfaces are an important aspect,

since the graphical user interface will give an opportunity for the user to check the

input and graphically observe the output result. We may note that the output is a direct

result of the input. COIDS also has a capability to display the input of the user (see

Fig. 4.23). This facility could be further developed to display the output results too.

Class Draw_Data is independent of standards, and holds the methods such as show

nodes and show elements to display nodes and elements respectively (see Fig. 4.24).

The slots of this object temporarily hold the node numbers and their co-ordinates, and

A method to
generate input data
file to the Analysis
Package (MFEAP)

A method map
output file of an
Analysis output
data file to COIDS
objects

Slot to store the
data file location

60

element numbers, which will be utilized by the above show nodes and show elements

methods.

Fig. 4.23: COIDS Graphical User Interface

Fig. 4.24: Class Draw_Data

Method to draw
elements

Method to draw
Nodes

Method to obtain the
Node x_a (x axis , node a
co-ordinate) from the
Element Instance from
the product model

Slot x_a to temporally
hold the Node x_a
coordinate

61

Class Data_Item_Network: This is the main class that handles the checking mode of

COIDS. The capacity checking of elements is dependent on standards; thus there are

standards dependent sub-classes. These classes hold the methods that include the

inferencing procedure to evaluate the user request (see Fig. 4.25). In checking an

element complying to a particular standard for a user requested stress state, the

programe needs to identify the member (whether it is a beam or a column), the

standard that needs to be complied with, and the stress state that the element is to be

checked for. Based on the user request, COIDS generates flags to identify the request.

For example, if a rectangular beam is to be checked for flexure according to British

Standards, a “RecBeamForFlexure” flag will be used (see Fig. 4.26). User has the

option to define more than one check state, which will be stored in the corresponding

slots of the class Data Item Network. Since most standards have a common approach

for evaluating the frame elements, most of the methods and the slots are inherited by

the sub classes Data Item Net_BS and Data Item Net_EC2.

Fig. 4.25: Class Data Item Network

Method to
evaluate the check
element that the
user has requested

The Slot to hold the
element type flags
such as column, Beam
or Wall. Only one will
be activated based on
the user input.

User could request more than one
stress states to check the element

62

Fig. 4.26: Class Data Item Network, slot Check Condition stores flags to identify
the check state

4.4.2 Class Processed_Data: As the name implies Class Processed_Data will handle

the processed data of the COIDS. Element classes such as Beams and Columns serve

as sub classes. These classes will hold the processed data of the respective element

instances, which will be generated based on the user request. Class Processed_Data

will have the common methods to generate element instances and initialize slots and

instances. The slots of the class Processed_Data will hold the data items such as

element number and element type, which are used to generate the element instances

under the Beam_BS or Beam_EC objects (see Fig. 4.27). The sub classes Beams and

Columns handle element dependent (but standards independent) data items. Standards

dependent data items are introduced at the next level, e.g. Beam_BS or Column_BS.

Class Beams will handle common data items such and width “b” and the height “h” of

the beams (see fig. 4.28), while sub class Beam_BS will handle the code specific data

items such as effective span “le” (see Fig. 4.29). The effective length of the beam will

be evaluated by inferencing the clauses (written as methods) that are stored in a list in

the slot “effective span” in the class Clauses_BS. The class Beam_BS will also hold

the steel provided by the user and the calculated minimum steel required by the British

Standards. The comparison of the provided and the minimum requirements will

indicate whether the element conforms to the standards or violates any code clauses.

Flags to identify the
check status

63

It should be noted that the element instances in the Processed Data part of COIDS are

dynamic in nature and “exist” only when that element is being checked. Data is

imported to it from various other parts of COIDS. It also interacts with the clauses in

the Standards Model. Some typical interactions are described below:

1. Relevant data is imported from the (static) instance of the same element in the

Product Model such as width and height, already defined when the Product

Model is generated.

2. Data such as Bending Moments and Shear Forces from the output data file of

the Analysis Package (held outside the KAPPA environment) are obtained

through the Mapping object.

3. Data for checking such as reinforcement provided can be obtained from the

User Query object.

4. The actual checking itself is carried out by accessing the clauses written as

methods in the Standards Model.

Fig. 4.27: Class Processed Data

Method to delete
element instances

Slot to store the
element type

Method to get
the element type
from User
Query object

Method to
generate Element
Instances

64

Fig. 4.28: Class Beams

Fig. 4.29: Class Beams_BS

Common method
to obtain width
and height of the
beam

Common method to get
the steel provided

Method to
evaluate the
standard specific
effective span of
the beam

Slots to hold
calculated steel area

Slots to hold steel area
provided

65

CHAPTER 5

KAPPA APPLICATION DEVELOPMENT SOFTWARE

5.1 Introduction

This chapter highlights the features of KAPPA and how the KAPPA facilities are used

to develop knowledge based applications such as COIDS. The main source of

reference to this chapter is from KAPPA Manuals.

KAPPA is used to build knowledge-based applications, systems that capture the

knowledge necessary to understand some complex system or domain. Building a

knowledge-based system means building a realistic model of the actual system.

Knowledge-based systems are used for tasks such as planning, diagnosis, design,

scheduling, training, data interpretation (processing) and configuration.

KAPPA knowledge bases are built around the important components, behaviour and

relationships in a system. A good candidate for a KAPPA knowledge-based system is

one where you understand how the components interact, but where there is too much

complexity for one to predict the behaviour of the entire system. Another good

candidate for a KAPPA knowledge base is a situation where there is a the need to

distribute the knowledge of a few experts to a broader group of people.

5.1.1 Introducing KAPPA Knowledge Elements: KAPPA provides a wide range of

tools for constructing and using knowledge-based systems. Since KAPPA is an Object

oriented programming shell, the components of the domain are represented by the

object oriented structures called objects, which can be a class or an instance. They can

represent physical things like “Beams” and “Column” or concepts such as

“Durability”.

The relationships among the objects in a model can be represented by linking them

together into a structure called a “hierarchy”. Object oriented programming tools

within KAPPA will help the user to create objects and the object hierarchy, write

“methods” to specify the behaviour of the objects, and create “slots” to represent the

properties of objects.

66

Once the real world problem is represented in the object oriented format, then a set of

rules can be specified to get the desired outputs from the complex system that was

specified earlier.

In rule-based programming, each rule specifies a set of conditions and a set of

conclusions to be made if the conditions are true. Each rule is a relatively independent

module, thus a reasoning systems could be built gradually, rule by rule.

Rules can be set in two basic ways, “forward chaining” and “backward chaining”. In

forward chaining, conclusions are drawn from known facts and these conclusions

become facts from which to draw further conclusions, for example if there are several

clauses that need to be used to evaluate a data item (i.e. there are several rules to

determine the data items), the those clauses (rules) need to be forward chained. In

backward chaining, a desired conclusion is specified and the conditions of the rules

are used to determine if the conclusion is true or how it may be made true. Backward

chaining is used as the “Goal” finding mechanism or the programme ending

mechanism.

5.1.2 KAPPA Applications: Applications written in KAPPA can perform two

important tasks;

1. Help human decision making: Thus, the application should enable the user to

understand how a result or a proposed decision was derived.

2. Using as a learning tool: A user can examine parts of a domain that are

inaccessible to the user in the real world, and conduct experiments which are

dangerous, expensive, impractical, or impossible in reality.

In order to observe and control the operation of a knowledge base, we can also use a

variety of graphic images in building the KAPPA interface. The Active Images

package contains buttons, bitmaps, drawings, state boxes, meters, line plots and sliders

(see figs. 5.5- 5.6). These indicators can be used to display the values of important

parameters and observe how they change while the system is in operation. These

Active Images assist the user to control the object oriented model. These images are

linked to the KAPPA Functions, which will be discussed in detail later in this chapter.

67

The KAPPA programming language, KAL is used to develop the knowledge base.

KAL language is used to develop KAPPA’s rules, methods and functions. Adding and

retrieving information to the knowledge base is also done using KAPPA. It is called a

4th generation language since its syntax is fairly close to the English Language. For

example, to send a message to a particular object, the KAL syntax is “ SendMessage

(Object Name, Method Name)”. The root language used to develop KAL is C

language, thus the KAPPA application development system uses C source code. This

allows KAPPA to extend its capabilities.

5.2 The KAPPA Interface

 KAPPA provides a powerful interface for the application developer. The interfaces

consist of tools for viewing and modifying the various KAPPA elements. The KAPPA

interface also contains tools to build, customized displays and browsers. The KAPPA

Main Window consists of several icons (see Fig. 5.1). Each icon represents one of the

windows in KAPPA:

 Object Browser

 Session Window

 Editing Tools

 KAL Interpreter

 KAL View Debugger

 Find Replace

 Rule Relations

 Rule Trace

 Inference Browser

Fig. 5.1: KAPPA Main Window with several Icons

68

5.2.1 Object Browser: Object Browser is the most intuitive method of interacting

with KAPPA. There are four main classes and a Global Instance in KAPPA (see fig.

5.2), namely Root Class, subclass Menu, sub class Image and subclass KWindow.

Object Browser Editing menus may be used to create objects. The object editors are

used to create methods and slots which define the behaviour and the properties of the

object respectively. Figures 5.3 and 5.4 demonstrate how COIDS is connected to the

KAPPA main object hierarchy.

 Root Class: is the fundamental class from which all other classes in KAPPA

are defined. It cannot be renamed or deleted. This class does not consist of any

slots or methods (see Fig. 5.4).

 Menu Subclass: This subclass handles the KAPPA main menus

 Image Subclass: KAPPA images are handled by this class

 KWindow Subclass: All the session Windows are handled by this object

Fig. 5.2: KAPPA’s Main Object hierarchy

69

Fig. 5.3: KAPPA’s Extended Object Hierarchy which indicates the image object
hierarchy

Sub Class Common Interface

Image
Object
handles all
KAPPA
Windows

KSession object will
handle KAPPA Session
windows

70

Fig. 5.4: COIDS Object Connected to the Class Root

5.2.2 Session Windows: KAPPA Session windows are very important tools to

develop the graphic user interface of the knowledge base. These Image tools will help

the user to interact with the knowledge base. These tools will also be used to display

the output result of the complex knowledge base.

These windows are provided with Active Image tool boxes (see fig. 5.5). This tool

box package contains Buttons, Edit box, Bitmap, State Box, Line Plot, Single List

Box, Check Boxes group, Check box, Text, Transcript, Drawing, Meter, Slider,

Multiple list box, Radio Button Group and Combo Box (see Fig. 5.6). Most of these

active images are used in the development of COIDS graphic user interface.

COIDS Object
hierarchy connected
to the Main Class
Root.

71

Fig. 5.5: KAPPA Active Images Tool Box

Fig. 5.6: KAPPA Active Images package

5.2.3 Editing Tools: The Class and Instance Editor in KAPPA, represented as icons in

the knowledge Tools window, provide a faster and more efficient means of creating,

editing and saving the knowledge base. The Knowledge Tools window displays icons

for the five principal editors in KAPPA, namely Class Editor, Instance Editor,

Function Editor, Rule Editor and the Goal Editor (see Fig. 5.7).

 Class Editor can be used to create a new Class or edit, delete and rename a

Class Object.

TextButton

Transcript Edit box

Drawing

Meter

Slider

Multiple List Box

Radio Button Group

Combo Box

Bitmap

State Box

Line Plot

Single List Box

Check Boxes Group

Check Box

Tool box in the
Session Window

72

 Instance Editor can be used to create a new Instance or edit, delete and rename

a Instance.

 Function Editor is used to edit the KAPPA Active Image package functions.

 Rule Editor is used to Edit rules that will be subjected to Forward Channing

 Goal Editor is used to edit rules to that will be subjected to Backward

Chaining.

Fig. 5.7: KAPPA Knowledge Tool Window

5.3 Knowledge processing Techniques in KAPPA

The knowledge base built in KAPPA needs to be accessed and executed. The

knowledge in KAPPA is stored in objects as method or slot values. The execution of

the KAPPA knowledge base is carried out by two separate inferencing processes:

“Forward chaining”, activated by the Forward chaining function and “Backward

chaining”, activated by the “Backward chaining” function. The graphic user interface

is activated by KAPPA “functions”.

 Forward chaining attempts to discover a matching rule from the sets of rules in

the agenda, by comparing the “If” part of the rule to the new fact. If the new

fact matches the pattern of one of the conditions in the rule’s “If” part, then the

chosen rule will be activated. Since standards clauses in COIDS are

represented as methods in class Clauses, these methods are activated by

KAPPA rules which are named by the same name as the corresponding clause.

73

For example the rule BS3444, states that if the check condition is rectangular

beam for flexure according to the British Standards, check then evaluates

clause BS 3.4.4.4 (see Fig. 5.8). The class Clauses slots hold the agenda or the

list of clause numbers that need to be subjected for inferencing (see Fig. 5.9).

For example if the effective span of a beam is to be evaluated according to

British Standards, one of the following clauses BS 3.4.1.2, BS 3.4.1.3, BS

3.4.1.4 shall be evaluated, the criteria for selection of the particular clause

being based on the support conditions, i.e. whether the beam is simply

supported, continuous or cantilever (see fig. 5.9). This data is provided in the

product model; thus when forward chaining the above clauses, the clause that

matches the support condition will be picked and evaluated. A conventional

programe by contrast, has to indicate explicitly when given conditional

statements should apply.

 In backward chaining, or goal driven reasoning, the inference engine tries to

verify a fact (reach a goal) by finding rules that can prove the fact and then

attempting to verify their premises. The premises in turn become new facts to

be verified by other rules, and the process goes on. Backward chaining is

appropriate when there is a specific question to be asked (that is, a specific

goal to be reached); it is often used in diagnosis and classification applications.

The KAPPA backward chainer attempts to verify a hypothesis by comparing

the “Then” part of the rule. If the goal matches the pattern of one of the

expressions in a rule’s “Then” part and if all the expressions in the rule’s “If”

part are variables, the rule can apply. This means that the actions represented

by expressions in the “then” part of the rule are taken. Typically, these actions

add new information to the system in the form of slot values.

Every time a rule premise having to do with the value of a single-valued slot

cannot be immediately verified during the backward chaining, the premise

itself becomes a new goal to be resolved by further backward chaining. By

repeating this cycle over and over until all goals are resolved, a rule chain is

created that starts with one goal and ends by adding additional facts inferred

by the rules. The backward chaining technique is also used to terminate a

Forward chaining process.

74

COIDS uses a goal “CheckCondition” to find the stress state for which to

check the element. Thus the backward chaining process will be continued until

the goal is reached (see Fig. 5.10).

Fig. 5.8: KAPPA Rules linked to the COIDS standards clause BS3444

Fig. 5.9: COIDS strategy to execute standards clauses using KAPPA rules

Rule: BS3444,
states that if the
check condition is
rectangular beam
for flexure
according to the
British Standards,
check then
evaluate clause
BS 3.4.4.4

Method to
evaluate effective
span

List of clause
numbers to evaluate
effective span

List of clause
numbers stored
in the slots

Corresponding
KAPPA rule to
evaluate
effective span

75

Fig. 5.10: COIDS Goal “CheckCondition” to find the stress state of the element
to be checked.

5.4 Execution process of COIDS in checking mode

The standards processing procedure adopted by COIDS will simulate the procedure

followed by a practicing engineer. This involves, first the selection of the element to

be checked, then the selection of the standard that the element shall conform to,

selecting the critical stress states to be checked and going through the relevant clauses

of the standard to calculate the minimum reinforcement requirement and compare

with the provided reinforcement.

When user presses the Checking Mode the following instructions will be generated

from the KAPPA Functions to the COIDS objects as per Fig. 5.11. The subsequent

message/ instruction flow between the user and COIDS is demonstrated by the

following flow charts.

76

Fig. 5.11: Instruction flow from KAPPA Functions to COIDS (Stage 1)

 Assume the user decided to check a beam to British Standards; then the program will

Identify the element is a “Beams” and will be stored in the Data_Item_Network

Object “CheckElement” slot. “CheckElement” method in the Data_Item_Network

Object will specify to forward chain the “CheckElement” Slot value. When the

KAPPA Functions sends the message to Data_Item_Network objects to execute the

method “CheckElement”, since the slot will indicate “Beams” (because the user

chosen element is a beam), KAPPA Beam rules will be forward chained (see Fig.

5.12).

Checking Mode
KAPPA
Function

User Query
Object

Data Item
Network Object

1. Get element
data to check
from the use

Symbols
Object

2. Initialize
6. Check Element

3. Initialize

Processed
Data Object

4. generate an
Instance according to
the user defined
element number and
the standard specified
for checking

Mapping
Object

5. Map Analysis Data
to the Processed Data
Object

77

 1

 2

Fig. 5.12: Data Item Network Object sends a message to forward chain the
KAPPA rules (Stage 2)

When forward chaining the KAPPA rule “Beams”, the rule will check whether the

chosen element is a “beam” and send the message to the class Processed_Data to get

the beam type (rectangular), percentage redistribution and reinforcement data from the

user (see Fig. 5.13). Here the user query was generated by the Processed Data Object,

since the all the Processed Data (calculated reinforcement) will be stored in this

object.

If the user selected standard is British Standards, then the D_Item net_BS,

CheckElement slot will have a flag named CheckBSBeams selected and forward

chained. Then the corresponding KAPPA rule CheckBSBeams will be forward

chained. This process will activate the CheckBeamData Method in the

Data_Item_Network_BS. This method will calculate the required reinforcement

specified by the standard, by sending messages to the COIDS Standard Model (see

Fig. 5.14).

Data Item
Network Object

KAPPA Beams rule will
be forward chained

D Item Net BS

If the user selected
British Standard,
then the Data Item
Network_BS,
Check Element
Slot will be forward
chained

Processed Data
Object:Beams

78

Fig. 5.13: Forward Chaining KAPPA Rule Beams will execute the method Get_
CheckBeamData to get data from the user (Stage 3)

Fig. 5.14: Forward Chaining rule CheckBSBeams will calculate the requirement
specified by the standard (Stage 4)

Get Beam
reinforcement
data from the
user

Processed Data
Object: Beams

User

D Item Net BS Forward Chain
CheckBSBeams

COIDS Standards Models
will be accessed to calculate
the reinforcement
requirement

79

CHAPTER 6

TYPICAL COIDS SESSIONS

This chapter will demonstrate a typical COIDS session. The step by step approach will

highlight the concepts described earlier. Graphic User interfaces (GUI) of COIDS will

facilitate the user to interact with COIDS. There are three main session windows for

the user, namely the Common Interface, Basic Data Input and Interaction Window.

Common Interface session window is called the main window (see Fig. 6.1), since the

all the operating modes such as Data Input Mode, Analysis Mode, Checking Mode

and Design Mode (not implemented) are initiated by this session window. Activation

of the modes will lead the user to subsequent session windows and to the dialog boxes

generated by COIDS.

6.1 Data Input Mode

This mode will assist the user to input the product data to COIDS. The Data Input

Mode button will bring up the Basic data input session window (see Fig. 6.2).

Fig. 6.1: Common Interface Session Window

80

Fig. 6.2: Basic Data Input Session Window

The Basic Data Input mode will assist the user to input the product data such as Frame

Data, Element Data, Material Data and Data Base Location (not implemented).

The first step of the user session will be to initialise the Product Model hierarchy (see

Fig. 6.3), which is to delete all the instances of class Nodes, Elements, Supports and

Section Properties. The KAPPA function editor’s initialise method “INIT” (see Fig.

6.4) will send a series of messages to COIDS objects to delete slots and instances.

This action will also delete the slot values of the parent classes and delete slot values

of the Class UserQuery to accommodate the new user input. After initialising, this

method will post a message to the user stating that the initialisation is complete (see

Fig. 6.5). The “INIT” method demonstrates a key Object Oriented Programming

(OOP) concept called “polymorphism”, which means that the same massage will

perform different task in different objects.

81

Fig. 6.3: KAPPA Product Model Hierarchy

Fig. 6.4: KAPPA Function Editor “INIT” method will send messages to COIDS
Objects

After Initialising the Product Model, the Frame Data button of the Basic Data Input

Session Window can be activated. The Basic Product Data Dialog Box will be posted

to the user (see Fig. 6.6).

The user inputs frame type, number of nodes, number of elements, number of supports

and number of section properties that will be used to generate the Product Model

instances (see Fig. 6.7).

Message to COIDS
Product Model Objects
to Delete the Instances

Message to COIDS Product
Model Objects to Delete Slot
the values

Message to User
Query Object to
Delete Slot Values

82

The next step is to input data to the Object Instances such as Node Data, Element

Data, Support Data, Section Properties, Element Loads and Nodal Loads. The Figures

6.8 to 6.17 illustrate the typical user input sessions. Material Data is the next input

data to COIDS (see Fig 6.18 and Fig. 6.19). The Durability Data Inputs such as fire

resistance and the exposure conditions can be input to the code by activating the

Durability Data button in the Basic Data Input session window (see Fig. 6.20 and Fig.

6.21). The product data will be used to generate the Input Data File to the Analysis

Package, in our case MFEAP, using the COIDS Class Mapping.

Fig. 6.5: Basic Data Input Session Window, Initialise button will initialise the
COIDS

Message to the
user stating the
initialisation is
complete.

83

Fig. 6.6: Basic Product Data Dialog Box

Fig. 6.7: Product Model hierarchy with the Instances generated based on the
frame data user input

84

Fig. 6.8: Typical Node Data User Input

Fig. 6.9: Display User Node Inputs

85

Fig. 6.10: Typical Element Data User Input

Fig. 6.11: Display User Element Inputs

86

Fig. 6.12: Typical Support Data User Input

Fig. 6.13: Typical Section Property Data User Input

Fig. 6.14: Element number to input Element Load

Fig. 6.15: Number of Load types on the Element

87

Fig. 6.16: Load types on the Element to be defined

Fig. 6.17: Typical Uniform Load Input data

88

Fig. 6.18: Typical Material Data User Input

Fig. 6.19: Typical Material Data User Input for concrete

89

Fig. 6.20: Typical Durability Data User Input for Fire Resistance

Fig. 6.21: Typical Durability Data User Input for Exposure Condition

6.2 Analysis Mode

The Product Data Analysis file will be used by the analysis package to analyse the

input file. The Analysis Mode button of the main window will be used to activate the

analysis session. COIDS will post a dialog box to define the path (location) of the

executive file (exe file) of the Analysis Package (see Fig. 6.22). This user input will

activate the analysis software (see Fig. 6.23), where the input data file could be

accessed and processed into an output file. The processed file or the output file of the

analysis session will be used by COIDS for conformance checking.

90

Fig. 6.22: User Define Path of the Analysis Package executive path

Fig. 6.23: MICROFEAP-11 Analysis Software

6.3 Checking Mode

The conformance checking of elements against different standards is the main task of

COIDS. Checking mode of the Main Session Window will activate the checking

process. Firstly, the user needs to input the element number to be checked (see Fig.

6.24). Then the user needs to specify which standard to be used in order to check the

element (see Fig. 6.25). This action will generate the corresponding element instance

in the Processed Data hierarchy under the relevant element type which has the

specified standard tag (see Fig. 6.26). COIDS identifies the element type from the

Product Data Information which is stored in the element instance. Then COIDS will

post a dialog box to the user asking the user to insert the stress states such as Flexure,

91

Shear and Torsion or Serviceability Limit states such as Deflection and Crack width to

be checked (see Fig. 6.27). Then the user needs to enter the path of the Analysis Data

File in order to map the analysis data to the Processed Data Instance (see Fig. 6.28).

After mapping the data to the relevant instance COIDS will post a message to the user

stating that the task is complete (see Fig. 6.29). Where beams are concerned, after

obtaining the element forces the user needs to input the percentage redistribution (see

Fig.6.30) and reinforcement data for three critical sections (i.e., two supports and the

middle section of the element). Here the section sizes are obtained from the product

data and the user has the option to change if necessary - this is common in practice

(see Fig. 6.31 to Fig. 6.33).

After completing all the input data for the checking stage, COIDS will compute the

standards specified minimum reinforcement requirement and store this together with

the user provided reinforcement in the slots of the element instance, e.g. Ele_9 (see

Fig. 6.34) . The user provided values will be compared with the standards specified

required value and messages sent to the user stating that the section is “satisfactory” or

“unsatisfactory” according to the user specified standard (see Figures 6.35 to 6.38).

Fig. 6.24: User to insert the element number

92

Fig. 6.25: User to insert which standard to be used for checking the element

Fig. 6.26: Ele_9 Instance is generated based on the user input

Fig. 6.27: User to input the stress states or
Serviceability Limit States to be checked

93

Fig. 6.28: User to input the path of the Analysis Data File

Fig. 6.29: Message to the user by COIDS indicating that Mapping is complete

Fig. 6.30: User to input the percentage redistribution

94

Fig. 6.31: Reinforcement data at section 1 (Support)

Fig. 6.32: Reinforcement data at section 2 (Middle Section)

Negative Moment
(Hogging Moment)

Positive Moment
(Sagging Moment)

95

Fig. 6.33: Reinforcement data at section 3 (Support)

Fig. 6.34: Ele_9 Instance which included the processed data items

Fig. 6.35: COIDS message to user: Section 1 of the

Negative Moment
(Hogging Moment)

Calculated reinforcement
area (mm2) requirement
according to BS8110 (1985)

User Provided
Reinforcement area
(mm2)

96

is satisfactory in Flexure

Fig. 6.36: COIDS message to user: Section 1 is satisfactory in Shear

Fig. 6.37: COIDS message to user regarding shear reinforcement

Fig. 6.38: COIDS message to the user stating that the task is completed

97

CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

Although the objective of all reinforced concrete design codes is to provide

specifications for safe structures, we have shown that there are wide variations in the

actual provisions that lead to significant differences in design outputs.

It has been demonstrated that the Object Oriented Programming technique is able to

represent reinforced concrete design codes in such a way that the structure of the code

can be preserved and in a way that is faithful to the knowledge in and formats of code

clauses and tables.

This has resulted in the standards knowledge not being hard coded into the

programming code. Changes in knowledge arising from code updates can be easily

made.

Inferencing techniques such as forward chaining and backward chaining were used to

ensure that the design checking followed the procedure that would be adopted by a

human expert.

The framework developed is also able to incorporate design checking to a number of

codes, because the standards specific information is stored separately from the

information regarding the structure. This concept has been termed “Common Interface

for Design Standards” (COIDS).

Although the COIDS concept has been formulated, it has been tested using only a

single standard, namely BS8110. The most immediate and relevant recommendation

for future work is to test the concept with another standard. This would ideally be

EC2, because Sri Lankan structural design practice is in the process of changing from

BS8110 to EC2, and there would be many instances where structures designed to one

code may need to be checked against the provisions of the other.

98

Another avenue for future work is to introduce some expert system features into the

model based representation described here, so that the system is able to give

explanations to users if and when queried.

99

REFERENCES

American Concrete Institute, 2008. Building Code Requirement for Structural

Concrete (ACI 318-08) and Commentary, An ACI Standard, Reported by ACI

committee 318: ACI.

American Society of Civil Engineers, 2006. ASCE/SEI 7-0 Minimum Design Loads

for Buildings and other structures:ASCE.

Bureau of Indian Standards, 1986. IS 876: Part II –Loading Standards: BIS.

Bureau of Indian Standards, 2000. Plain and Reinforced Concrete- Code of Practice

(Fourth Revision): BIS.

British Standards Institution, 1996. BS 6399: Part 1 Loading for buildings Part 1,

Code of practice for dead and imposed loading: BSI.

British Standards Institution, 1997. BS 8110: Part 1 Structural use of concrete: BSI.

British Standards Institution, 2000. BS5950: Part 1 Structural use of Steelwork in

buildings- Part1: code of practice for design-Rolled and welded sections: BSI.

British Standards Institution, 1991. Eurocode 1: EN 1991-1-1:2002: Actions on

structures – Part 1-1: General actions- Densities, Self-weight, imposed loads for

buildings: BSI.

British Standards Institution, 1992. Eurocode 2: DD ENV 1992-1-1:1992: Design of

Concrete Structures-Part 1: General rules and rules for buildings- (together with

United Kingdom National Application Document: BSI.

DIN DEUTSCHES INSTITUT FUR NORMUNG E.V., 1978. DIN 1045 Concrete

and Reinforced Concrete, Design and Construction. Translated by Henry G Freeman,

1978: Germen Standards (DIN-Normen).

100

Dias, W.P.S., 1998. Graded Examples in Reinforced Concrete Design. Bangkok:

ACECOMS, Asian Institute of Technology.

Garrett, Jr., J. H., 1990. Application of Knowledge-Based Expert System Techniques

to Standards Representation and Usage, Building and Environment Journal, 25(3), pp.

241-251.

Garrett, Jr.,H., 1990. Knowledge-Based Expert System: Past, Present, and Future.

IABSE Periodica 3/1990,International Association of Bridge and Structural Engineers,

June, pp. 21-40.

Garrett, Jr., J. H. and Hakim M.M.,1992. Object-Oriented Model of Engineering

Design Standards. Journal of Computing in Civil Engineering, July, 6(3), pp. 323-347.

Harris, J. R and Fenves S.J.,1980. Modeling of Standards: Technical Aids for their

Formulation, Expression and Use, Technical Report NBSIR 80-1979, National

Bureau of Standards, Washington, DC.

IntelliCorp, Inc., 1990. KAPPA User’s Guide.US: IntelliCorp, Inc.

IntelliCorp, Inc., 1990. KAPPA Reference Manual.US: IntelliCorp, Inc.

Kumar B. and Topping B.,1989. A Prolog- Based Representation of Standards for

Structural Design, in. Artificial Intelligence Tools and Techniques for Civil and

Structural Engineers: Civil-Comp Press, Edinburgh, UK, pp 165-169.

Kodagoda.N., 1997. Object Oriented expert system to Represent a Design Code.

[Report] (Report submitted to Civil Engineering Department, University of

Moratuwa, April 1997).

101

Menzies J.B., Gulvanessian H., 1998, Eurocode for Structural Loading,

http://products.ihs.com/BRE-SEQ/ip1398.htm (Last accessed 20 Dec. 2009): BRE

Press

Moss R. and Webster R., (2004). EC2 and BS8110 Compared. The Structural

Engineer 82(6), 16 March, pp. 33-38.

Neilson, A.I., 1989. A Hybrid Approach to the Representation and Processing of

Design Standards. Glasgow: Ph.D Thesis, Department of Civil Engineering,

University of Strathclyde, UK.

Narayanan, R.S., 1994. Concrete Structures: Eurocode EC2 and BS 8110 Compared.

Avon: Longman Group UK Limited, UK.

Rosenman, M. A. and Gero, J. S. (1985). Design Codes as Expert Systems: Computer-

Aided Design, 17(9), November, pp. 399-409.

Standards Association of Australia, 1988. AS 3600 Concrete Structures: SAA.

Standards Association of Australia, 1989. AS 1170.1 Minimum design loads on

structures, Part 1: Dead and Live Loads and Load combinations: SAA.

Stahl, F.I., Wright, R.N. Fenves, S.J.&Harris, J.R. 1983. Expressing Standards For

Computer-Aided Building Design. Computer Aided Design, 15(6).

Zhang, X.J. and Yao J.L.,1989. Tools for Expert System Development in Damage

Assessment. In: Computing in Civil Engineering: Computers in Engineering Practice,

Sixth Conference sponsored by the Technical Council on Computer Practices of the

American Society of Civil Engineers, Atlanta, GA, September 11-13, 1989, American

Society of Civil Engineers: US.

102

