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A b s t r a c t 

The consolidation of peat is complex due to the resultant large strain associated with the 

highly compressible nature of natural peat deposits and to the rapid changes in soil 

properties during the consolidation process. In addition, the consolidation process is 

further complicated by the occurrence of secondary compression which significantly 

contributes to the overall settlement of peaty soil. Therefore, it is necessary to take these 

properties into account in order to obtain better predictions from peat consolidation 

analyses. In the present study, the consolidation behavior of peaty clay found in Sri Lanka 

is extensively studied using a model based on the elasto-viscoplastic theory. The model 

can describe the prominent creep behavior of peaty soil as a continuous process. In 

addition, the model can accommodate the effect of structural degradation on the 

consolidation process. The analysis takes into account all the main features involved in 

the peat consolidation process, namely, finite strain, variable permeability, and the effect 

of secondary compression. Also, it considers the variable compressibility for stage-

constructed embankments which exert high levels of pressure on the peaty subsoil. 

The constitutive equations used in the model and the procedure adapted to account for the 

above-mentioned features of the analysis are described. The constitutive model is based 

on Perzyna's type viscoplastic theory and the Cambridge elasto-plastic theory combined 

with empirical evidence. In the finite element formulations, which are based on the finite 

deformation theory, an updated Lagrangian method is adopted. A description of the 

material parameters used in the model and the procedures applied to evaluate them, with 

standard laboratory and field tests, are explained. In addition, a performance of the model 

incorporating the original and the modified Cam-clay theory is evaluated by simulating 

triaxial test results. A comparison shows that with the present definition of the parameters, 

the original model yields more representative results than the model based on the 

modified Cam-clay theory. 

Initially, the capability of the constitutive model to capture the consolidation behavior is 

verified using the consolidation model test data on peaty clay found in Sri Lanka. It is 

confirmed that the constitutive model is able to predict the observed creep characteristics 

and the effect of sample thickness on settlement predictions for the material under 

consideration. 

The performance of the model in predicting the consolidation behavior under field 

conditions is studied using field data on instrumented earth fill constructed on peaty clay. 

One-dimensional compression is assumed for the peaty clay due to the large plane area of 

the fill. Separate analyses are carried out by the model considering the infinitesimal strain 

theory, the finite strain theory, and the finite strain theory together with the effect of 

structural degradation in order to explore how these features describe the observed field 

i 



behavior. Analyses reveal that it is necessary to consider finite deformation together with 

the effect of structural degradation in order to successfully simulate the resultant large 

strain and the stagnated pore water pressure observed in the field. 

The construction of road embankments over peat deposits is quite problematic, and thus, 

it is often done after first improving the properties of the peaty soil through the utilization 

of appropriate ground-improvement techniques. Understanding the field response of peaty 

clay during this improvement process is naturally of great importance. A constitutive 

model is applied to predict the field performance of embankments constructed on peaty 

clay using different ground-improvement techniques. The back analysis of embankments 

constructed with the preloading method indicates that the model can be successfully 

applied to predict both the deformation and the stability of structures constructed on peaty 

clays. The stability of the embankment during and after construction is verified by 

investigating the stress-strain characteristics of the subsoil. 

The model applications used to predict the consolidation behavior of embankments 

constructed by the preloading method, combined with other ground-improvement 

techniques, are then discussed. Embankments constructed with prefabricated vertical 

drains (PVDs) and sand compaction piles (SCPs) are considered, and finite element 

analyses are carried out in all cases by converting the actual three-dimensional conditions 

that exist around the drains into simplified two-dimensional plane strain conditions. The 

field behavior when PVDs are installed in the peaty clay is simulated using the equivalent 

vertical permeability for the PVD-improved subsoil. In the case of SCPs, a conversion 

scheme is used to transform the axisymmetric nature of sand columns into equivalent 

plane strain conditions. A comparison of the predicted results with the field observations 

shows a reasonable agreement. An analysis of the PVD-improved foundation indicates 

that the installation of PVDs not only accelerates the rate of consolidation, but influences 

the deformation pattern of the subsoil due to embankment loading. The analysis also 

shows that the use of PVDs can significantly increase embankment stability. The model 

prediction for the SCP-improved foundation reveals that the stiffness and the area 

replacement ratio used in the conversion scheme play vital roles in predicting the 

behavior of SCP-improved soft grounds. The observed improvements in the bearing 

capacity of the subsoil and in the stability of the embankment, brought about by the 

installation of SCPs, can be simulated by the model. 
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