
MODELLING MEMORY AS CONDITIONAL PHENOMENA

FOR A NEW THEORY OF COMPUTING

Weerakoon Arachchilage Chinthanie Weerakoon

(118031T)

Degree of Doctor of Philosophy

Department of Computational Mathematics

University of Moratuwa

Sri Lanka

June 2020

MODELLING MEMORY AS CONDITIONAL PHENOMENA

FOR A NEW THEORY OF COMPUTING

Weerakoon Arachchilage Chinthanie Weerakoon

(118031T)

Thesis submitted in partial fulfillment of the requirements for the degree Doctor of Philosophy

Department of Computational Mathematics

University of Moratuwa

Sri Lanka

June 2020

i

Declaration

I declare that this is my own work and this thesis does not incorporate without

acknowledgement any material previously submitted for a Degree or Diploma in any

other University or institute of higher learning and to the best of my knowledge and belief,

it does not contain any material previously published or written by another person except

where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and

distribute my thesis, in whole or part in print, electronic or other medium. I retain the

right to use this content in whole or part in future works (such as articles or books)

Signature: Date:

The above candidate has carried out the research for the PhD thesis under my supervision.

Signature of the supervisor: Date:

Signature of the supervisor: Date:

ii

Dedicated To

My Loving

Mother, Father,

Husband, Son Vikum & Daughter Imandi

iii

Acknowledgement

Through the difficult journey towards making this research work a reality, many

individuals have helped me. I take this opportunity sincerely appreciate them all.

It is with a deep sense of gratitude that I acknowledge the guidance and encouragement

gave me by my supervisor, Prof. Asoka Karunananda, who has allowed me to work in

this research and supported me during the last few years with his patience, kindness and

the knowledge while allowing me a room to work in my own approach. It was really

hopeful that he was believing my work. Without his guidance this research won’t be

realistic. Further, Prof. Asoka always encouraged and taught me how to attach to the

research work through all the difficulties. Moreover, professor provoked my long

forgotten bond on my religion and always advised to correct the way how I present.

I would like to offer my greatest gratitude to my co-supervisor Prof. N. G. J. Dias for

introducing Prof. Asoka Karunananda and arranging an opportunity to talk to him.

Furthermore, his patience, kind advices, guidance given during all the time was

magnificent. Prof. Dias facilitated me with necessary facts with the past experience.

Sometimes, he foresaw the difficulties that could arise, and always advised me to protect

my dignity and to correct my faults. Further, prof. Dias commented on the work as quick

as possible.

Special thanks goes to Dr. L. S. K. Udugama, Dr. (Mrs.) Uditha Rathnayake, Prof. T. S.

G. Peiris, and all the members who were in my bi-annual progress panels for giving me

the constructive comments on my research work.

I can’t forget all the members of the Department of Computational Mathematics,

University of Moratuwa. Exceptional thanks goes to Ms. Dilini Kaluwansa, Dr. (Mrs.)

Subha Fernando, and Dr. (Mrs.) Thushari Silva. Their encouragements and the

friendliness made me so comfort.

iv

I am really grateful to the CEO, CodeGen International, Dr. Harsha Subhasinghe, with a

single request he generously approved funds from CodeGen to publish my first SCOPUS

indexed conference article. My supervisor, Prof. Asoka Karunananda made this

connection through Mr. Viraj Dayarathne, a kind hearted person that we could rarely find.

I would like to thankfully remind all the academic and non-academic members of

University of Kelaniya those who have supported me during the work. Special thanks

goes to the former vice-chancellor Prof. Sunanda Madduma Bandara, the vice-chancellor

Prof. D. M. Semasinghe, the dean, Faculty of Science, and the head of the department of

Statistics & Computer Science Dr. (Mrs.) D. D. M. Jayasundara for granting me the study

leave to complete my degree. In addition to that, Dr. Dhammika Weerasinghe, and Mr.

Buddhika Godakuru in ICT center, University of Kelaniya, allowed me to execute bulk

programs on the servers there. Moreover, Mr. Buddhika Godakuru was a good technical

commenter on my programs.

Again, I would like to mention Dr. (Mrs.) D. D. M. Jayasundara and all the current

members of my department for giving me all the encouragements and the freedom for my

work even with their busy schedules and difficulties. Further, Dr. (Mrs.) Carmel

Wijegunasekara and all the former members of our department gave me a great backing.

I am heartily thankful to Dr. (Mrs.) Mihirini Wagaarachchi, my research companion, she

was not a mere colleague, she was someone, which I could always talk to, her advices,

reassurances, and kindness always made me strong. And also, I like to thank my

colleagues, Mr. Buddhitha Hettige and Mrs. Hansika Gunasekara, their generous supports

were also excellent. All the time, I had blessings and well wishes from many other

relatives, and friends. Further, I would like to remind the kind and generous individuals

those who got to know through SLAAI. They encouraged me to complete this as soon as

possible. I like to take this opportunity to thank them all.

v

I would like to extend my greatest gratitude to my husband Amal for his support given

me in clarifying things where I am not clear about. I can talk to him, he listens, bare all

the difficulties and my moods. His patience and kindness showed towards me as being

my loving husband, protecting and taking care of me. Further, I also grateful to my

husband’s father and mother. My little son Vikum, as his father bare all my absences

without a single complaint. I know he loves me a lot. Then, my little baby Imandi, she

always seeks my presence and warm touch. She comes with a finger in her mouth and pat

me smoothly, when I am in the computer. My son’s silent patience and my daughter’s

heartfelt requests encouraged me to finish the work as soon as possible. Finally, I would

like to give my heartfelt thanks to my ever loving parents for their dedication, patience,

guidance, protection, encouragement and all the conveniences given me, all the time,

being behind myself, my husband, and my babies. They released me from everything.

The words are not enough to express my gratitude towards them. This period was full of

hospitalizations and surgeries. As the only child of my parents, I could have managed

those and looked after my family. Sometimes, I failed and was lost. But, I could rise

again. I always feel that I am gifted because of them.

Their patience, munificence and excellent supports were admirable.

vi

Abstract

Computation in Von-Neumann architecture was quite different from the computation in

the human mind, which processes in association with the brain by improving quality,

accuracy and speed over the generations of execution of instructions. It was argued that

this difference has been primarily caused by the separation of memory from processor,

which results in delay in processing in the Von-Neumann architecture. Therefore, to

improve computational efficiency on Von-Neumann architecture, various hardware and

software level improvements have been introduced. In this sense, many researches were

done in order to produce hardware level solutions, but there are limited researches to

produce software level solutions. As such researches into develop new computing models

at software level has been a research challenge. Our research has also discovered that

despite the neuroscience of brain has inspired various computing models, behavior of

mind has not been exploited to build models for computation.

As inspired by a theory of mind from an Eastern philosophy, Theravada Buddhism, we

postulate the memory as a result of processing, and the memory and processing are not

separated. The mind as a processor executes a conditional flow of thoughts pertaining to

five-sense doors or the mind itself. The processing mechanism in the mind results an

evolving memory. This thesis presents a novel Six-State Processing Model (SSPM),

which implements the processing in the mind and causing an evolving memory to

improve processing speed of the computer. The six-state of SSPM encompasses New,

Ready, Running, Blocked, Sleep, and Terminate, where the states Sleep and Terminate

are new and are variations of the Exit in five-state model. Further, the SSPM has a set of

newly defined transitions Ready-Ready, Sleep-Ready, Running-Ready, Running-Sleep,

and Ready-Terminate that are associated with the concepts exploited from the Causal

Relations of Buddhist Theory of Mind. Due to these states and transitions, the new model

SSPM exhibits three distinct features, namely, internal and external processes, continuous

processing, and a smaller tactics memory. Altogether, the SSPM works as a mind-like

computer.

The evaluation of the SSPM has been conducted both in empirical level and the

theoretical level. The empirical level testing was carried out separately for several

computing programs that have been customized by the SSPM, where a Fraction

Calculator (FC), a Quadratic Equation Solver (QES), a Sorting Program, and a Simulated

Process Scheduler (PS) were among the programs. Further, the customized programs

were named as SSPM-FC, SSPM-QES, SSPM-Sorting, and SSPM-PS. In fact, SSPM-

FC considered a set of operations that included Plus, Minus, Multiplication, and Division,

while the SSPM-Sorting had two categories such as SSPM-S-Insertion and SSPM-S-

Equal. Furthermore, SSPM-FC (with Plus, Minus, and Multiplication), SSPM-QES,

SSPM-Sorting (SSPM-S-Insertion, and SSPM-S-Equal), and SSPM-PS were tested

separately under several testing scenarios to check their ability to gain improvements in

the subsequent program execution cycles. Hence, it could prove the ability of the SSPM-

system to improve the computing efficiency of the system in consecutive execution cycles

vii

of the system. Next, with SSPM-FC, SSPM-QES, and SSPM-Sorting, it could be

demonstrated that how the smaller tactics memory is improved over the time. In addition

to that, the speedups gained by the SSPM-S-Insertion and the SSPM-S-Equal with

compared to the original Quicksort were compared with the speedups gained by the

quicksort programs implemented with some other computing approaches. There, the

SSPM-S-Equal case showed speedup with compared to the original quicksort for all the

tested lists (number of elements were varying from approximately 2 to 4M). However,

the SSPM-S-Insertion had limiting conditions in showing the better performance. So then,

the smaller tactics memory with the SSPM-Sorting could be organized and the

appropriate mechanism could be selected as per the requirements over program execution

cycles improving the computing power of the system. Finally, to evaluate the model in

the theoretical level, SSPM has been simulated with a Turing Machine. Afterwards,

checking the satisfiability, it has been proved the NP-completeness of SSPM. Hence, its

computability and the real-world applicability has been theoretically proved. Overall, it

has been able to prove that the solutions can be provided faster over subsequent execution

cycles by modelling memory as conditional phenomena and leads to a new theory of

computing.

Keywords: Evolving Tactics Memory, Six-State Processing Model, Continuous

Processing, NP Complete, Special Compiler, 24-Causal Relations

viii

Table of Contents
CHAPTER 01 ...1

INTRODUCTION ...1

1.1 Prolegomena .. 1

1.2 Aims and Objectives .. 2

1.3 Background and Motivation .. 2

1.4 Inquisitiveness in Brief .. 4

1.5 Memory and Processing in Current Computing Models 5

1.6 The Proposed Computing Model ... 7

1.7 Testing and Evaluation .. 11

1.8 Resource Requirements ... 12

1.9 Contribution to the Field of Computer Science ... 12

1.10 Organization of the Thesis ... 12

1.11 Summary .. 13

CHAPTER 02 ...15

REVIEW OF MEMORY AND PROCESSING MODELS15

2.1 Introduction .. 15

2.2 Hardware Improvements .. 15

2.3 Improvements for Memory and Processing in Software Level 18

2.3.1 Processing Models in Operating Systems .. 18

2.3.1.1 Two-State Model .. 19

2.3.1.2 Three-State Model .. 19

2.3.1.3 Five-State Model ... 19

2.3.1.4 Seven-State Model .. 20

2.3.1.5 Processing Model in Linux OS ... 20

2.3.1.6 Kernel Thread Model of Windows OS ... 21

2.3.1.7 Kernel Thread Model of Solaris ... 21

2.3.2 Incremental Computing .. 23

2.3.2.1 Self-Adjusting Computation ... 24

2.3.2.2 Imperative Self-Adjusting Computing ... 25

2.3.2.3 Incoop: MapReduce for Incremental Computations 25

2.3.2.4 ADAPTON – Compassable, Demand-Driven Incremental Computation 26

ix

2.3.2.5 iThreads: A Threading Library for Parallel Incremental Computation 26

2.3.3 Multi-agent Systems and Evolutionary Computing 27

2.3.4 Neural Computing .. 28

2.3.5 Program Tuning with Adaptability .. 30

2.4 Quantum Computing .. 34

2.5 Summary .. 35

CHAPTER 03 ...37

THEORETICAL FOUNDATION FOR THE NOVEL

COMPUTING MODEL ..37

3.1 Introduction .. 37

3.2 Buddhist Theory of Mind .. 38

3.2.1 Thought-process ... 38

3.2.2 Explanation for the Human Memory from BTM 42

3.2.3 Twenty-four Causal Relations in BTM .. 43

3.2.4 Exploiting Twenty-four Causal Relations in Explaining the Thought-

process …………………………………………………………………………...47

3.3 Real-World Inspirations ... 48

3.4 Attempts in Computer Modelling of Human Mind Based on BTM 50

3.5 Other Approaches on Mind and Memory .. 52

3.6 Human Memory Models .. 53

3.7 Problems in implementable Theories of Mind .. 54

3.8 Summary .. 55

CHAPTER 04 ...56

NOVAL APPROACH TO A COMPUTING MODEL ..56

4.1 Introduction .. 56

4.2 Hypothesis ... 56

4.3 Input ... 58

4.4 Output .. 60

4.5 Propose the Computing Model .. 60

4.6 Features of the New Model .. 62

4.7 Users .. 64

4.8 Exploiting Twenty-four CRs in Modelling the SSPM..................................... 64

x

4.9 Implementation .. 71

4.9.1 Fraction Calculator (SSPM-FC) ... 72

4.9.1.1 Why use the technologies ... 72

4.9.1.2 The Implementation Process ... 73

4.9.2 Quadratic Equation Solver (SSPM-QES) .. 77

4.9.3 Sorting Program (SSPM-Sorting) .. 77

4.9.4 SSPM-PS .. 78

4.10 Experimental Mechanism of SSPM ... 79

4.11 Simulation of SSPM in a Turing Machine ... 82

4.12 Summary .. 82

CHAPTER 05 ...83

HOW THE SYSTEM WORKS ..83

5.1 Introduction .. 83

5.2 Fraction Calculator (SSPM-FC) .. 83

5.3 Quadratic Equation Solver (SSPM-QES) .. 96

5.4 Sorting Program (SSPM-Sorting) .. 97

5.5 Simulated Processes Scheduler (SSPM-PS) .. 101

5.6 Summary .. 103

CHAPTER 06 ...104

TESTING AND EVALUATION ..104

6.1 Introduction .. 104

6.2 Experimental Mechanism of SSPM-FC. ... 104

6.3 SSPM-FC - Testing Scenario 1 .. 105

6.3.1 Experimental Setup .. 105

6.3.2 Choice of Expressions and The Responses .. 105

6.3.3 Testing Scenario 1.1: Addition (Plus Operator): 106

6.3.4 Testing Scenario 1.2: Subtraction (Minus Operator) 112

Step 1: ... 112

6.3.5 Testing Scenario 1.3: Multiplication (Multiplication Operator) 118

Step 1: ... 118

6.4 SSPM-FC - Testing Scenario 2: ... 124

6.4.1 Experimental Setup .. 125

xi

6.4.2 Choice of Inputs and The Responses .. 125

6.4.3 Relevant Statistical Tests .. 128

6.4.4 The Scenario ... 128

Step 1: ... 128

6.5 Summarizing Results of the Experiments on SSPM-FC 134

6.6 SSPM-QES Testing Scenario .. 135

6.7 Experimental Mechanism on the Implementation of Sorting Program 139

6.8 SSPM Sorting - Testing Scenario 1: .. 139

6.8.1 Experimental Setup .. 139

6.8.2 Choice of Expressions and The Responses .. 140

6.8.3 Testing Scenario 1.1: InsCalcModule .. 140

6.8.4 Testing Scenario 1.2: Similar List to Sort (EquCalcModule) 144

6.9 Trade-Offs: SSPM Sorting Vs Original Quicksort-Testing Scenario 1 147

6.10 SSPM Sorting - Testing Scenario 2 ... 153

6.10.1 SSPM Sorting - Testing Scenario 2.1 ... 153

6.10.2 SSPM Sorting - Testing Scenario 2.2 ... 156

6.10.3 SSPM Sorting - Testing Scenario 2.3 ... 158

6.11 Formal Verification .. 161

6.11.1 Why the Turing Machine has been Used? .. 161

6.11.2 Nondeterministic Turing Machine (NTM) ... 162

6.11.3 Configurations of NTM .. 165

6.11.4 Satisfiability of NTM ... 168

6.11.5 Results of Formal Verification ... 174

6.11.6 Time Complexity .. 174

6.12 Summary .. 175

CHAPTER 07 ...176

CONCLUSION AND FUTURE WORK ...176

7.1 Introduction .. 176

7.2 Modelling Memory as Conditional Phenomena for a New Theory of

Computing .. 176

7.2.1 Critical study about various models for computing 176

7.2.2 In depth study about the Buddhist Theory of Mind 177

xii

7.2.3 Propose a new computing model where the memory is a result of

continuous processing .. 177

7.2.4 Customizing Programs with SSPM .. 180

7.2.5 Evaluate the proposed model .. 180

7.3 Limitation ... 182

7.4 Further Work .. 182

7.5 Summary .. 184

References ..185

APPENDIX A ...194

SELECTED CODE SEGMENTS ..194

A.1 Process Switcher ... 194

A.2 Operation Organizer .. 195

A.3 Input-Content Analyser of SSPM-FC ... 199

A.4 Small Compiler ... 203

A.5 Write Engine ... 204

A.6 Terminating Point ... 206

A.7 Two Methods for Multiplication ... 207

APPENDIX B ...208

DATA SETS ...208

B.1 SSPM-FC: Plus Operator .. 208

B.2 SSPM-FC: Minus Operator .. 209

B.3 SSPM-FC: Multiplication Operator ……………………………………….. 210

B.4 SSPM-QES – Positive Discriminant………………………………………..211

B.5 SSPM-Sorting…………………………………………………………….... 212

APPENDIX C……………………………………………………………………….. 213

PUBLICATION……………………………………………………………………...213

xiii

List of Figures

Figure. 1.1: Where the proposed model is placed……………………………... 09

Figure. 3.1: Eye-door thought-process (three stars denotes the sub-moments in

each thought-moment) at the present of a very great object ……………….…

40

Figure. 3.2: Mind door thought-process (three stars denotes the sub-moments

in each thought-moment) at the present of a clear object……………………...

41

Figure. 3.3: Memory is a continuous thought process... 42

Figure. 4.1: High Level Block diagram for the proposed computing model …. 57

Figure. 4.2: Input Patterns (IP) (a) Patterns (b) Example for each pattern…...... 59

Figure. 4.3: Six-state Continuous Processing Model (SSPM)………………… 61

Figure. 4.4: Conditionally evolving smaller tactics memory………………….. 63

Figure. 4.5: High level Flow chart for the proposed model…………………… 74

Figure. 4.6: How the modules have been connected…………………………... 75

Figure. 4.7: Algorithm for Fraction Calculator (SSPM-FC). (a) Fraction

Calculator as a whole, (b) Input-Content Analyser, (c) Process Switcher, (d)

Operation Handler, (e) Write Engine, (f) Small Compiler…………………….

76

Figure. 4.8: Algorithm for Simulated Process Scheduler……………………... 79

Figure. 4.9: Sample size determination using MedCalc for testing scenario 1.1

SSPM-FC…………………………………………………………………..

81

Figure. 5.1: Smaller tactics memory starts with the entries relevant to the

instructions that are inserted into the system…………………………………..

85

Figure. 5.2: Identify the Input (a) Different Op, Same Exp, Same Op, (b) New

Op………………………………………………………………………………

86

Figure. 5.3: Current Fractional Expression Contains a New Operator..………. 87

Figure. 5.4: (a) Insert the Relevant Instruction set for the New Op (b) Create

and Save the Library……………………………………………………………

88

Figure. 5.5: Update the Smaller tactics memory with an entry for the

instruction set of the New Op…………………………..………………………

89

Figure. 5.6: For the frequently executing plus operator, the module is created.

(a) The respective entry is updated to a 5-tuple in the smaller tactics memory,

(b) File of the particular module is created and stored………..………….........

91

Figure. 5.7: Update the relevant entry in the smaller tactics memory due to

deleting the inefficient method(a) How the states are changing, (b) How the

smaller tactics memory and the program update …………………..………….

93

Figure. 5.8: User interface with all the other details…………………………... 94

Figure. 5.9: User interface for Quadratic Equation Solver when a class has

been created for positive discriminant module (updated record in the smaller

tactics memory), during an external process……………….…………………..

96

Figure. 5.10: User interface for SSPM-Sorting, before introduce delete to the

system…………………………………………………………………………..

98

Figure. 6.1: Time values taken for computing fractional expressions with

Addition in SSPM-FC- before and after the change …..……………………….

106

xiv

Figure. 6.2: Probability Plot for addition (Difference) (a) Probability Plot

(b)Values……………………………………………………………………….

108

Figure. 6.3: Outlier Plot Addition (a) Outlier Plot (b) Values for

difference..

109

Figure. 6.4: Power Curve for Paired t Test with size 100 (Addition)…………. 110

Figure. 6.5: Time values collected before and after organizing the smaller

tactics memory of the FC with subtraction……………………………………..

113

Figure. 6.6: Probability plot of difference for Subtraction…………………….. 114

Figure. 6.7: Outlier Plot of Subtraction (a) Outlier Plot (b) Values for

difference…………………………………………………………………...

115

Figure. 6.8: Power Curve for Paired t Test with size 100 (Subtraction) ……… 116

Figure. 6.9: Time values collected before and after organizing the smaller

tactics memory of the FC with Multiplication operator. (it is possible to refer

the complete samples in the appendix)…………………………………...

119

Figure. 6.10: The probability plot of differences (Multiplication)…………….. 120

Figure. 6.11: Outlier Plot of Multiplication (a) Outlier Plot (b) Values for

difference …………………………………………………………………

121

Figure. 6.12. Power Curve for Paired t Test with size 100 (Multiplication)…... 122

Figure. 6.13: Total time values in nanoseconds for best multiplication

algorithms with selection process vs inefficient multiplication algorithm

(MulCalc2())……………………………………………………………………

129

Figure. 6.14: The probability plot of differences (Total Time Values)……….. 130

Figure. 6.15: Outlier Plot of Difference (a) Outlier Plot (b) Values (Total

Time values)……………………………………………………………………

131

Figure. 6.16: Power Curve for Paired t Test with size 20 (Total Time Values).. 132

Figure. 6.17: Time values recorded with the quadratic equations with positive

discriminant before and after organizing the smaller tactics memory of the

QES……………………………………………………………………………..

135

Figure. 6.18: Time values recorded for sorting lists (InsCalcModule) before

and after organizing the smaller tactics memory of the sorting program……...

141

Figure. 6.19: Time values recorded for sorting lists (Same List) before and

after organizing the smaller tactics memory of the Sorting program…………

145

Figure. 6.20: Comparison when (a) one new element was available (b) two

new elements were available (c) Five new elements were available. ………….

149

Figure. 6.21: Percentage of new Elements in each list, above which showed

better performance on SSPM compared to the original………………………..

150

Figure. 6.22: How speedup of SSPM insertion varies depending on the

percentage of new elements within a list……………………………………….

153

Figure. 6.23: (a) Graph showing speed up ratio by using parallel quicksort. (b)

Speedup of the SSPM Sorting when one new element available (c) Speedup

of the SSPM Sorting when all are new elements (d) Speedup of the SSPM

Sorting when half of the demands are new elements (e) Speedup of the SSPM

Sorting when all elements are equal……………………………………………

156

xv

Figure. 6.24: Speedup ratio, when 2M elements are there in the list (Server)… 159

Figure. 6.25: Speedup ratio, when 2M elements are there in the list (Laptop)... 159

Figure. 6.26: Transition Diagram……………………………………………… 162

Figure. A.1: Source Code Segment for Process Switcher……………………... 194

Figure. A.2: (a) Operation Organizer in SSPM-FC with respect to “Same

Op”, “Same Exp”, “Different Op”, and “New Op” (b) Part of the Operation

Organizer in SSPM-Sorting…………………………………………………….

198

Figure. A.3: Input-Content Analyser of SSPM-FC……………………………. 202

Figure. A.4: Smaller Compiler………………………………………………… 203

Figure. A.5: Write Engine…………………………………………………….. 205

Figure. A.6: Terminating Point………………………………………………… 206

Figure. A.7: Two Multiplication Methods; MulCalc1(), and MulCalc2()…….. 207

xvi

List of Tables

Table 2.1: Advantages and disadvantages of Processing models in OS……. 22

Table 2.2: Advantages and disadvantages of computing models……………. 32

Table 4.1: CRs of BTM in Designing the Actions of the proposed

Computing Model……………………………………………………………

66

Table 4.2: Exploiting CRs of BTM in deriving the transitions……………… 68

Table 6.1: Process execution with FCFS basis……………………………..... 101

Table 6.2: Process execution with SJF basis………………………………… 102

Table 6.3: Results after Selection………………………………………..…... 102

Table 6.4: Values From Grubbs’ Test…………………………………….…. 109

Table 6.5: Values From Power Test for Paired-T Test ………………….….. 110

Table 6.6: Values for The Paired-T Test (Addition) ………………………... 111

Table 6.7: Values From Grubbs’ Test……………………………………...... 115

Table 6.8: Values from Power Test for Paired-T Test with sample size……. 116

Table 6.9: Values for The Paired-T Test (Subtraction)…………………........ 117

Table 6.10: Values From Grubb’s Test……..……………………………….. 121

Table 6.11: Values from Power Test for Paired-T Test with sample size…... 123

Table 6.12: Values for The Paired-T Test (Multiplication)…..…………….. 123

Table 6.13: Selection Process Vs Inefficient Algorithm……………………. 126

Table 6.14. Sample Total Values for Selection Process and Inefficient

Algorithm (M2)…………………………………………………………........

127

Table 6.15: Values from Grubbs’ Test………………………………………. 131

Table 6.16: Values from Power Test for Paired-T Test with sample size....... 133

Table 6.17: Values for The Paired-T Test (Total Time Values)…………….. 133

Table 6.18: Summary of Results (FC)………………………………………. 134

Table 6.19: Values for The Paired-T Test QES…….……………………….. 137

Table 6.20: Values for The Paired-T Test (InsCalcModule)……………....... 143

Table 6.21: Values for The Paired-T Test (EquSortModule) ……………….. 146

Table 6.22: Comparison Tables (a) Average run times for different

thresholds and number of elements for parallel QS, (b) Relevantly tested

SSPM, sorting list results with original QS, when there are 1, half and all

new, all equal elements than/to previous list in SSPM….………….……...

154

Table 6.23: Quicksort with Self-adjusting computing Vs SSPM sorting. 157

Table 6.24: Quicksort with ADAPTON with incremental computing Vs

SSPM sorting…………………………………………………………………

158

Table 6.25: Comparisons of SSPM sorting with DTL and GAA

sorting.…………………………………………………………….................

160

Table 6.26: Transition Table ……………………………………………….. 164

Table 6.27: Configurations of the NTM (p(n)=number of moves)………….. 166

Table 7.1: Comparison with Existing Processing Models………………....... 178

Table 7.2: Transition-wise comparison of the proposed model with existing

OS processing models………………………………………………………..

179

xvii

List of Abbreviations

ADAPTON - Compassable, Demand Driven Incremental Computing

BT - Buddhist Theory

BTM - Buddhist Theory of Mind

CDDG - Concurrent Dynamic Dependency Graph

CAS - Column Address Signal

CL - CAS Latency

CBRAM - Conductive Bridge Random Access Memory

CPU - Central Processing Unit

CR - Causal Relation

CUDA - Compute Unified Device Architecture

DDG - Dynamic Dependency Graph

DRAM - Dynamic Random Access Memory

EC - Evolutionary Computing

EPROM - Erasable Programmable Read Only Memory

FC - Fraction Calculator

FCFS - First Come First Serve

GA - Genetic Algorithm

GPGPU - General-Purpose computing on Graphics Processing Unit

GPU - Graphics Processing Units

I/O - Input/ Output

IC - Incremental Computing

IDE - Integrated Development Environment

IPC - Inter Process Communications

ITS - Throughput Target Scheme

LSTM - Long Short Term Memory

LTM - Long Term Memory

MAS - Multi Agent Systems

MPI - Misses Per Instruction

xviii

NMR - Nuclear Magnetic Resonance

NTM - Non deterministic Turing Machine

OS - Operating System

PCM - Phase Change Memory

PS - Process Scheduler

QES - Quadratic Equation Solver

RAM - Random Access Memory

ROM - Read Only Memory

RRAM - Resistive Random Access Memory

SAC - Self-Adjusting Computing

SAIL - Self-Adjusting Imperative Language

SQUID - Superconducting Quantum Interference Device

SSPM - Six-State Continuous Processing Model

STM - Short Term Memory

STT-MRAM - Spin-Transfer-Torque-Magnetic Random Access Memory

TM - Turing Machine

VNA - Von Neumann Architecture

WEIS - Instruction weighted speedup Targeted Scheme

1

CHAPTER 01

INTRODUCTION

1.1 Prolegomena

The processing power of a computer has been immensely relying on its software and

hardware architectures. Yet, many well-established computers are based on the Von-

Neumann Architecture (VNA), where the memory is separated from processing. Further,

the interest and the requirement on researching into new approaches for powerful

computing have been more prevalent in the field. In this background, it was noticed that

with compared to the VNA, the human mind displays a different model of computation

according to the Buddhist Theory of Mind (BTM). In fact, the most cited natural

computing model is human mind. In contrast to VNA, the sophisticated human mind

becomes competent in providing quality and fast solutions over subsequent processing

cycles. Moreover, the major cause behind this difference is how the memory is formed in

the human mind. According to the BTM it is a continuous process. Thus, the work appears

in this thesis was started with discussing the hardware level improvements that have been

introduced to enhance the computing power. Next, it was critically reviewed a set of

important memory and processing models and some other relevant factors that were used

to improve computing in the software level. Finally, the new computing model was

introduced imitating the continuous processing model in the human mind based on BTM

to enhance the computational efficiency of the computer.

This chapter precisely describes the research that introduce the new computing model, in

which the memory is modelled as a sequel of a continuous process. The new model was

named as Six-state Continuous Processing Model (SSPM). First, this discusses the aims

and objectives of the work, while the subsection 1.3 explains about the background and

motivation. Then, the inquisitiveness that provided the birth for this research work is

presented in the subsection 1.4. Whereas, the subsection 1.5 briefly analyses memory-

processing models of current computing models towards the purpose, the subsection 1.6

states the proposed model with the new approach, which exploited BTM. The subsection

2

1.7 briefly explains the testing and evaluation process of this research. The subsection

1.8, mentions the resource requirements and subsection 1.9 presents the structure of the

thesis. Next, the significance of the research work is briefly reported in the subsection

1.10. Finally, the last section summarizes the chapter one.

1.2 Aims and Objectives

The aim of this research is to introduce the new computing model, in which the memory

is modeled as conditional phenomena for a new theory of computing that improves the

computational power of the computer, with the inspirations received from how the human

mind works according to the BTM and the observed nature of the human mind.

In order to achieve above aim, it was set below mentioned major objectives for the

research:

 Critical study of various memory and processing models.

 Analytical study about the BTM.

 Propose a new computing model.

 Simulate the proposed model for computing.

 Evaluate the proposed computing model.

The next section briefly discusses about the contextual and the motivating factors behind

this research in reaching towards the above objectives, further achieving the aim.

1.3 Background and Motivation

In VNA, the memory and the processing have been separated [1] based on the Charles

Babbage’s historic mill and store concept with Loom’s weaving [2]. Therefore, the

communication between the memory and the processor was established through

communication busses [3]. However, the delays exist in this communication curtail [1]

the processing power of the VNA-based computer due to the discrepancy between the

fast processors and the slow memories [4]. Some refer this issue as memory wall [5]. A

3

lot of attempts has been made in order to hit this memory wall [6] and enhance the power

of computation. Specifically, the processing units were placed near the memory cells, and

cache hit rate [5] was improved by enhancing the data locality [4]. In fact, it has been a

live research challenge to enhance the performance of the computer. In doing so, various

hardware and software level developments have been introduced. The most of these

hardware developments have been based on the memory-processor separation [7].

For example, in hardware level, the processing power was improved by introducing

various processing units such as multi-cores [3], Graphics Processing Unit (GPU) [8] and

GPGPU [9] with increased processing speeds, memory management and concurrent

processing capabilities. Further, the chipmakers have made-up chips with larger density

[1] to improve processor speed. In addition to that, various memories such as RAM, Phase

Change Memory (PCM) [10], metal oxide memory RRAM [11], DRAM, ROM, Caches

[12], and Registers [13] were invented with diverse capacities and introduced into

different levels of the memory hierarchy. Certainly, with the introduction of the

nanotechnology, the hardware developments will go beyond the Moore’s predictions

[14].

However, the ability in fully utilizing the introduced processing powers with memory

capacities was limited by separation between the processor and the memory due to the

data and instruction routing mechanisms [4] and overlaid software architectures. This

inadequacy led the researchers to find alternative computing models to make the use of

the processing speed acquired by the under-laid hardware architecture completely.

Having these motivations behind, the next section declares curiosity, the seed that have

sprouted this research. Here, it is more appropriate to name the next subsection as

“inquisitiveness in brief” rather than “problem in brief,” since this curiosity has provided

a considerable motivating force.

4

1.4 Inquisitiveness in Brief

As introduced, finding a new computing model to improve the processing power of the

computer was a great research challenge. When it comes to an alternative approach for

computing than of the models where the memory has been separated from processing, the

challenge would have been rather significant. This study revealed that, the most of the

existing software solutions were mainly focused on providing solutions for the real world

problems. These problems are arising from the natural systems with large number of

entities that are connected to each other and operated in distributed or parallel manner in

the environments that are changing dynamically. However, providing quality solutions

more efficiently over subsequent generations of system executions were considered

minimally. Those would be rather the modelling of real world systems and the focus was

sometimes bit deviated from enhancing the computational efficiency.

It is an important fact that, the most cited best computing model in the nature, the human

mind [15], has been working in a way that is different from the VNA. According to the

BTM, the memory is not a unit distinct from processing [16]. It has been an evolving

result of conditional phenomena [17] and compiles as a smaller tactics memory [18]

through continuous processing. In fact, VNA shows no change, though the same program

has been executed for multiple times. As opposed to the VNA, the human mind as

observed in the real-world has been capable in providing solutions for the same problem

or executing the same program with improved efficiency through the cognitive process

with the knowledge and the skills gained [16]. Although, it could find the evidences of

computer modelling of human mind based on BTM in [19], [20], [15], and [21], it has

been difficult to find any evidence on a computing model, which imitates the human mind

based on BTM to improve computational efficiency. This has happened to be an omission

within the field of computing, because as mentioned earlier, the human mind is the best

computer in the natural surroundings. Therefore, the research reported in this thesis is a

result of the effort in dealing with introducing a new computing model that exhibits the

aforementioned features of the human mind by exploiting the BTM.

5

The next section briefly discussed the memory and the processing in the current

computing models based on VNA, but were set with different features.

1.5 Memory and Processing in Current Computing Models

When reviewing the software level memory management and processing, it has been

divided the review into two sub categories such as memory management and processing

models in Operating Systems (OSs), and memory-processing in other computing models

such as Incremental Computing.

In OSs, from the two-state model to the seven-state model, the processing models were

steadily developed. The two-state system had the states ‘not running’ and ‘running’. Then

the two state model was updated with the blocked and ready queues to keep the blocked

and ready processes separately [22] replacing the ‘non-running’ state ‘blocked’ and

‘ready’ states. With these states the Three-State model was introduced [23]. Afterwards,

for the purpose of management of data, ‘exit’ and ‘new’ states were introduced. The ‘exit’

state handles information 'after the fulfillment of the execution' and the ‘new’ state

handles the information 'before stacking the recently characterized processes into the

memory'. Such a way, the Five-state model was presented [22]. Next, it was introduced

the Seven-state model to reduce idling of the processor.

Further, Parallel Computing [24], Neural Computing [25], Multi-Agent Systems [26],

Quantum Computing [27], Evolutionary Computing [28], and Incremental Computing

[29] can be highlighted as the major computing models, which have been introduced to

enhance the processing capabilities of the computer in different ways. Many of these

computing models have been introduced on the improved VNA and imitated natural

models [30]. For example, Multi-Agent systems have copied the behavior of natural

swarms [26], while Evolutionary Computing (EC) model imitated the natural selection.

Specially the Genetic Algorithm [31] is largely applicable in optimization problems,

6

search problems, and provide solutions by altering associations [33] counting on

biologically inspired operators. Furthermore, the neural computing has been inspired

from the human brain [33]. Therefore, it is evident that imitating natural models [34] is a

good trend in designing new computing models as the natural models [35] surprisingly

equipped with algorithms, operators and other mechanisms to accurately and efficiently

solve natural complex problems [34].

Moreover, this research has narrowed down its literature review to analyze the memory

and processing in computing models such as Incremental Computing, Genetic

Programming, and Multi-Agent systems. Multi Agent Systems (MAS) has been involved

in problem solving by sending messages among a group of agents [26] having inspirations

from the behavior of natural complex organizations [34] such as ant colonies, fish

schools, and bee colonies. MAS offered a novel model for distributed and parallel

computing on VNA and can yield emergent solutions [36]. However, when certain

applications of MAS are dealing with large groups of agents working together in the same

stage, the efficiency improvement in such system cannot be expected [34]. In fact, the

concepts such as logical agents [37], long short term memories and reinforcement

learning [38], were quite impressive as many of those had the insight from the human

mind according to the theories introduced in Bartlett’s Remembering [39], constructive

memory [40], and Atkinson-Shiffrin [41] and the Baddeley [42] models with a western

philosophical view. Meanwhile, the foundation of the evolutionary computing was laid

by the Genetic Algorithms (GA), having inspirations from the Darwinian theory of

evolution [43]. There are many aspects in the field of computing that are benefited from

GA. For example, for CPU scheduling GA has been applied [44] in order to maximize

CPU throughput or utilization [45] or optimize the waiting time [46]. Further, over

generations of executions, the GA can produce better quality solutions, although the GA

consumed memory and CPU in a considerable level. The Incremental computing was an

approach in modelling systems with the incremental and dynamic slight changes in input

data [47]. There, the memory management [48] was done through the graphs and

7

memorization [49]. Self-adjusting computing [50] was one of the branches in incremental

computing. Further, there were different adaptive algorithms that have been applied in

order to speed up the computing [51]. In some cases, it has also been used different

program transformation [52] techniques to enable adaptability and achieve speeding up.

Further, it has been discussed memory and processing in parallel computing and neural

computing also.

With this background, the next section describes the proposed computing model that is

inspired from the BTM and other related real-world examples to enhance the computing

power of the computer.

1.6 The Proposed Computing Model

This research was conducted to discover a new computing model to enhance the

processing power of the computer, where the characteristics of the human mind was

incarnated into a new processing model exploiting the BTM. According to the BTM, the

human mind undergoes a continuous flow of thoughts [53]. The continuity of this

processing is maintained by several factors such as the inputs received through physical

five sense doors (external inputs), the inputs internally generate in the mind door (internal

inputs), and a set of causal relations from twenty-four causal relations [54] explained in

BTM. All the time, the internal inputs are generated in relation to and are affected by the

prior external or internal inputs. In addition to that, the repeated processing on the same

set of inputs, improve the speed, quality and the accuracy of processing [55] as the

processing is not separated from the memory. The memory is a result of continuous

processing that arise as per the conditions. Further, starting from an initial setup, the

smaller tactics memory has gradually improved and organized through this continuous

processing or practice. The knowledge and instruction entities entered in as any sort of

inputs or instructions, are labeled, in the way, which one can identify, describe, relate or

retrieve back the knowledge entities and the results of relevant computations. Moreover,

8

a set of tactics such as pattern identification, classification, and prioritization has been

used.

The set of tactics have been derived from a set of fifteen causal relations, namely, Object

(𝐴̅𝑟𝑎𝑚𝑚𝑎𝑛𝑎), Root (𝐻𝑒̅𝑡𝑢), Co-Nascence (𝑆𝑎ℎ𝑎𝑗𝑎̅𝑡𝑎), Association (𝑆𝑎𝑚𝑝𝑎𝑦𝑢𝑘𝑡ℎ𝑎),

Mutuality (𝐴𝑛̃𝑛̃𝑎𝑚𝑎𝑛̃𝑛̃𝑎), Pre-Dominance (𝐴𝑑ℎ𝑖𝑝𝑎𝑡𝑖), Presence (𝐴𝑡𝑡ℎ𝑖), Support

(𝑁𝑖𝑠𝑠𝑎𝑦𝑎), Pre-Nascence (𝑃𝑢𝑟𝑒̅𝑗𝑎̅𝑡𝑎), Proximity (𝐴𝑛𝑎𝑛𝑡𝑎𝑟𝑎), Karma (𝐾𝑎𝑟𝑚𝑎),

Repetition (𝐴̅𝑠𝑒̅𝑣𝑎𝑛𝑎), Disappearance (𝑉𝑖𝑔𝑎𝑡𝑎), Post-Nascence (𝑃𝑎𝑐𝑐ℎ𝑎𝑗𝑎̅𝑡𝑎), and

Karma-Result (𝐾𝑎𝑟𝑚𝑎 − 𝑉𝑖𝑝𝑎𝑘𝑎) from twenty-four causal relations in BTM [16]. This

was the set that has explained the process in the human mind better. This has been

explained in detailed in the chapter four.

An inspirational example that has displayed the nature of the human mind is discussed

next. Let’s think about the two cases, where a student, and a senior professor who are

preparing for and do their presentations. When, the student does the presentation, in most

of the cases, he needs external aids such as PowerPoint slides to drive through his own

knowledgebase. Through series of refinements, he can well organize his slides using set

of tactics and improve his own ability to do the presentation accessing his knowledgebase.

In the case of a senior professor, he has such a well-organized smaller tactics memory,

which enables him to clearly conduct his presentation accessing his larger

knowledgebase. This ability and the smaller tactics memory has been improved

throughout the years. All such skilled workers do in the same way. Therefore, one can

believe the existence of a smaller tactics memory in the human mind. This smaller tactics

memory gradually updates through continuous processing, and allows access to the large

knowledgebase, is a part of processing, and improves the processing back. Again, it is

obvious that this smaller tactics memory has been different from the smaller memories of

the current computer such as caches or registers [18]. Through this continuous processing,

human can improve the processing power, accuracy and the quality of the work they do.

Then, this would be a new approach for computing to improve computational efficiency.

9

This processing model can improve the processing power, quality, and accuracy of the

computation done by the computer with the support of an evolving smaller tactics

memory, which is a result of continuous processing.

Figure. 1.1: Where the proposed model is placed

In software level, it is an evident fact that the efficiency of processing hugely affected by

the actions and the corresponding states in the process flow. After critically studying

memory and processing models as mentioned earlier, this research has introduced SSPM

[16] to the software level as seen in the Figure. 1.1 to produce the conditionally evolving

smaller tactics memory. The actions that are the constituent of the transitions of the new

processing model were formed by utilizing the above mentioned fifteen causal relations.

Then, “New,” “Ready,” “Running,” “Blocked,” “Sleep,” and “Terminate” are the

processing states of SSPM [16]. Here, the ‘Terminate’ is a new state and an operation

reaches this state if there is neither more modifications apply on that operation nor related

inputs come in. Then, instead of ‘Exit’ state in the five-state processing model, here is the

‘Sleep’ state. After finishing a particular execution, an operation reaches the ‘Sleep’ state,

but it is not removed out from the system, and used for the organizing the system further.

In addition to that, the ‘Ready’ state of the new model is more complex than the ‘Ready’

state of five-state model as it involves in organizing. This organizing is an internal

process, which includes classification, prioritization, and deletion. Through this, the

system and the smaller tactics memory gains improvements. Accordingly, the New to

10

Ready is a modified transition, while the Ready to Ready, Sleep to Ready, Running to

Sleep, and Ready to Terminate are new transitions. The six-state continuous processing

model (SSPM) has three characteristics, which can be used to distinguish it from other

existing computing models. Those are the internal and external processes, continuous

processing, and conditionally evolving memory.

This model with the above characteristics and the actions have been incorporated into a

Fraction Calculator (SSPM-FC) [16], quicksort algorithm (SSPM Sorting – particularly

SSPM Insertion), quadratic equation solver (SSPM-QES), and in a simulated process

scheduling program (SSPM-PS). However, it has been done a great work on FC as it has

matched better with these conditions and circumstances of the proposed model than the

other systems. SSPM Sorting allowed to compare the model with existing computing

models. This SSPM-FC solves equations of fractions with the operators +, -, *, and /.

How the three characteristics have been implanted in the SSPM-FC, is briefly mentioned

below.

Internal and External Processes - External Processes are initiated due to the user inputs

(fractional equations inserted by the user). Next, the internal processes are initiated due

to the system generated fractional equations in the absence of user inputs (external

inputs). Meanwhile, modification-related actions (tactics) that are applied to the system

would belong to the internal process category.

Continuous Processing - As a result of the internal and external process, there is no lapse

between two processes. Hence, it establishes the continuity of the system.

Conditionally Evolving Smaller Tactics Memory - For the simulation purpose a text file

has been used as the smaller tactics memory, through which can call instructions as per

the queries. Due to the above mentioned inputs, and relevant internal and external

11

processes including modification processes, this smaller tactics memory get improved up

to a certain level over program execution cycles.

It is an important fact to remind that the entire processing model in the above mentioned

programs are managed through a smaller tactics memory with a set of tactics. Finally, all

these were tested with many examples and evaluated. The next section has briefly

mentioned the respective testing and evaluation scenarios that has been taken place.

1.7 Testing and Evaluation

The SSPM-FC, SSPM Insertion, and SSPM-QES, in which the new model is

incorporated, has been executed for many rounds with sets of inputs. Meanwhile, the time

taken for the computation of each input has been recorded in nanoseconds. All the cases

were tested to check whether an improvement has gained by creating modules for

frequent operations over program execution cycles. The time values were collected for

the execution of each equation in the same set of equation before and after do the

modification. Then, the paired samples of time values were statistically analyzed with the

paired-t-test after checking the samples for the applicability of the test in the samples.

Finally, with the SSPM-FC, SSPM-QES, and SSPM-S-Equal, it could prove that the

system gain improvement over generations of program executions by generating modules

for frequent operations. There was a second scenario for the SSPM-FC that was to test

the ability to enhance efficiency by deleting inefficient or unnecessary items. The testing

process was conducted similar to the first scenario. Here also, it could prove that the

system gains improvement over the original case. However, with regard to the SSPM-S-

Insertion case, there were some limiting factors that affects performance such as number

of elements in the lists and standard deviation. Further, both the SSPM-Sorting cases were

compared with other quicksort programs developed with different computing models

such as incremental computing, self- adjusting computing, genetic algorithmic approach,

parallel computing, and dynamically tuned library for sorting. Respective results are

12

reported in the chapter six. Moreover, the model has been theoretically simulated in a

Non-deterministic Turing machine (NTM). Afterwards, a Boolean expression ET,w has

been derived from the transitions and proved the satisfiability and NP-Completeness

using Cook’s theorem [56]. Therefore, it could prove the appropriateness for the real-

world in theoretical level.

1.8 Resource Requirements

In implementing the proposed computing model in a SSPM-FC, SSPM-Sorting, and

SSPM-QES, NetBeans 8.1 has been used with Java 1.7, MySQL 5.1, Notepad++. Further,

the statistical analyses have been conducted using Minitab 17 and Minitab 18, with the

support of EXCEL. In addition to those, the model has also been incorporated in a

simulated process scheduling system using Turbo C. Moreover, JFLAP has been used to

draw the transition diagram of the model simulated in a Turing Machine.

The SSPM sorting was tested in both Intel(R) Xeon(R) CPU ES-2623 V3 @ 3.00 GHz

with Turbo Boost up to 2.0GHz with 16GB cache size, 64B cache line size and 4 registers

in SUSE Linux (Server), and Intel(R) Core i7-8550U 1.8GHz (2GB VRAM, 8 GB DDR3

L Memory, and 1000GB Hard Disk) with Turbo Boost up to 4.0GHz with 4608MB cache

size, 64B cache line size and 8 registers in Windows 10 operating system (Laptop).

Moreover, initially, all the cases were developed, experimented and statistically analysed

using the above mentioned laptop.

1.9 Contribution to the Field of Computer Science

The model SSPM has the ability to improve the speed and the quality of program

execution in subsequent program execution cycles due to the conditionally evolving

smaller tactics memory through continuous processing. Therefore, SSPM is most

applicable to enhance the processing speed and quality of continuously processing

systems such as the systems which require continuous developments or monitoring.

Further, the model can be implemented in both the hardware and software levels.

13

Ultimately, the SSPM where the memory is modelled as conditional phenomena, will

make a paradigm shift in the field of computer science as it provides an alternative

approach for computing than the VNA.

1.10 Organization of the Thesis

Meanwhile, first chapter has given the introduction for the thesis; the rest of this thesis is

structured as follows. The chapter two critically describes the existing computing models

that have been applied to the current computer to enhance performance in computing.

Then, the chapter three discusses the theoretical framework provided by the Buddhist

Theory of Mind, and other real-world inspirations for the work appeared in this thesis.

Further, it mentions some existing memory models and the philosophical approach of

those. Next, the chapter four presents the novel approach towards introducing the new

computing model, which imitate the human mind to enhance the computational

efficiency. Later it has discussed how the Buddhist Theory of Mind has been exploited in

modelling new continuous processing model, while the implementation details of the

proposed computing model in different prototypes has been mentioned at the end of this

chapter. The chapter five explains how the systems work. The next chapter reports the

testing and evaluation process, and respective results of the empirical evaluations and the

formal verification. Finally, the last chapter concludes the work, discussing the results of

formal verification and the experiments, applicability of the proposed model in the real-

world, limitations and its future.

1.11 Summary

This chapter presented the aims and objectives of this research that has introduced a

continuous processing model for computing. Then, it has explained the background, the

motivation, and the based curiosity for this work, emphasizing the significance of the

work. Further, this has concisely reviewed the current computing models, while briefly

explaining the proposed computing model, implementation, testing and evaluation with

the philosophical, theoretical and real-world inspirations for the model. The resource

14

requirements were also mentioned in the latter part of the chapter. Finally, it has presented

the order of the chapters of the thesis. The chapter two examines the existing computing

models in hardware level and software level in deep, but in a more focused manner.

15

CHAPTER 02

REVIEW OF MEMORY AND PROCESSING MODELS

2.1 Introduction

The previous chapter briefly described the entire research work reported in this thesis. It

initially started with mentioning the aims and objectives of the research. Next, it has

briefly discussed the background and the motivation with the utmost curiosity. Then,

relevant software techniques of memory and processing in current computing models has

been discussed. After that, the proposed model SSPM was described with the new

approach, conceptual aids, other inspirations, testing, evaluation, and resources

requirements in short. This chapter review different approaches for the memory and

processing those were applied in solving natural problems efficiently and improving

performance of computing. As introduced in the last chapter, these approaches were two

fold. One is hardware level and the other is software level. In hardware level,

improvements were introduced separately to the memory and the processing. Further, the

connection between the memory and processing was also improved using different

technologies. The memory and processing models in the incremental computing, self-

adjusting computing, parallel computing, multi agent technology, evolutionary

computing, neural computing, quantum computing, and dynamically tuning with

algorithmic choice in VNA are discussed under the software level approaches together

with the processing models in operating systems.

2.2 Hardware Improvements

The hardware level improved in different ways to expand the power of processing in the

computer. Those improvements are based on the memory and processor separation [3].

In the Memory side, Static Random Access Memory (SRAM), and Dynamic Random

Access Memory (DRAM) carried a huge burden in enhancing the computational

performance as the memory lead the ways to enhance computing power [57]. Among

others, the spin-transfer-torque magnetic random access memory (STT-MRAM) [58],

16

PCM [10], Conductive Bridge Random Access Memory (CBRAM), and RRAM

contributes for a substantial performance improvement in the computing [57]. Further, to

reduce the memory-processor gap, different fast memories such as caches (L1, L2, L3,

[59] and L4 [60]) and registers were introduced and those act as a temporary storage in

between the processor and the RAM, keeping the frequently or recently requested data to

enhance the memory access. Further, internal caches and registers have been located on

the processor chip, possibly making the quick access from the processor itself. Further,

the communication busses were introduced with increased bandwidth [1], [12] and

shortened path lengths [1] to increase data transferring ability. Moreover, researchers

tried to introduce diverse communication patterns [61] as well. In one way, the computing

performance was enhanced by applying different heat spreading or cooling techniques on

RAM [62]. In another way, RAMs were introduced by lowering the Column Address

Signal (CAS) Latency (CL) [62], where the CL referred to number of clock cycles taken

to access the information stored in a single column [63]. However, in some high

performance RAMs like DDR4, the CL is higher than DDR3 RAMs due to the high

storage density of the DDR4 RAM [63]. Another mechanism in enhancing the RAM

performance was to maximize the sub-word operations and minimize the data transfer

between registers and memory [7]. Meanwhile, processing in memories [64] and three

dimensional (3D) memories [57] has become a trend in enhancing the computational

efficiency [4]. Those can reduce the unnecessary data transferring between the memory

and the processor [64]. Further, the near-DRAM acceleration architecture [65] is such a

new attempt to reduce data movement by bringing the processing near to the memory

with 3D stacking. Despite this closer integration, the separation between the processing

and memory is still remains [58]. With the time, researchers started to think in fading this

separation line between the processing and memory [4] imitating the human brain. So far,

the researchers have done their best to reduce the distance between the processor and the

memory to enhance the performance of computing. Hence, it was apparent that there

exists a separation between the memory and the processing, and it is different from how

the human execute instructions in his mind.

17

Some other, hardware level improvement is the use of parallel computing. To accelerate

processing in the computer, multiple cores were introduced [66]. Further, it has been

introduced dedicated programmable logic chip, which is called as the Graphical

Processing Unit (GPU) [67] to work with images, videos and animations efficiently.

Generalizing the GPU, it has been introduced general-purpose computing on graphical

processing unit (GPGPU) [68] to improve performance of not only computing graphics,

but also the entire computing system [67]. In multi-threaded architectures, the bandwidth

has become a severe bottleneck [9] even in GPGPU, and co-scheduled applications

significantly reduce the overall performance [8]. Further, the strength of the memory was

suggested to be determined by last-level cache misses per instruction [69]. However, the

performance of computing was not only dependent on the misses per instruction (MPI),

but also depend on the bandwidth achieved by the memory [8]. However, some

researchers proposed in using only one memory with a one level cache [70] for the GPUs.

An interesting application-aware memory scheduler with high performance for GPU has

been introduced in [8]. In doing so, they have introduced two memory scheduling

approaches, namely, Instruction weighted speedup Targeted Scheme (WEIS), and

Throughput Target Scheme (ITS). In the first case, applications with lower MPIs are

prioritized. For that, they have recorded the number of instructions executed. In the

second case, the applications with lower bandwidths were prioritized. Here, the requests

were served picking up the oldest requests from the highest priority applications. Then,

improving the GPU architecture further, the CUDA architecture has been introduced

allowing the speed up of the tasks with severe computing loads. Parallel computing is a

technique that can achieve performance improvement through parallel processing. With

the parallel computing, it was possible to execute an application on many processors [24]

speeding up the processing. This parallelism can be achieved in different levels such as

data, instruction, process, and thread [71]. In addition to that, the threads or parallel

algorithms have been used to enhance the performance of programs [72]. For example,

18

Quick sort algorithm was improved such a way. However, major focus of this research

was not under the parallel computing concern.

In every year processing speed is improved according to the Moore’s law [14].

Uninterruptedly, these hardware developments will cross the boundaries of the Moore’s

estimate through the move of nanotechnology into the production of computers.

However, the memory arrangements and access mechanisms are still considerably slower

than the processor [71]. Further, the distinction between the memory and processing is

clearly visible. This is one of the major obstacle in gaining the performance in the

computer.

Then, the other obstacle in gaining the performance of the computer is insufficient

software level improvements to cope with underline architecture and their own separated

memory and processing models. The coming section has been allocated to discuss on

memory and processing techniques and respective modifications of some different

computing models.

2.3 Improvements for Memory and Processing in Software Level

The researchers in different fields of computing tried to address memory-processing

issues and improve computational efficiency in the inherent ways. The study of these

different approaches provided a sound technological knowledge and different aspects to

be concerned about, when researching for a newer approach for computing. Therefore,

under this section it has been discussed about different computing models such as

processing models in operating systems, incremental computing, multi-agent technology,

evolutionary computing with adaptations, and neural computing.

2.3.1 Processing Models in Operating Systems

As an aid for designing a processing model and understand actions and states, operating

systems’ (OSs’) processing models has also been studied. Further, those models provide

19

an idea of the clear-cut difference and the particular relations between the actions and

their respective states. Moreover, the knowledge of the evolution of the OSs’ can be

applicable not only to introduce newer processing models to OSs, but also it provides a

greater insight into introducing processing models for different contexts or for entire

computing system.

2.3.1.1 Two-State Model

This model consists of two processing states as Running and Not-Running and are

determined such a way that the process is being executed by the processor or not. Further,

there is a single first-in-first-out queue to hold processes, which are not running. This

queuing discipline is good if all the processes in the queue are ready to execute[22].

However, sometimes the queue consists of both the ready and the blocked processes.

Then the dispatcher, which switches the processor from one process to another, must find

not only the first-in process, but also the process, which is ready, from the queue. Thus,

two queues such as ready and blocked were introduced to the processing model by

splitting the above queue to solve this issue, hence introducing the three-state model.

2.3.1.2 Three-State Model

In the three-state model, the processes in the ready queue are in Ready state, the processes

in the blocked queue are in Blocked state and the executing processes are on the Running

state. As such, there exist three states [23]. Those states are the most important states and

are available in each and every model which are discussed hereafter. However, in this

model, there was no mechanism to store information related to the states after end of the

execution of processes and before load the newly defined process into the memory

(activated processes). Next, the researchers introduced five-state model including these

missing details.

2.3.1.3 Five-State Model

This model has New, Ready, Running, Blocked and Exit states [22]. Here, they have

20

introduced two new states New and Exit to the above three-state model. A process is in

New state if it is not added to the group of executable processes and not loaded into the

main memory, whereas a process can be in Exit state if it is released from the above group

due to a termination for a particular reason.

These two states are useful in managing the processes, as with the New state, it is possible

to limit the processes available in the main memory avoiding the main memory

limitations, and as the details of released processes which are in Exit state, are

unnecessary, then those can be removed freeing the memory.

However, this model produce processor idling. Therefore, as a solution Seven-state model

has been introduced.

2.3.1.4 Seven-State Model

Let us consider the scenario, where it was required to load the process to be executed next

with the highest priority. But, if the main memory was completely filled by loading

blocked processes and no virtual memory exist, then, until occur the waiting event, the

processor will be idling. Due to this idling, The Input/Output (I/O) activities were highly

affected and delays occurred in the memory access. To overcome this issue, the two

Suspend states [22] such as; Ready/Suspend and Blocked/Suspend were introduced and

the model was named as Seven-state model. With this model it was able to keep highest

priority processes in the main memory and send lower priority processes into a secondary

storage. This swapping slightly enhanced the performance of the system, as disk I/O is

normally quicker than the rest of the I/O. However, the I/O activities and the delays exist

in memory access are still required to be solved.

2.3.1.5 Processing Model in Linux OS

Since, the Linux operating systems also has a virtual memory [73], no suspended states

were used. Although, this consists of the three principal states, the Blocked state is

21

splitting into two states such as Uninterruptible, and Interruptible [22] depending on

different conditions. Further, there is another state called Stopped, similar to the Blocked

states, however, can be resume only by a positive response received from a different

process. Finally, this model has another state with the name Zombie [22], which is similar

to the Exit state, but keep the task structure in the table of processes. The child processes

are in Zombie state if those died before its parent process dies. Otherwise, the parent

processes cannot be survived. Once the parent process dies, the stored task structures of

relevant Zombie child processes are also deleted. Such a way the Linux OS consists of

five major processing states.

2.3.1.6 Kernel Thread Model of Windows OS

The states of the thread model of Windows OS is categorized into two categories such as

Runnable and Not runnable, where ‘Ready’, ‘Standby’ and ‘Running’ are Runnable states

and ‘Transition’, ‘Waiting’ and ‘Terminated’ are Not Runnable states. Here, the two

special states are ‘Transition’ and ‘Standby’. In fact, the processes in ‘waiting’ state in

traditional processing model has been divided into ‘Waiting’ and ‘Transition’ states.

Further, a thread is in ‘Transition’ state, if the thread is ready to run itself, but is lack of

the resources such as space [22]. In addition to that, the traditional ‘Ready’ state is

separated into ‘Ready’ and ‘Standby’ states, where the thread to be executed next with

the highest priority is in the ‘Standby’ [22] state. Therefore, this model has six states.

2.3.1.7 Kernel Thread Model of Solaris

In this Model, the terms used for the states are slightly different from the traditional terms.

For example, instead of ‘Ready’ state, this has ‘Run’ state, then for ‘Running’, this has

‘OnProc’, and for ‘Waiting’ or ‘Blocked’ this has ‘Sleep’. Further, ‘Stop’ is also a

‘Blocked’ state, where the threads, for example, which are stopped for debugging, can be

in ‘Stop’ state. However, the ‘Zombie’ state of this is similar to the ‘Zombie’ state of

Linux. Additionally, this model has a different state called ‘Free’, in which the threads

stay if they have finished execution, released the allocated resources and ready to be

22

removed [22].

In previously discussed models, the processes in the states that are related to the ready/

blocked and running are activated and stored in the memory. Rest of the processes are

stored in the secondary storage. Further, it could be summed up that the memory

management ability has been evolved from one OSs' model to its next improved state.

These memory management capabilities can be used to manage and support processing.

The following Table 2.1 discusses the advantages and disadvantages of the processing

models of operating systems.

Table 2.1: Advantages and disadvantages of Processing models in OS.

Processing

Model

Advantages Disadvantages

Two-state

[22]

States are determined such a

way that the process is

being executed by the

processor or not.

Overhead for dispatcher to check

not only the first-in process, but

also the ready and blocked

processes.

Three-state

[23]

Separate queues to store

blocked and ready

processes.

No mechanism to store information

after the end of processes and

before activate the processes

Five-state [22] New states New and Exit to

store information before

activate and after ending the

process

limit the processes available

in the main memory

Produce processor idling: Delays

occur in input/ output activities and

memory access

Seven-state

[22]

Keep highest priority

processes in main memory

and send lower priority

processes into a secondary

storage. Disk I/O is

comparatively quicker.

Delays exist in memory access are

still needed to be solved.

23

Linux,

Windows

Thread

Model, Solaris

Kernel Thread

Model

Process and memory

management capabilities

were improved

Neither the processing model nor

its access mechanism nor

functionality was improved

However, it was visible that neither the processing model nor its access mechanism nor

functionality was improved during the operating systems’ orchestration of hardware,

software, and program execution.

Next section discusses on an improvement gaining computing model. That is Incremental

Computing.

2.3.2 Incremental Computing

Through, the incremental computing, the efficiency of computation can be enhanced,

when the computation is recursive or iterative and acts on the inputs, which differs from

each other only to a certain extent. In fact, the authors of [52] has categorized the attempts

on incremental computing into three categories, which includes incremental algorithms,

incremental execution framework, and incremental-program derivation approaches.

Under the above third category, the work appear in [74] has introduced an all-inclusive

and formal transformational method, which is equally applicable in all the languages.

Further, a prototype system that is called as CACHET [75] has been designed and

implemented. It was a program transformations system and was semi-automatic. Here,

the incremental program was derived through previously stored result of the program,

cached intermediate results and other auxiliary details. With compared to the other

program transformation systems, CACHET allowed to use all the functional facilities

related to program execution easily.

The incremental computing allowed in efficiently executing programs [29] by only

updating the portions of the outcome that are affected by the altered inputs [29], [76].

24

Moreover, an Incremental Compiler can be considered as an example. Let us think it

compiles a certain program and produce an object file. Later, it compiles the same

program after adding few more lines to the program. Then, the incremental compiler will

execute only on the newly added lines and will update the object file accordingly.

In fact, the incremental computing requires to handle larger number of intermediate

results and to cache them, which was quite difficult. To mitigate this a technique called

cache-and-prune [77] was introduced, where the cache achieved this statically through

program transformations.

There were different branches of incremental computing, such as Self-Adjusting

Computing, Imperative Self-Adjusting Computing, Incoop, ADAPTON, and ithreads.

Each of the incremental computing mechanism is separately discussed below.

2.3.2.1 Self-Adjusting Computation

Self–adjusting computing (SAC) is an incremental computing technique, in which the

computation adapts to the external change of the input data [78]. This technique has been

proposed, so to update output incrementally [50] through dynamic dependency graph

(DDG) and memorization [49]. Further, these two approaches have been used to identify

function calls that are related to the changed input and required to re-execute through

change propagation. If the reference modifiers are write-once, function returns no value,

and function access non-local computations, then the DDG can be created by tracking

memory operations and function calls. However, in SAC data reside in the memory can

be high as the memory contains the execution traces. Therefore, the SAC is an overhead

for garbage collector GC and for counters. In eliminating this problem, a memory

management mechanism [48] for SAC was introduced. This memory management

technique has three states such as Free, Live, and Dead. The user can allocate memory

using SAC memory allocator and SAC automatically free memory. Finally, the SAC with

this memory management technique was compared with other SACs, which resulted that

25

due to this memory management, 10% in timing improvement and 75% of space usage

reduction.

2.3.2.2 Imperative Self-Adjusting Computing

Imperative self-adjusting computing is the generalized form of self-adjusting computing,

and support for imperative programming [79]. In contrast to self-adjusting computing,

this allows to write modifications to modifiable reference for multiple times, therefore no

restriction for the writing into the memory. This research has introduced a new consistent

language called Self-Adjusting Imperative Language (SAIL). Through this, it was able to

trace all the dependences, while reading the content of a modifiable and the expressions

bound to particular contents. However, with compared to the purely functional languages,

the SAIL is simpler. Without any difficulty, it can write to memory. Further, the logical

relations of this carry out location bijections, hence managing the unpredictable effects

of memory assignments. It was possible to improve the efficiency of change propagation

in the traditional self-adjusting computing.

Next section discusses about another approach of self-adjusting computing, that is

Incoop.

2.3.2.3 Incoop: MapReduce for Incremental Computations

Incoop [80] was an all-purpose MapReduce framework for incremental computing and it

was a well-tuned, output-reuse, efficient technique that was applicable to respond to slight

input changes and update the output automatically. By dropping the chunking of job and

doing constant partitioning of inputs Incoop could incrementally enhance the efficiency

having the insight from the [50] and CEAL [81]. To further enhance efficiency, the

Incoop uses memorization aware scheduling technique, which could control the data

passing across the system as the memorization server had an in-memory-key-board store.

In addition to, that it could use locality of previously stored results. Moreover, the

chunking can be reduced by dividing jobs into smaller jobs without excessively accessing

26

data.

2.3.2.4 ADAPTON – Compassable, Demand-Driven Incremental Computation

The traditional incremental computing suffers from several issues such as, IC is incapable

in performing well, when the interactions with the program are unpredictable or when the

out-layer tries to orchestrate the inner computation based on dynamic information. In fact,

this inner layer does the computations, the results of which, are changed later. Then, the

outer layer is the external observers. The ADAPTON [29] was the solution for the above

mentioned issues, where it re-computes only the traversals affected by the demands on

the outputs triggered by the outer layer. Specifically, it is a library that enables this special

incremental computing and uses a demanded computation graph to track changes and

perform lazy evaluation. Further, this work has compared the results obtained by

executing several sorting algorithms through lazy and eager evaluation, calculating the

speedups and measuring the memory usage. Best cases were selected upon the highest

speedup and less memory consumption, where the lazy evaluation was the best with

ADAPTON in most of the tested cases.

2.3.2.5 iThreads: A Threading Library for Parallel Incremental Computation

This is another application of self-adjusting computing where concurrent dynamic

dependency graph (CADDG) has been used to store data and relevant computational

dependencies [82]. The computation is divided into sub-computation units and those are

reused or recomputed. Further, the change propagation is applied through CDDG and

parallel incremental computing. This approach supports shared-memory and multi-

threaded programming. In addition to that, iThreads use Release Consistency [83]

memory model as the memory model hugely affect the performance. Although, it is an

old memory model, this allows asynchronous granularity of memory component at given

points on sub-computations reducing the restrictions that can be imposed on memory

access with more accuracy and liveness.

27

2.3.3 Multi-agent Systems and Evolutionary Computing

Multi agents provide the modularity with autonomy. And also, an intelligent software

agent serve the environment by achieving the desired objectives [26]. There are two major

approaches such as agent-centric and organization-centric, which have their own pros and

cons [84]. Moreover, Multi-agent Systems (MASs) can be used in expanding the existing

software paradigms [85]. In MAS, sometimes, with compared to the benefits and

emergent solutions that one can obtain from MAS, the inefficiencies could be more

weighted, as the system has to handle enormous number of agents work together [85].

However, there is an interesting member in the MAS concept. That is the logical agent,

which has more similar features to the human. All the time, this exercises with the

memory [37], experience [86], and the adaptation or learning. There are different

approaches for the memory management in Artificial Intelligence. When, introducing

theories for designing memory of logical agents, most of the researches were based on

the STM, LTM [41], and working memory [42]. In [87], and [88], the memory is

considered as a “reasoning process”, than a mere location in the system. They suggested

that the LTM stores the external information, results of agent’s own elaborations of

perceptions, experience, and previous internal processing. Specifically, an agent’s

memory is strengthening a notion or a process of learning [87]. This proposes a

framework for handling the agents’ memory, where the memory is produced, customized,

and maintained rendering the current situation. To represent the situation, they have used

present events. An agent can agree to change due to external changes as well as its own

preferences about how to proceed.

Major concept behind in evolutionary computing is natural evolution [28], which is based

on Darwinian evolutionary system (EC) [43]. There, a natural selection occurs in a

population with restricted resources, where a competition exist in acquiring resources

[28] (the fittest one will survive). Recently, researchers have been applied genetic

algorithm (GA) approaches in different fields [32]. For instance, GAs have been applied

in OS to optimize the waiting time [46] or enhancing the throughput or CPU utilization

28

[45]. Further, EC also have been applied in optimizing the programs by adapting best

algorithms based on the environmental conditions [89]. In addition to that, those have

used ‘crossover’ or ‘mutation’ methods. Moreover, it could find an interesting component

that was considered in particle swarm optimization, it is the velocity component [90]. It

records the memory of previous particle movement, the performance of each particle is

determined and used in determining the best particle and the velocity of the particle for

the next move. This computation totally relies on the previous knowledge of the particle.

Another case found where the evolutionary computing has been used to improve the life

span of the memory devises through several bit detection and correction [91].

Such a way, it could find many applications of evolutionary computing [92] and MAS in

solving problems efficiently. Further, it could find a combined approach of Evolutionary

Computing and MAS in order to improve the state of a MAS, considering the stability

and fitness of agents [93]. In that scenario, the probability of being in a such state can be

varied with time and other conditions and therefore solely the fitness value determination

was not enough.

However, it was difficult to find cases where these were used in enhancing the power of

computing. For example, MAS was used to create evolving knowledgebase [94] to share

among team members, though it is not contributing to enhance computational efficiency

of the computing system. As well as the MASs with large number of agents, EC also

requires more resources, both the memory and processing and those are based on the

VNA where the memory is separated from processing.

2.3.4 Neural Computing

If a neural architecture has to work in a dynamically changing environment, then it

requires an STM that attach to the corresponding past event and a coordinator to predict

or classify those past event [95]. Further, they did a characterization considering the form

29

of the content and their adaptability, and this characterization was done according to the

depth and the resolution. Here, the depth is how far the memories back in the past. Then,

the resolution is the amount of stored information related to an element of an input

sequence. There were some memory models that have been applied in this context. The

first one was tapped delay line memory with low depth and high resolution (initially, the

memory was implemented through mercury delay lines [96] in VNA). In which, the series

of delay lines used to set a buffer to store most recent n inputs. Furthermore, this model

was extended with non-uniform sampling of past events. The second memory model was,

exponential trace memory with high depth and low resolution. Here, the strength of an

input dropped down, but not the content. However, there could occur information loss or

difficulty in extracting information. The next memory model was Gamma memory. This

is a continuum of memory from high resolution-low depth to low resolution-high depth,

formed with Gaussian kernel. Such a way, different memory models have been

introduced with respect to the most of the kernels, such as exponential and Gaussian. The

content of the memory should not necessary to be exact input sequence. The input could

be transformed and stored. Further, by adjusting the memory parameters, an adaptive

memory can be obtained. Moreover, this adaptive memory was capable of selecting the

most relevant portion of input in making predictions. However, there were limitations in

predictions were occurred. To improve the accuracy of the neural computing, neural

architectures were expanded with many hidden layers, introducing the deep neural

networks. When doing so more resources such as memory was required. One approach

to overcome this was dynamically allocating GPU memory to train deep neural nets [97].

Further, a processing in memory concept has also been used in this regard to address the

memory wall issue arise during neural computing with the use of metal-oxide resistive

RAM [98]. Moreover, to reduce deep memory problems in neural computing gated

recurrent memory unit with memory block [99] has been introduced further solving the

problems between the memory, processing and data management. This write and read

data to/ from the specific memory block in a way similar to the neural Turing machine

[100] that consists of neural controller and a memory bank. Further, the reading and

30

writing accomplish on a specific part of the memory while ignoring the sparse rest of the

memory.

The models such as parallel computing, Neural Computing and Agents are largely relying

on distributed processing, since the scientists believed that the performance could be

enhanced with such a decentralization.

2.3.5 Program Tuning with Adaptability

With this concept, it could automate the optimization of computer programs so to support

in adapting to different environments and to different requirements [101]. This is called

as autotuning. Further the choice of the best algorithm depends on the system load, input,

and hardware during the runtime [102]. Under this category there was a technique to

determine the best algorithm to suit to the inputs [103]. This method tackles the input

grouping, and classifier constructions with feature extraction in a different way using two

level clustering [103]. With this it could gain, a 3 times speed up more than single

configuration for all the inputs. Further, this speedup compared to the single level input

analysis was 34 times. In fact, most of the autotuners used in single projects were difficult

to use in an another project, as those were running with domain-specific information and

requires specific searching techniques. However, an OpenTuner [104] was allowed to

build domain specific, but multi-objective autotuners. There was a compiler with

extended language [105], which provides a fully automatic autotuning during compile-

time and install-time to accomplishing optimizations for variable accuracy algorithms by

achieving the target accuracy. Through autotuning, it could apply optimizations for

memory hierarchies [101]. Further, it should be noted that, when executing different

algorithms, those have different memory access mechanisms for each algorithm. The

locality of this memory access also affect the cache utilization as well as the performance.

Dynamically tuned sorting library [51] has the adaptability to the sorting techniques such

as quicksort and merge-sort depending on the input size, hardware architecture, and

standard deviation and the distribution of the input. They have concentrated on the

31

standard deviation, because it matters with the cache line sizes. Furthermore, there is

another approach which find the best algorithm through a competition by dividing

processing resources among algorithms and executing them in parallel [106], and it is

depend on the dynamically changing loads. This model was equipped with an autotuning

setup and particular splitting techniques. In most of such tuning cases, the tuning process

was done in black-box manner. In contrast, the white-box tuning process [107] has been

introduced in order to conduct in stepwise manner independently. Nevertheless, the

intermediate results are aggregated together. Further, the results that produce inefficient

computation can be eliminated during the process. Moreover, there could find different

concerns on applying autotuning to high performance computing [108]. There, they have

considered to apply autotuning when the context changes. For example, if the software is

installed in a different architecture or the nature of the input [109] is changed as discussed

in [51]. For different inputs, system can call libraries accordingly [103].

However, when rising the requirement of the automatic work, it generates overhead on

the system resources.

The Table 2.2 shows the advantages and disadvantages of the computing models.

Table 2.2: Advantages and disadvantages of Computing models

Processing Model Advantages Disadvantages

32

Incremental

computing [52]

(Update the Portion

of output affected

by altered input)

Efficiency of computation

can be enhanced.

Language Independent

Handles larger number of

intermediate results and

requires to cache them.

Larger number of function

calls for a small change.

Difficult to cope with broader

changes in input

Difficult to feed an output of

one algorithm to the another.

Lower performance since the

interactions with the program

are unpredictable

Domain specific.

Self-adjusting

Computing [78]

(Memory

Management)

Timing improvement and

space usage reduction.

Function calls are re-used: But,

a recall occur the other calls

between the current call and

the recalled function call are

deleted.

Incoop (Tuned

well) [80]

Well-tuned, output is

reusable

Applicable to respond to slight

changes in input data

ADAPTON (Uses

dependency graphs,

track the changes

and use lazy

evaluations) [29]

Can perform well, though

the out-layer tries to

orchestrate the inner

computation based on

dynamic information.

Not perform well for eager

total order evaluation.

iThreads (Parallel

Computation: sub-

computation units

are re-used) [82]

Supports shared-memory

and multi-threaded

programming, asynchronous

granularity of memory

component at given points

on sub-computations

Space and performance

overhead.

Current insertions and

deletions of changed data

produce displacement of

unchanged data.

Imperative Self-

Adjusting

Computing

(Generalised form

of self-Adjusting

computing) [79]

Write modifications to

modifiable references for

multiple times. Therefore,

no restrictions on writing.

The language introduced by

this is simple, but able to

trace all the dependencies.

Improve the efficiency of

change propagation

Efficiency comes only when

the number of reads and writes

of the modifiable are constant.

In general, this incurs a

logarithmic time overhead.

Since no restrictions on writes,

it can produce cyclic data

structures – therefore, difficult

to prove consistency.

33

Multi-agent

Systems

(Modularity and

autonomy) [26]

Framework for handling the

agents’ memory, where the

memory is produced,

customized, and maintained

rendering the current

situation.

Agree to change due to

external changes as well as

its own preferences about

how to proceed

As the system has to handle

large number of agents work

together it requires more

resources and cause for

inefficiencies.

Evolutionary

Computing

(optimize the

solution based on

the knowledge on

the object

considered for the

computation) [28]

Can yield solutions better

than the current solution.

Therefore has an evolving

knowledge base.

As it is necessary to work with

pools of larger data sets, this

requires more resources.

Improving the computational

efficiency is not a main

concern.

Neural Computing

(Use network of

neuron to solve

problems) [97]

Learn by themselves.

Networks can detect fault

neurons and missing

information and produce

output.

Suffer from memory wall

issues.

Heavily rely on the underlined

hardware architecture.

Needs more processing power.

Program Tuning

with Adaptability

(Automate the

optimization of

computer programs

to support in

adapting to

environment and

requirement

changes) [101]

Ability to select best

algorithms based on the

system load, input and

hardware during the

runtime.

Improve the speed of

processing.

Domain specific.

Dynamically

Tuned Sorting

Library [51] and

Sorting with

Genetic

algorithmic

Approach [89]

Select sorting technique

depending on the input size,

standard deviation,

distribution of the input data

and hardware architecture.

Inefficient computation can

be eliminated during the

Domain specific.

34

(Auto tuning

Techniques)

process.

Six-state

Continuous

Processing Model

(Modelled Memory

as Conditional

Phenomena)

Improve computational

efficiency over subsequent

program execution cycles,

organize memory, remove

overhead on memory,

improving the access to the

knowledge base.

prevents processor idling,

use the idling time to

improve the system, through

continuous processing.

2.4 Quantum Computing

Quantum devices are ultimately designed to be micro- or nano- and their functions are

accomplished by fine-tuning the laser pulses. In quantum computing, the alternative to

the bit is qubit. Further, A qubit is formed by the spin states denoted as 0 and 1 [110] that

are called as spin up and spin down respectively. In addition to that, the transitions

between the states are accomplished through the equilibrium of the atomic configuration.

The Nuclear Magnetic Resonance (NMR) was the first scheme that was used by the

researchers to illustrate the notion of quantum computing, and it is the most successful

schema so far. However, the NMR is difficult to be extended. The Superconducting

Quantum Interference Device (SQUID) is an updated level of NMR. But, on the SQUID

regard, the systematic awareness of the authors seems to be very limited.

The researchers are designing distributed computing [27] systems that use clusters

consisting of the strength of many processors to fill the demand entirely. Adding more

processors linearly increases the cluster's computing capacity. For every 18 months, the

computing power is doubling as per the Moore’s predictions. The doubling of the strength

of the capability for each new chip generation signifies [27] that nearly half as many

atoms are utilized per bit of data. However, this movement reaches the limit of one atom

35

per bit of data one day. Apart from the nanotechnology, the quantum computing also

provides the potential to go beyond. Since, the structure built up from qubits, the quantum

computers are powerful than the traditional computer. For example, the quantum

computers factorize larger numbers efficiently.

A few limitations [111] were displayed by the quantum computers. The first limitation is

the speeding up of the quantum computing was achieved only for the cases that have

fewer answers or even a unique solution. The second limitation is the quantum computers

may derive outputs that are fixed-points of a unitary operator. Stated in another way, the

Eigen states of unitary or Hermitian operator comes with Eigen value 1.

Still, not all these software solutions are capable of fully utilizing the underlying hardware

improvements. Even though, some of the above-mentioned software solutions display

some features of human mind such as some features displayed in logical agents, those

have the fundamental difference from the human mind where the memory is not detached

from processing in the mind. Further, those do not have a smaller compiler like tactics

memory, which grows and organizes over the time due to continuous processing, and

enhances processing as seen in the human mind.

2.5 Summary

This chapter has discussed the researches based on improving the memory and processing

in the computer, those provided the technical inspiration for the work reported in this

thesis. This analysis was done, having a particular emphasis on the memory. In hardware

level, the most of the developments were disjoint with regard to the memory and

processing separation. Further, different connection mechanism developments between

the processor and the memory were also discussed. Then, other than solving real world

problems, some software level models were introduced in trying to utilize the underline

hardware as much as possible. For examples, by reducing cache misses improving the

data locality, chunking the data so as to match with cache lines, and reducing the data

36

routing within the system. Next section, describes the philosophical approach towards

proposing new computing model.

37

CHAPTER 03

THEORETICAL FOUNDATION FOR THE NOVEL

COMPUTING MODEL

3.1 Introduction

The chapter two reviewed the technologies and computing models that have been

introduced to improve the power of computing. In most of the models, the memory and

the processing were treated separately and as raised by Gero [87] the word ‘memory’ is

used to denote a distinct place in the computer that stores data or instructions. In fact, the

human mind displays a different way of computing than VNA and it can provide accurate

solutions fast in a good quality as introduced in the chapter one. As per the arising

conditions, processes are continuously executed in the mind, and the human memory has

also been a result of this continuous processing. Further, The Buddhist Theory (BT) has

explained everything as conditional phenomena. In the same way, the BTM has also

explained how thoughts conditionally arise in the human mind and has described the

process in the human mind as conditional phenomena. Yet, BT has introduced every

effect has a root cause. Further, the relationship between the effect and the cause has been

beautifully explained in BT with a set of concepts called 24-causal relations. These causal

relations can be used to explain any phenomena, which includes the conditional

phenomena that forms the human memory. Therefore, this chapter has explained the

BTM and other inspirations, which has laid the foundation for the theoretical framework

of this research and has provided an insight to propose a new computing model.

Furthermore, it could find some evidences for the computer modelling of human mind

based on BTM. Moreover, some real-world scenarios have been interpreted showing the

evolving and continuous nature of human mind. Finally, this has mentioned some other

mind theories and has discussed the problems in implementable theories of mind.

38

3.2 Buddhist Theory of Mind

Buddhism considers the behavior as a result of relations. In last thirty years, new hope on

the applicability of Buddhism [112] into cognitive science has been utterly examined by

a rising number of established researchers such as Richard Davidson, James Austin,

Christopher de Charms, Jeremy Hayward, Daniel Goleman, Francisco Varela, Alan

Wallace, and Eleanor Rosch. The Buddhism brings extra value from the scientific

perspective, and from the virtuous perspective it gives realistic sincerity. The Buddhist

theory of mind (BTM) provides an all-inclusive theory on human mind that goes through

many intellectual jobs such as reasoning, remembering, and thinking [112].

According to BTM, human mind consists of a continuous thought-process. All 𝑉𝑖𝑛̃𝑛̃𝑎̅𝑛𝑎,

𝐶𝑖𝑡𝑡𝑎, 𝑀𝑎𝑛𝑎, 𝐶𝑒̅𝑡𝑎, 𝑁𝑎̅𝑚𝑎, 𝐶𝑖𝑡𝑡𝑢𝑝𝑝𝑎̅𝑑𝑎, are considered as similar terms [113] for

‘thought’ in 𝐴𝑏ℎ𝑖𝑑ℎ𝑎𝑚𝑚𝑎 (“the Buddhist analysis of mind and mental processes” [55]),

the distinguished (𝐴𝑏ℎ𝑖) teaching (𝑑ℎ𝑎𝑚𝑚𝑎) of load Buddha [55]. Further, from the

view of 𝐴𝑏ℎ𝑖𝑑ℎ𝑎𝑚𝑚𝑎, there is no difference between the consciousness and the mind

[113]. Moreover, the consciousness occurs in the cognitive process (𝐶𝑖𝑡𝑡𝑎𝑣𝑖𝑡̅ℎ𝑖) except

on the cases rebirth, death and life-continuum (𝑏ℎ𝑎𝑣𝑎𝑛𝑔𝑎), where those rebirth, death,

and life-continuum are process-freed [55]. In some references like [113], [53], [114], and

[115], this cognitive process is termed as the thought-process. Consequently, this research

refers the formation of the thought-process, which constitutes the mind, exploiting

twenty-four causal relations based on 𝐴𝑏ℎ𝑖𝑑ℎ𝑎𝑚𝑚𝑎 studies.

3.2.1 Thought-process

Thought-process is a conditional flow of thoughts (thought moments) arise due to five-

sense-inputs (external objects - 𝑏𝑎ℎ𝑖𝑑𝑑ℎ𝑎̅ 𝑎̅𝑟𝑎𝑚𝑚𝑎𝑛𝑎) and mind-input (internal objects

–𝑎𝑗𝑗ℎ𝑎𝑡𝑡𝑖𝑘𝑎 𝑎̅𝑟𝑎𝑚𝑚𝑎𝑛𝑎) [53] correspondingly forming two thought processes; five-

sense-door-thought process and mind-door-thought process. A thought-moment consists

of three sub-moments. They are genesis (𝑢𝑝𝑝𝑎̅𝑑𝑎), static (𝑡ℎ𝑖𝑡𝑖) and cessation (𝑏ℎ𝑎𝑛𝑔𝑎)

[113]. Further, thought moments arise together with mental factors (cestika) and they

39

exemplify the characteristics of thoughts. Once the process got a considerable input, the

thoughts are generating conditionally one after the other. An output from one thought

becomes the input to the next thought. If there is no specific input, automatically the

thought process is turned back to a neutral thought process which consists of a thought

called Bhavanga. This neutral process keeps the continuation of the thought process. Next

section has described the inputs for the thought process.

3.2.1.1 Input – Object (𝒂̅𝒓𝒂𝒎𝒎𝒂𝒏𝒂)

The five-sense-inputs are the objects coming into five physical sense doors, namely, eye-

door, nose-door, ear-door, body-door (skin), and tongue-door. Hereafter, these are termed

as external inputs. Then, the mind-inputs are the objects coming into mind door and

hereafter termed as internal inputs.

Further, depending on the nature of the objects, the presentation of the objects is six fold.

The internal inputs can be ‘clear’ or ‘obscure’, and the external inputs can be ‘very great’,

‘great’, ‘slight’, or ‘very slight’ depending on the visibility or audibility, or so on [55].

Such a way, six presentational categories of objects can be named.

In this research, for the simplicity, it considers only the clear internal inputs for mind door

thought-process and very great external inputs for five sense door thought process. The

next section has discussed the thought process arise due to the external input.

3.2.1.2 Five Sense Door Thought-process

Here, let us consider the eye-door process at the presence of a very great external input.

The other physical sense door processes are similar to this process. Figure. 3.1 depicts

how the relevant thought-moments arise in the eye-door thought-process, once a sense-

door got touched with an object. This consists of 17 thought-moments.

40

 1 2 3 4 5 6 7 8 9 ... 15 16 17 

*** *** *** *** *** *** *** *** *** *** ... *** *** *** ***

S
tream

 o
f L

ife-co
n
tin

u
u

m

P
ast L

ife-co
n

tin
u
u

m

V
ib

ratio
n
al L

ife-co
n
tin

u
u

m

A
rrest L

ife-co
n

tin
u

u
m

F
iv

e d
o

o
r ad

v
ertin

g

E
y

e C
o
n

scio
u

sn
ess

R
eceiv

in
g

In
v

estig
atin

g

D
eterm

in
in

g

<---Javana---> R
eg

istratio
n

R
eg

istratio
n

S
tream

 o
f L

ife-co
n

tin
u
u

m

Figure. 3.1: Eye-door thought-process

 (three stars denotes the sub-moments in each thought-moment) at the presence of a

very great object

The section 3.2.1.3 has discussed the thought process arise due to the internal input, while

the section 3.2.1.4 has explained the consequent mind door processes which occur

immediately after a five-sense door thought process.

3.2.1.3 Mind-Door Thought-process

An object sensed in the sense-door thought process previously, is become the input in this

process. But at this moment, the sense-door thought process is not alive and this input

object occurs due to the sanna, the mental factor. Figure. 3.2 shows the mind door process

at the presence of a clear object.

41

 1 2 3 4 5 ... 11 12 13 14 15 16 17 

*** *** *** *** *** *** ... *** *** *** *** *** *** *** ***

S
tream

 o
f L

ife-co
n
tin

u
u

m

P
ast L

ife-co
n

tin
u
u

m

V
ib

ratio
n

al L
ife-co

n
tin

u
u

m

A
rrest L

ife-co
n

tin
u

u
m

M
in

d
 d

o
o

r ad
v

ertin
g

<--Javana----> R
eg

istratio
n

R
eg

istratio
n

L
ife-co

n
tin

u
u

m

L
ife-co

n
tin

u
u

m

L
ife-co

n
tin

u
u

m

L
ife-co

n
tin

u
u

m

S
tream

 L
ife-co

n
tin

u
u

m

Figure. 3.2: Mind door thought-process (three stars denotes the sub-moments in each

thought-moment) at the presence of a clear object

3.2.1.4 Consequent Mind Door Process

After receiving an object though five sense door, as mentioned earlier, object enters into

a five sense thought avenue and starts five sense door thought process. However, it has

been difficult to identify the particular input unless it has been accompanied by four

consequent mind door processes.

The consequent mind door thought processes are;

1. Take the earlier received object (𝑡𝑎𝑑𝑎̅𝑡𝑢𝑣𝑎𝑡𝑡𝑎𝑘𝑎 𝑚𝑎𝑛𝑜𝑑𝑣𝑎̅𝑟𝑎 𝑣𝑖𝑡̅ℎ𝑖).

2. Combine the different parts of the object to form the complete object

(𝑠𝑎𝑚𝑢̅ℎ𝑎𝑔𝑔𝑎ℎ𝑎𝑛𝑎 𝑣𝑖𝑡̅ℎ𝑖).

3. Understand the meaning of the object (features of the object)

(𝑎𝑡𝑡ℎ𝑎𝑔𝑔𝑎ℎ𝑎𝑛𝑎 𝑣𝑖𝑡̅ℎ𝑖).

4. Understand the name of the object (𝑛𝑎̅𝑚𝑎𝑔𝑔𝑎ℎ𝑎𝑛𝑎 𝑣𝑖𝑡̅ℎ𝑖).

All these four thought-processes occur at the mind door. At the end of this continuous

processing, input is identified. However, once an object is received, the object can be

identified only if one has built up a related perception (𝑠𝑎𝑛̃𝑛̃𝑎) and related mental factors

earlier. The next section explains how the memory has been formed according to the

BTM.

42

3.2.2 Explanation for the Human Memory from BTM

‘Memory’, the term which is used today, is neither explained as a distinct component of

the consciousness nor a mental factor in 𝐴𝑏ℎ𝑖𝑑ℎ𝑎𝑚𝑚𝑎 𝑆𝑡𝑢𝑑𝑖𝑒𝑠. According to that,

memory is rather a complex process [114]. It starts with perception (𝑠𝑎𝑛̃𝑛̃𝑎) mental factor

by labeling (consequent identification) the incoming objects. Then, it conditionally

evolves with the thought (𝑣𝑖𝑛̃𝑛̃𝑎̅𝑛𝑎) and wisdom (𝑝𝑎𝑛̃𝑛̃𝑎̅), slowly establishing the

knowledge [54]. In [113] 𝑠𝑎𝑛̃𝑛̃𝑎, 𝑣𝑖𝑛̃𝑛̃𝑎̅𝑛𝑎, and 𝑝𝑎𝑛̃𝑛̃𝑎̅ are compared with a beautiful

example of an identification of a rupee coin. A toddler gets an idea of the coin regarding

its shape, colour, and hardness (that is similar to 𝑠𝑎𝑛̃𝑛̃𝑎). Then, an ordinary man knows

these external characteristics, as well as the use of the coin (this similar to 𝑣𝑖𝑛̃𝑛̃𝑎̅𝑛𝑎).

Finally, think about a chemist who knows all about the coin including how the coin is

made and its chemical composition (this is like 𝑝𝑎𝑛̃𝑛̃𝑎̅).

Figure. 3.3: Memory is a continuous thought process

With the five sense door process and consequent mind door processes as seen in Figure

3.3, one can remember the past things (received objects, related features, and actions) and

make judgments over present objects through perception (𝑠𝑎𝑛̃𝑛̃𝑎). Further, Some have

misunderstood the mindfulness (𝑠𝑎𝑡𝑖) in BTM as memory or it is mentioned as the closest

connotation for the memory. In fact, the mindfulness is the concentration on the present

and not relate to past [55]. However, it contributes to the identification of the object in

the memory process by attaching to the current object. Overall, memory is a conditionally

evolving process.

Five-sense-

door

Five-sense-door

Thought Process

Consequent

Mind-door

Process

Receive

Object
Identify

Object

… …

43

The next subsection discusses the most important set of concepts that has been utilized in

explaining the thought process that forms the human memory.

3.2.3 Twenty-four Causal Relations in BTM

The best references for the twenty-four causal relations could be found in [55], [116],

[117], [118] and [119]. The twenty-four causal relations, which can exist in between

causes and their effects [54], has been introduced in 𝑃𝑎ṭṭ𝑎̅𝑛𝑎 of 𝐴𝑏ℎ𝑖𝑑ℎ𝑎𝑚𝑚𝑎. Further,

those provides a thorough description on the different ways in which they interconnect

the mind and matter phenomena [55].

Now, consider the 24-causal relations in detail:

1. Root (What is the Reason/ What is the cause) (𝐻𝑒̅𝑡𝑢 Pacchaya)

 By means of which, an effect come to be

 By which an effect is established

 A serviceable or supportive factor

 States are entirely dependent on the simultaneity & presence of their respective

roots.

2. Object (The input) (𝐴̅𝑟𝑎𝑚𝑚𝑎𝑛𝑎 Pacchaya)

 Something which forms the condition for process (Memory as conditional

phenomena)

 Things on which the subject delights in or hangs upon are objects.

3. Predominance (Priority) (Rise of one thing, into which the others bend towards)

(Adhipathi Pacchaya): As;

 Concentrated Intension/ Wish (chanda)

 Energy/ Effort (viriya)

44

 Consciousness/ Thought (citta)

 Investigation/ Reasoning (vimamsa)

4. & 5. Proximity & Contiguity (immediacy) (Anantara and Samanantara

Pacchaya)

Any state of consciousness/ mental phenomena conditions the immediately following

state in the process of consciousness. (One thought moment perishes immediately

giving birth to another)

E.g. Visual Process:

Once the mind received an object, eye-consciousness occurs and then, instantly starts

investigating the object forming the mind consciousness.

Proximity (No interventions) – Conditioning state ceases to immediately arise the

conditioned state. (No Interval)

Contiguity – Conditioning state ceases to immediately arise the conditioned state with

fixed order. (arise suitably)

6. Co-nascence (Simultaneous Arising) (𝑆𝑎ℎ𝑎𝑗𝑎̅𝑡𝑎 Pacchaya)

A phenomenon, one forms a condition such a way that, simultaneously with its

arising, also the other thing must arise.

E.g. Feeling, Perception, Mental Formations and Consciousness (4 mental groups)

7. Condition by way of mutuality (𝐴𝑛̃𝑛̃𝑎𝑚𝑎𝑛̃𝑛̃𝑎 Pacchaya)

States may be causally related (support) one another for the emergence by the way of

mutuality.

8. Support (Nissaya Pacchaya)

 A phenomenon which aids another phenomenon by the way of foundation or base.

 Causal relation of dependence

45

9. Decisive-support Condition (Inducement) (Nissaya Pacchaya)

 A prominent supportive condition

 A strong inducement or cogent reason.

 By the way of object, proximity, natural decisive support.

10. Pre-nascence (𝑃𝑢𝑟𝑒̅𝑗𝑎̅𝑡𝑎 Pacchaya)

Previously arisen something which forms a base for another thing which is arising

later on.

11. Post-nascence (support & strengthen the preceding one) (𝑃𝑎𝑐𝑐ℎ𝑎𝑗𝑎̅𝑡𝑎

Pacchaya)

A necessary condition for the preservation of the existing thing

12. Repetition (increased power & efficiency) (𝐴̅𝑠𝑒̅𝑣𝑎𝑛𝑎 Pacchaya)

 Repeated practice, as a rule, leads to proficiency.

 By repetition one can acquire certain amount of skill in any particular thing.

(Students become proficient by repeated studies in lesson)

13. Karma (co-nascent/ asynchronous) (Karma Pacchaya)

Purposely produce something (generating condition) physically or mentally.

14. Karma-Result (Vipaka Pacchaya)

Mental states of resultant types of consciousness are causally related to coexistent

mental states & material phenomena by way of effect.

15. Nutriment (Ahara Pacchaya)

Mental contacts or impressions causally related to feelings, volitions or moral and

immoral actions to rebirth consciousness and rebirth consciousness to mind and

matter. (as material foods sustains the physical body)

46

16. Faculty (Indriya Pacchaya)

Conditioning state relates to conditioned state conditioned states by exercising control

in a particular department or function.

17. Jhana (Jhana Pacchaya)

Causally related one another and other concomitants (happens at the same time)

byway of close perception and contemplation. (carefully think for long time)

18. Path (function as a means for reaching a particular destination) (Magga

Pacchaya)

A way or road to achieve something, where the road consists of several path factors

which are causally related.

19. Association (Smapyuktha Pacchaya)

Certain mental states with distinct characteristics arise together, perish together, have

one identical object & one identical base, they are causally related.

20. Dissociation (Vippayuktha Pacchaya)

Helpful to each other being dissimilar

(different object, different base)

21. Presence (Atthi Pacchaya)

Exist in the present, condition for other phenomena. (Being pre-nascent or co-nascent)

22. Absence (in ceasing the current gives the opportunity to another to arise

immediately next) (Natthi Pacchaya)

Disappearance of the predecessor, the successor appears. Such is the causal relation

by way of absence.

47

23. Disappearance (Vigatha Pacchaya)

Own disappearance, gives the opportunity to the next mental state to arise.

24. Non-Disappearance (Avigatha Pacchaya)

Similar to the Presence

3.2.4 Exploiting Twenty-four Causal Relations in Explaining the Thought-

process

The explanation for the thought-process using an extracted set from twenty-four CRs of

BTM can be found in [55], [113], and [53]. Further, [53] provides a simple clarification

for the start and the continuation of thought-process. In the thought-process, a thought is

arising immediate after ceasing the previous thought with the help of the several of

twenty-four CRs. The reference [53] divides these relations into four groups ignoring

slight differences. First one is object relation. Without an object no thought-moment arise

and attributes of the object determines the nature of the thought-process. Then, the second

is actions (𝐾𝑎𝑚𝑚𝑎), where the resultant thought-processes of past-actions are produced,

and come into inquire and investigate. Thirdly, the Presence relation can be accounted.

In there, certain thoughts are appearing only in the presence of another thought. The final

one is decisive support relation, which discusses the dependence.

In between these, one can notice many further relations in the mind process [53]. For

example, ceasing thought-process conditions the incoming thought-process by the way

of proximity, contiguity, absence, and disappearance relations. Another is, previous

Karmic impulsive moment or impulsion (𝐽𝑎𝑣𝑎𝑛𝑎𝑠) conditions for succeeding impulsion

(𝐽𝑎𝑣𝑎𝑛𝑎𝑠) by the way of repetition relation. Moreover, co-nascent thought and other

mental factors are conditioned for each other by the way of association [55] and

mutuality. In addition to these, 𝐾𝑎𝑚𝑚𝑎 𝑉𝑖𝑝𝑎̅𝑘𝑎 relation produce the results of the

𝑘𝑎𝑚𝑚𝑎 (actions), asynchronously or at the same time.

48

Similarly, continuous memory process, which consists of several thought processes also

can be explained exploiting 24-CRs.

3.3 Real-World Inspirations

As mentioned earlier the human mind has an evolving memory that has been a result of

continuous processing over large knowledgebase according to the conditions arising [18].

The human mind has been become matured over continuous practice. Further, we have

observed the nature of human mind and its memory in several real-world scenarios [19]

and had a great insight for the research. By its very own nature and it is a well-known

fact that the things we process more are established in the memory very well and do again

faster. Because of this, the pupils who are preparing for the exams, take short notes

through which they can access the large knowledgebase on a particular subject.

Furthermore, they do tutorials and identify question and answering patterns.

Continuously practicing this process over revision cycles, they improve the ability to

answer the question papers as well as improving the short notes by adding and removing

entries. Meanwhile, they identify the relationships among knowledge entities and

question patterns as well. However, this short note never becomes the large knowledge

base itself. Some of the tuition masters teaches the techniques to successfully develop a

such a well-organized memory in the student by conducting revision classes. Through

this memory the student can drive through and operate on the large knowledgebase in

order to derive answers in the examination. Although the knowledgebase is rich, if student

does not have such a driving memory, the student cannot answer the questions in the

exam. Furthermore, this idea has been explicitly explained with another real-world

ordinary example. Let us consider a student who is preparing for a presentation on a

particular topic with a presentation program (slide show). Initially, the student refers the

large notes on the topic and add major points to the slides, which of those can be used to

refer the entire knowledgebase. In the cycles of preparation process, the student can do

refinements to the slide show by a set of tactics such as adding new points, deleting

49

unnecessary points, making links between existing points, and classifying and prioritizing

the points as necessarily. In this scenario, the slide show and the set of tactics can be seen

as a smaller tactics memory, which is gradually updated through continuous preparation.

However, it is not eventually filled up with entire knowledge base, but will fill up with

the label like points, which we can use to access the large knowledgebase. Finally, after

the preparation process and the day of the presentation, the student will be able to have a

well-organized slide show for his presentation. Here, the large notes on the topic and the

queries raised on the topic can be considered as the input to the continuous processing

and until new knowledge arrives, the refinement cycles should be carried out. The oral

presentation can be mentioned as an external output, and the changes made and the slide

show can be considered as an internal output of the process.

Moreover, this improving short note, preparing the slide show and the respective

scenarios are similar to a well-organized and always refining smaller tactics memory of

a veteran professor with a set of tactics, who does not need notes or presentation slides

when doing the lectures [17]. Further, he is capable in answering questions in a shorter

period than his students, it is not because of any secret, but it is because of this smaller

tactics memory which is organized over the past period of time. Another example is the

medical student vs veteran doctor, where the medical student has gradually developed a

well experienced specialist doctor. How is this happened? This scenario is a good

example to highlight the smaller compiler like human memory, which is gradually

progressed. This behaviour of the human mind has also well-displayed in all the other

skill workers such as carpenters, masons, and chefs. It is possible to draw a familiar

example from the home kitchen. Now, let’s think about a young lady, who cooks in the

kitchen for the first time with a book of recipes. Most of the time, in the first day, even-

after spending a lot of time, at the end of her venture, the kitchen and the all could be a

complete havoc. However, day by day she works in an organized manner by organizing

her memory after identifying ingredients, processing and cooking patterns with the

knowledge received from the recipes and the kitchen environment. The cooking is

50

involved with many sub tasks such as washing, peeling, cutting vegetables, seasoning

with spices, scraping coconuts, and making coconut milk, where the similar or related

things can be done together. For example, washing, peeling, cutting all the vegetables are

done together, and all curries are seasoned together. Automatically, the related tasks in

the cooking can be clustered and accomplished together. These task clusters can be

completed one after the other, accepting the output of one cluster processing to the next.

Further, preceding job should be accomplished before start the next job. Such a way she

uses tactics. The young leady become competent in cooking with her well-organized

smaller tactics memory with the tactics.

The continuous improvement of the human memory is taken place with the knowledge,

experience and the organization through the experience, knowledge and organization

through continuous processing with scrutinizing, identifying patterns, classifying,

prioritizing, retrieving, and other such tactics. In fact, its performance depends on the

input, health condition and the continuous processing. The next requirement was the

identification of necessary tactics, where the tactics are derived from an extracted set of

above mentioned twenty-four causal relations. Indeed, this concept has philosophical aids

from Buddhist Theory of Mind. It is an evident fact that human beings have exceptional

capabilities in executing instructions using the above mentioned small tactics memory,

which is different from the current smaller memories in the computer. In fact, in

developing hardware or software solutions in order to enhance performance of computers,

this concept has not been exploited yet. However, it could find a few efforts on computer

modelling of human mind based on BTM.

3.4 Attempts in Computer Modelling of Human Mind Based on BTM

Despite of the difficulty in finding computing models, which were introduced to improve

computational efficiency having inspired from the human mind, it was found few efforts

based on BTM in modelling the human mind. First, the thought process was modelled

with a transition matrix [19]. In this paper, the main focus was on the determining

51

consciousness (Figure. 3.1) of five sense door thought process. Further, the major

concerns were the Markovian nature of a thought process, influence of the immediate

thought process, and the response of the process with respect to the object. However,

object or the nature of the object was ignored. Finally, as a future work, this work suggests

to include the influence of the previous thought process for this modelling process. In

another research, two axioms were derived [20], where the first axiom based on the

concept that every thought process arises with respect to an input and the second one is

the mind probabilistically behave depending on the emotions. Finally, a theoretical basis

for the Artificial Neural Networks was set by these two axioms focusing on the number

of neurons and the weights (The work stated in[20] is initially started as an effort on

modelling the process in the human mind). Both of these models examines a special

potential between thought process. It is a limiting state. Further, it is one of the factors

that decides the inherent quality of a person and maintains one’s continuity of thought

process [19]. Moreover, this energetic condition of existence [19] facilitates subsequent

thought process to be begun. Next, OntoBM [15] is an ontology of human mind, which

models the thought process. This includes eighty-nine thoughts (Citta), fifty-two mental

factors (Cetasikas), and other thought associated influences. However, the interpretation

about the connection between the thoughts and the respective mental factors in this article

is arguing, where thoughts are explained as constituent of mental factors. In fact, thoughts

have the same base and the same object as of the mental factors, and the thoughts starts,

exist, and end together with the respective mental factors [19]. An expert system has been

developed [21] in order to find related mental states with respect to a thought moment.

As similar to the work appeared in [19], this work also considers the immediate thought

process.

Next, two subsections have been discussed about the mind theories, which are based on

western philosophical view.

52

3.5 Other Approaches on Mind and Memory

Steven Pinker who is a cognitive scientist with a western philosophical background, has

presented his view [120] on the human mind as a naturally selected computing system

structure. As he raised, there exists a gap between human cognition and the abilities of

probable computational systems. Even though, there was a conversation on “how the

mind works”, it was failed to provide a proper answer on this regard.

Mary Litch [121] also produces a concept of computation, in the setting of computing

model of mind that provides a connection between physical and psychological

description. She says that if we talk about theory of computation related to philosophy of

mind, we should talk about it in the setting of computing model of mind. Again, she

claims that non-learning connectionist systems are consistent with the computing model

of mind as simulated on digital computers and argues about the two connectionist

approaches; digital and analog. She says connectionist systems as simulated on analog

computers are inconsistent [121], because, these have collapsing continuous states and it

leads to new analog devices in which those the computational processes are not permitted.

She talks about two unanswerable questions: first one is how a physical thing possesses

physical states and how it can be transits from one state to another. The other question is

how we can identify exact physical implementation of mental states. To answer these

questions, she said that, for the first one, provide an existing evidence of physical device

that did this, and for the second one, provide an identity condition for equality of mental

states with computational states. Further, through computational thinking it was expected

to derive solutions by formulating a problem by finding a matching model [122]. Here,

the solution is said to be represented by computational steps and the algorithms.

Implementation of the mind with mathematical measures has led to transfer from

cognitive process to connectionism [123]. This connectionism and Buddhism have

common views as both consider behaviours are emerging from the relationships.

53

Again Mary Litch raised that, the physical real valued quantities should be digitized to

model them [121] using discrete physical devices. This has been inspired by the

connectionism. In modelling the mind, it is required to apply precise mappings between

psychological, mathematical, and physical states without changing the functionality or

respective properties. A similar idea was produced by Elodzislaw Duch [124], where he

pointed out the requirement of enhanced sensitive language to clearly express mind states.

Although, the cognitive science is capable in explaining the mind in a better way. Further,

such a model should have the ability to exhibit better estimates on brain functions and the

link with the respective mental states.

Overall, the modelling of mind is so complicated. Numerous clarifications were

introduced from the researchers in the field those who had different philosophical

perspectives. In addition to that, the cognitive scientists have introduced different

memory models, where the engineers have tried to build computational models based on

those memory models. Next section discusses about such other memory models.

3.6 Human Memory Models

Waugh & Norman introduced a human memory model, which was known as “the boxes

in the head”. The model consisted of long term store and a short term store. Later, in

1968, the “Classic information-processing model of Memory” was introduced. It had an

extra store to hold the memories at the moment, when the mind perceived an object. This

extra store was called as the sensory memory. In both of the cases, the STM occurred due

to the stimulus is passed to the LTM only if those maintained the practice over the STM.

Zhang [125] has improved the above second model, by defining the dynamic form of

STM as working memory [126] and dividing the LTM into two parts such as procedural

and declarative memory. Zhang declared that the declarative memory can store all the

knowledge that can be articulated symbolically or consciously retrieved through a

language by talking or writing. Further, according to him, the procedural memory can

54

store the skillful tasks such as typing, rowing, and riding. In addition to that, he proposed

that as in the second model, at that moment, when a sensor received an object, the

information of the incoming object is stored in the respective sensory memory and then

passed to the STM until the sleeping time. If the human being is in the sleep, the

information stored in the STM is transferred into the LTM. Moreover, the classes of

information stored in LTM are special information, physical laws, beliefs, values and

social goals, motor skills, and perceptual skills.

Different concepts with a western philosophical view have been introduced as Bartlett’s

Remembering (basically, the mind stores traces of events and according to my

understanding Bartlett has seen this behaviour as an organized mass behaviour)[39],

constructive memory (memory involves in a construction process) [40], and Atkinson-

Shiffrin (Introduced a framework, in which the short-term memory is explained as a

working memory of the Baddeley [42] and is separated from long-term memory. Further,

the information moves from STM to LTM, and vice versa. Finally, the most important

thing in this regard is the focus on the control processes and techniques used to code and

store information, more importantly the rehearsal) [41]. These models have been widely

using in improving computing technologies.

The succeeding section has covered the problems in implementing the theories of mind.

3.7 Problems in implementable Theories of Mind

Pentti O. A. Haikonen [127] said although the philosophers introduced the theories of

mind, they do not have any technical knowledge on how these theories can be

implemented. Therefore, they couldn’t provide good specifications or guidance for the

engineers to implement models based on these theories. On the other hand, the engineers

do not have a comprehensive understanding on the mind theories. Further, identification

and understanding of the process of mind, consciousness, emotions, and inner speech,

was quite difficult. Stated in another way, the engineers require an algorithmic or

55

computing approach which included the necessary instructions using standard technical

commends or terms. As a matter of fact, the engineers were not capable of producing the

simulations covering the entire theory. Lastly, Hikonen concluded that although these

problems can be solved using a low-level system approach and a high level algorithmic

approach. However, these methods have their own inherent problems to be addressed.

3.8 Summary

This chapter discussed the thought-processes that has been the constituent of the human

mind and the human memory according to the BTM. Furthermore, it has described the

24-causal relations, which can be used to explain any phenomena. Then, the next section

exemplifies many real-world cases, which have showed the evolving nature of the human

mind. Next it has mentioned some attempts in modelling the human mind in the computer

based on BTM. Later, some other mind theories under the western philosophical view

has been discussed. Finally, this has drawn the attention to the problems in the

implementable theories of mind. Overall, the consequence of the continuous processing

over a large knowledgebase would be the human memory. The theoretical basis for this

concept, the major supposition of this research, has been discussed in this chapter. The

next chapter covers the new approach towards the proposed model, exploiting theories in

modelling process, and design and implementation of the proposed model.

56

CHAPTER 04

NOVAL APPROACH TO A COMPUTING MODEL

4.1 Introduction

It has been intuitive that discovering a novel computing model has been an outstanding

research challenge. The chapters one and two have revealed that there are different

approaches in doing so. However, as mentioned in Chapter 1, it has been difficult to find

a computing model that is similar to the continuous processing model that is taken place

in human mind according to the BTM. The most influential factor that has been found in

the human mind was its ability to improve accuracy, quality and efficiency of instruction

execution over subsequent cycles in mind.

This chapter first discusses the approach for SSPM, the hypothesis, input, output, and the

derived model, i.e. the SSPM. Then, it has been discussed how the system has been

derived from the BTM. Finally, it has been reported the implementation details of the

proposed model.

4.2 Hypothesis

This research hypothesized that the processing power of the computer can be enhanced

with the support of a smaller tactics memory, which improves as a result of continuous

processing.

Receiving the inspirations from BTM and real-world as stated in chapter three, this

chapter presents the new approach in introducing the new computing model SSPM. The

SSPM consists of a smaller compiler like special smaller tactics memory with a set of

tactics. The SSPM that forms the smaller tactics memory was designed similar to the

process of maintaining the human memory. It was postulated that the presence of the

smaller tactics memory in human mind. In fact, it is capable in exploring the whole main

memory or the stored knowledgebase. Furthermore, the smaller tactic memory becomes

57

larger within certain boundaries depending on the domain and updates and become

organized over the time. This smaller tactics memory contains a set of strategies in

executing larger programs in the main memory. Moreover, it was convinced that this

smaller tactics memory can be developed as a software solution or as a hardware solution.

As per the arising conditions, an entry in the smaller tactics memory was triggered as

similar to the continuous processing taking place in enhancing the human memory. In

fact, the processing a set of instructions means nothing nonetheless a consequence of

satisfying the conditions in the body of a procedure. This is a core concept that comply

with the Buddhist philosophical thought that everything in the world can be explained as

a result of conditional phenomena, where every effect has a cause. As explained earlier,

since the 24-CRs can be used to model any phenomena, by defining the relationship

between the effect and the cause, it was proposed to exploit a subset of CRs, in designing

the smaller tactics memory.

The internal process of mind can be summarized into a block diagram and this diagram

can be presented as the basic structure for the new theory of computing. The Figure. 4.1

depicts how the conditional phenomena are taken place at high level.

Figure. 4.1: High Level Block diagram for SSPM

The coming section has described the inputs of the proposed model.

CPU Input Output

Ongoing Process

58

4.3 Input

The SSPM system has two types of inputs, called Internal and External inputs, and are

identical to the human mind's internal and external inputs. As per the inspirations received

from the internal inputs accepted by the mind-door of the human mind, the ‘Internal

Input’ of the SSPM was introduced. With a great probability, the next internal input was

associated with the currently running process in the memory. Further, an external input

of the computer could be a user input or another input coming from the external

environment similarly. This is alike the input coming through the five-sense-doors in

human mind [55] as mentioned in the chapter 3. Indeed, the internal inputs was generated

by the system through the operations deposited in the smaller tactics memory, in the

absence of the external inputs, and those were related to the current process with more

possibility. The concomitant of this is the internal inputs in the human mind coming

through the mind-door process.

Moreover, the external inputs can be categorized into four categories as follows:

1. input with new operation

2. input with an operation which is different from the most recent operation.

3. input is similar to the previous input.

4. Frequent input.

The internal inputs are three fold as follows:

1. input with an operation which is different from the most recent operation.

2. input is similar to the previous input.

3. Frequent input.

Note that, the first category in the external inputs is not available in the internal inputs.

Doing thorough analysis on the input data, it could identify some patterns or rules of the

incoming data in addition to the above categories, and these were valid for any input. For

example, these inputs can be lists or fractional expressions with any number of elements

or questions/queries those correspond to particular sections of knowledgebase.

59

Suppose that X and Y are two sets. In fact, X be the previous input and Y be the current

input, where 𝑋 = {𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛} and 𝑌 = {𝑦1, 𝑦2, 𝑦3, … , 𝑦𝑚}, n and m are any arbitrary

positive integers. (These xs and ys could be letters or numbers or fractions of fractional

expressions or knowledge entities in questions/ queries). The input patterns are related to

the similar and different inputs above (the inputs with some relevancy to the most recent

input) and the relevant examples can be seen in the Figure. 4.2.

(a)

𝐼𝑃1: 𝑋 ⊂ 𝑌

𝐼𝑃2: 𝑋 ⊈ 𝑌 𝑎𝑛𝑑 𝑌 ⊈ 𝑋 ⇒ 𝑋⋂𝑌 ≠ 𝜙 𝑜𝑟 𝑋⋂𝑌 = 𝜙 (two cases are there as

shown in Figure. 4.2 (b))

𝐼𝑃3: 𝑌 ⊂ 𝑋

𝐼𝑃4: 𝑋 = 𝑌 ≠ 𝜙

(b)

𝐼𝑃1: 𝑋 ⊂ 𝑌

Let 𝑋 = [1,2,3] and 𝑌 = [2,3,1,5,6] , then 𝑋⋂𝑌 = [1,2,3] = 𝑋

𝐼𝑃2: 𝑋 ⊈ 𝑌, 𝑌 ⊈ 𝑋 ⇒ 𝑋⋂𝑌 ≠ 𝜙 𝑜𝑟 𝑋⋂𝑌 = 𝜙

1.Let 𝑋 = [1,2,3,4] and 𝑌 = [2,3,1,5,6] , then 𝑋⋂𝑌 = [1,2,3] ≠ 𝜙

Or

2.Let 𝑋 = [1,2,3] and 𝑌 = [4,5,6] , then 𝑋⋂𝑌 = [] = 𝜙

𝐼𝑃3: 𝑌 ⊂ 𝑋

 Let 𝑋 = [1,2,3,4,5,6] and 𝑌 = [2,3,1] , then 𝑋⋂𝑌 = [1,2,3] ≠ 𝜙

𝐼𝑃4: 𝑋 = 𝑌 ≠ 𝜙

Let 𝑋 = [1,2,3] and 𝑌 = [2,3,1] , then 𝑋⋂𝑌 = 𝑋 = 𝑌 = 𝑋𝑈𝑌 = [1,2,3] ≠ 𝜙

Figure 4.2: Input Patterns (IP) (a) Patterns (b) Example for each pattern

After, processing the input through the proposed model, different outputs can be produced

as follows.

60

4.4 Output

The outputs have also been two fold. First one has been the external output given after

executing the program with external inputs. Then, the second output type is internal, but

again has three categories. The first internal output has produced by the processing over

the internal inputs. The second internal output has been the improved program itself. Then

the last internal input has been the updated smaller tactics memory.

Next subsection explains the computing model that has been introduced imitating the

continuous processing model, which made up the human mind.

4.5 Propose the Computing Model

This section proposed the six-state continuous processing model, and it is the core of this

thesis. The model is abbreviated as SSPM. The SSPM system initially begins with an

internal process, where the particular entry of operation was arbitrarily chosen out from

the list of entries stored in the initial smaller tactics memory that were correspond to the

operations in the specific domain. Further, the respective instructions of the operations

saved in the knowledgebase can be invoked through these entries stored in smaller tactics

memory. The system shifts to the internal mode, once an internal input is entered. The

program can accept an input from the external environment, only when the present inner

process sleeps. If the program is in the external mode and if there is no external input, the

program can move back to the inner process. However, in the unavailability of external

input, the inner process is proceeded with the actions linked to the latest external input.

The system conducts ongoing processing in such a manner.

The model accomplishes a series of tasks, during the ongoing processing over

generations. Particularly, it identifies the inputs and operations, adds library files for new

operations, classifies appropriate operations with respective information and directives,

prioritizes the operations relevantly, creates recurrently arising operating modules and

61

deletes needless or wasteful modules and directives as well as the useless information.

Such a way, the corresponding entries develop and organize the smaller tactics memory.

In addition to that, these actions under the above mentioned two process categories can

occur in a one stream. Moreover, the tasks, namely, deletion, classification, additions,

and prioritization can be accumulated under the general term 'Organizing'. Consequently,

the system is gaining improvements by iterating this organizing job. Depending on the

process category, the results of each process can also be generated externally or internally.

As introduced in the first chapter, the newly presented computing model comprises of six

states, specifically "New", "Ready", "Running", "Blocked", "Sleep", and "Terminate” as

shown in Figure. 4.3.

Figure. 4.3: Six-state Continuous Processing Model (SSPM)

At first, neither the recently generated processes were organized nor activated those

processes were in the ‘New’ state. Once the processes were organized and activated, those

were moved to the ‘Ready’ state. Then, a process, which was running on the processor

was in the ‘Running’ state. A process was switched to the ‘Sleep’ state after finishing the

execution enabling some other process to be initiated, executed or continued.

Furthermore, if a process had to wait until a specific task to be completed, then the process

was in ‘Blocked’ state. Finally, if a process was neither necessary to be modified nor

New

Terminate

Ready

Create the Process

Organize, Activate

No Further

Improvements

Sleep

Organize,

Activate

Dispatch

Blocked

Release

Null

Running

Time-out

Event

Wait

Event

Occurs

Organize

62

requires any execution can be ended, and the state can be updated as ‘Terminate’. The

states and movements between the states in the novel computing model are perceptibly

illustrated in the Figure. 4.3. Introducing this model, it was expected to enhance the

processing in the system and the memory process using a set of tactics maintaining the

continuity. The coming section describes the exhibited features of the suggested model.

4.6 Features of the New Model

This model has several characteristics, which one can use to distinguish this model from

others. Those are:

1. Internal and external processes

The SSPM compromises of two types of processes: external and internal

processes. These inner processes are aroused due to the system generated inputs,

when the external inputs are absent, and are related to the recent external inputs

those externally entered by the user. Then, the external processes are aroused due

to external inputs.

 Internal Process – similar to the Mind-door thought process in the human

mind (based on BTM)

 External Process – similar to the Five-sense-door thought process in the

human mind (based on BTM).

2. Continuous Processing

Combination of the above internal and external processes forms continuity of

processing due to arising conditions.

63

3. Conditionally evolving smaller tactics memory

Figure. 4.4: Conditionally evolving smaller tactics memory

As shown in the Figure 4.4, the SSPM starts its execution with an initial smaller

tactics memory, which allows to access the system’s knowledgebase. Over the

consecutive execution cycles this smaller tactics memory evolve with a set of

tactics by being well organized. The set of tactics can be names as follows; (these

are included in the transitions of the Figure.4.3)

a. Inputs and the relevant jobs are recognized.

b. For new jobs, the relevant library files are created.

c. The jobs together with the relevant data and instructions are classified.

d. Such jobs are prioritized for the execution

e. For frequent jobs, modules are created.

f. Unnecessary data, and unnecessary or inefficient instructions or

modules are deleted.

In establishing the memory in the human mind, all the thought processes with

consequent mind-door thought processes are involved (based on BTM). Similarly,

𝑛ሶ

1

0

64

this model undergoes a continuous process in order to improve the memory.

Further, this is permanently stored in the computer (secondary storage), it is

activated when the program starts its execution and remains activated throughout

the program execution cycles. With this conditionally evolving smaller tactics

memory, the system will gain improvements in its speed and quality in subsequent

processing cycles. Due to all these features, it is clear that this smaller tactics

memory is different from the smaller memories introduced to current computing.

Next section discusses possible users of the system.

4.7 Users

Due to the above highlighted features of the model, it is applicable to the systems which

need continuous processing. Specially, the software or game developers can use this

model in design and implementation phases, as the designs and the programs or games

are to be refined in cycles. It is beneficial, rather than a random selection with a pool of

programs in evolutionary computing. As a single program can be improved with the time

over program execution cycles. In high level, air traffic control systems can be suggested

as a good example for the applicability of this model, since such monitoring or controlling

systems must be always live.

4.8 Exploiting Twenty-four CRs in Modelling the SSPM

As mentioned in the chapter three, it is possible to find better explanation for the human

mind from the BTM and as explained in Chapter 1 this research exploits BTM in

modelling the SSPM, which has imitated the human mind. Further, the section 3.2.4 has

described how the thought-process and the human memory can be explained by

exploiting a set of twenty-four causal relations (CR) in BTM. Stated in another way, BTM

describes the mind as a continuous thought process which encompass of unceasing flow

of thoughts pertaining to our actions. Further, memory has been defined as a result of

processing on the body of existing knowledge. Moreover, this section has explained how

65

the BTM has been exploited in forming the model of continuous processing that mimic

the evolving nature of the human mind. Stated in another way, the SSPM that models a

special kind of memory for computers, was explained by exploiting a set of fifteen CRs

from 24-CRs of BTM, but looking from a technical perspective.

Since, the Buddhist theory of mind analytically explains how the human memory is form,

in designing the continuous processing model, it has been exploited 24-CRs stated in

Patthana Prakarana [54] in BTM as in [17], [18], [128], [16]. Further, this provides a

different perspective to think about the functionality of the computer and its performance

improvement.

According to the BT, every effect has a cause, and there exist a CR between the cause

and effect. These are the relationships described in 24-CRs in BTM. Furthermore, the BT

interprets that any phenomenon is conditionally arising. Correspondingly, the human

memory is also defined as conditional phenomena that occurs or remains as per the arising

conditions [89]. Moreover, how this arousal is taken place establishing the continuation

of the process [17], [18], was defined by a set of CRs in BT.

Specifically, this set consists of 15 CRs out of 24-CRs in BTM [16] such as Root (𝐻𝑒̅𝑡𝑢),

Object (𝐴̅𝑟𝑎𝑚𝑚𝑎𝑛𝑎), Presence (𝐴𝑡𝑡ℎ𝑖), Support (𝑁𝑖𝑠𝑠𝑎𝑦𝑎), Post-Nascence

(𝑃𝑢𝑟𝑒̅𝑗𝑎̅𝑡𝑎), Pre-dominance (𝐴𝑑ℎ𝑖𝑝𝑎𝑡𝑖), Co-nascence (𝑆𝑎ℎ𝑎𝑗𝑎̅𝑡𝑎), Association

(𝑆𝑎𝑚𝑝𝑎𝑦𝑢𝑘𝑡ℎ𝑎), Mutuality (𝐴𝑛̃𝑛̃𝑎𝑚𝑎𝑛̃𝑛̃𝑎), Repetition (𝐴̅𝑠𝑒̅𝑣𝑎𝑛𝑎), Proximity

(𝐴𝑛𝑎𝑛𝑡𝑎𝑟𝑎), Disappearance (𝑉𝑖𝑔𝑎𝑡𝑎), Post-nascence (𝑃𝑎𝑐𝑐ℎ𝑎𝑗𝑎̅𝑡𝑎), Karma (𝐾𝑎𝑟𝑚𝑎),

and Karma-Result (𝐾𝑎𝑟𝑚𝑎 − 𝑉𝑖𝑝𝑎𝑘𝑎) [16] were only necessary for the modelling of

actions of the transitions of SSPM. The respective set of CRs together with their own

duties in establishing the continuous processing are included in the Table 4.1.

66

Table 4.1: CRs of BTM in Designing the Actions of the proposed Computing Model

CR Major action formed in the model

Object (𝐴̅𝑟𝑎𝑚𝑚𝑎𝑛𝑎) recognize the external or internal input

Root (𝐻𝑒̅𝑡𝑢) creation of a process for a given operation, can support the

continuation of the system by being established

Co-Nascence (𝑆𝑎ℎ𝑎𝑗𝑎̅𝑡𝑎) produce the related things together

Association

(𝑆𝑎𝑚𝑝𝑎𝑦𝑢𝑘𝑡ℎ𝑎)

related things exist and get deleted together

Mutuality (𝐴𝑛̃𝑛̃𝑎𝑚𝑎𝑛̃𝑛̃𝑎) related things help each other for the execution and to exist

Pre-Dominance

(𝐴𝑑ℎ𝑖𝑝𝑎𝑡𝑖)

the process with the highest priority dominates the system

Presence (𝐴𝑡𝑡ℎ𝑖) make the process or space or time available

Support (𝑁𝑖𝑠𝑠𝑎𝑦𝑎) make the ground for execution

Pre-Nascence (𝑃𝑢𝑟𝑒̅𝑗𝑎̅𝑡𝑎) activating new processes by loading them to the memory to execute

them later

Proximity (𝐴𝑛𝑎𝑛𝑡𝑎𝑟𝑎) make no interval between two processes and maintain the continuity

Karma (𝐾𝑎𝑟𝑚𝑎) execution of ready processes

Repetition (𝐴̅𝑠𝑒̅𝑣𝑎𝑛𝑎) execution over generations

Disappearance (𝑉𝑖𝑔𝑎𝑡𝑎) delete the unnecessary or inefficient processes/ modules/instructions

Post-Nascence

(𝑃𝑎𝑐𝑐ℎ𝑎𝑗𝑎̅𝑡𝑎)

Make the continuation of a blocked process by a newly occurred

event.

Karma-Result (𝐾𝑎𝑟𝑚𝑎 −

𝑉𝑖𝑝𝑎𝑘𝑎)

producing the results of execution

This paragraph has been allocated to provide an answer to the question how the rest of

the relations have become not necessary for this modelling. First it should be emphasized

that, when explaining a particular scenario, it uses the most appropriate set from the 24

CRs [54]. The relations Contiguity, Absence, and Non-disappearance have been omitted,

because those are similar to the relations Proximity, Disappearance, and Presence. Then,

one can ask, if those are equal why they have introduced different terms. This is because

of the slight difference of the angle we looking at them [55]. That is, whether we are

looking at the relation from the conditioning state or conditioned state. Therefore, it has

been exploited the idea of considering them as similar terms, Contiguity, Non-

Disappearance, and Absence terms were omitted. Then, the relation Dissociation is

67

involved between distinct phenomena such as mental phenomenon and material

phenomenon. As this research considered the mental phenomena in the human mind,

another distinct phenomenon like material phenomenon was not involved. Therefore, the

Dissociation condition was avoided. Next, the Jhana and the Path relations were omitted

as those are associated with close contemplation of the object and reaching towards the

blissful destination the Nibbhana (or reaching towards the woeful destination)

respectively. When it comes to Decisive support, it concerns the strong dependence. This

has three categories such as object, proximity, and natural, which have been discussed

less under Object, Proximity, and Pre-Nascence relations (without the strong dependence

term). The ideas coming from these three relations were sufficient and it was not

necessary to use Decisive Support for this modelling process. In fact, the Nutriment

condition supports to grow. This also has categories such as material nutriment and

mental nutriment, where the material nutriment is immaterial for this scenario as it is

concerning about the nutrients in the edible foods. Further, the mental nutriment has three

categories such as nutriment contact, mental volition, and consciousness. However, the

volition and the consciousness are rather spiritual not necessary to be applied in this level.

Since, these concepts have been used for modelling in the computer, even though the

Object is not the best match for the nutriment contact, it covers the purpose of using

nutriment contact in the level of computer for now. Therefore, also the Nutriment contact

was omitted from this designing. The last omitted concept is Faculty condition, which

considers about controlling a particular department. This also has three types. Those are

Pre-Nascence Faculty, Material life Faculty, and Co-nascence faculty. Pre-Nascence

Faculty involved in ‘separately’ controlling the sense consciousness aroused due to five

sense doors. In this model, it was not concentrated on such a separation. The second

faculty controls the material phenomena. The last faculty associated with the material

phenomena and the co-nascent mental states. Consequently, the Faculty condition was

avoided. At last, it can be determined that these nine CRs and their variations are

irrelevant for this design process. However, this model can be extended with the Faculty

and Nutriment conditions for the field of robotics.

68

The conditions have three responsibilities to accomplish, namely, maintaining,

producing, and supporting. Correspondingly, 24-CR contributed in the SSPM by

accomplishing following one or more responsibilities for the conditioning state-

conditioned state transition [89].

Then, it was possible to use the actions stated in the above Table 4.1, in modelling the

transitions of the SSPM as mentioned below. All the transitions in the proposed model

act towards the Ready state has been refined and has introduced three new transitions,

Ready-Terminate, Ready-Ready and Sleep-Ready. Further, the modified transitions were

Running-Ready, and Blocked-Ready. Below Table 4.2 shows how the transitions are

formed, specifically mentioning from which causal relation each of the action has been

derived.

Table 4.2: Exploiting CRs of BTM in deriving the transitions

Exploiting Twenty Four Causal Relations in Proposed Processing Model

State

Transition

Action(s) Causal Relationship(s)

1. Null → New

This transition

occurs with

respect to creating

a new process.

1. Create a new process

a. New job is available.

b. Create appropriate data

structures.

i. Process Control Block (PCB)

ii. Linked Queues

iii. Other expanded data

structures

c. Allocate space and initialize.

(parameter passing)

d. Set appropriate links

e. Add new entity to primary

process table

f. Create mail box for Inter Process

Communication.

By being established - Root (𝐻𝑒̅𝑡𝑢)

Receiving job as an input - Object

(𝐴̅𝑟𝑎𝑚𝑚𝑎𝑛𝑎), Presence (𝐴𝑡𝑡ℎ𝑖)

Space, Mail box – Support

(𝑁𝑖𝑠𝑠𝑎𝑦𝑎),

Space, Data - Presence (𝐴𝑡𝑡ℎ𝑖)

Presence (𝐴𝑡𝑡h𝑖)

Presence (𝐴𝑡𝑡ℎ𝑖)

New entity- Post-Nascence

(𝑃𝑢𝑟𝑒̅𝑗𝑎̅𝑡𝑎)

69

2. New →

Ready

New to Ready is a

modified

transition by

SSPM, occurs

when a newly

created process is

organized and

loaded into the

memory. Next,

the set of actions

derived from the

causal relations

are listed in the

next column.

1. Send the highest priority process

cluster in the ready queue for

processing.

2. Organize:

a. Classify the process into a cluster

with related data, program/s, and

processes. (e.g. Process Image) –

Identify whether the process is

I/O or processor bound.

b. Merge Relevant Clusters (Use

procedures/ System calls/

parameters)

c. Do necessary Prioritizations.

d. Add to the Ready queue.

3. Activate by loading into the main

memory.

Process Cluster-Pre-dominance

(𝐴𝑑ℎ𝑖𝑝𝑎𝑡𝑖)

Space- Presence (𝐴𝑡𝑡ℎ𝑖)

Co-nascence (𝑆𝑎ℎ𝑎𝑗𝑎̅𝑡𝑎), Presence

(𝐴𝑡𝑡ℎ𝑖), Presence (𝐴𝑡𝑡h𝑖)

Association (𝑆𝑎𝑚𝑝𝑎𝑦𝑢𝑘𝑡ℎ𝑎)

Mutuality (𝐴𝑛̃𝑛̃𝑎𝑚𝑎𝑛̃𝑛̃𝑎)

Merge- Association

(𝑆𝑎𝑚𝑝𝑎𝑦𝑢𝑘𝑡h𝑎), Mutuality

(𝐴𝑛̃𝑛̃𝑎𝑚𝑎𝑛̃𝑛̃𝑎)

Pre-dominance (𝐴𝑑ℎ𝑖𝑝𝑎𝑡𝑖)

Non-disappearance (𝐴𝑣𝑖𝑔𝑎𝑡𝑎),

Pre-nascence (𝑃𝑢𝑟𝑒̅𝑗𝑎̅𝑡𝑎)

3. Ready →

Ready

This is a newly

introduced

transition by

SSPM, it does

organizing using

the actions as

aforementioned.

2. Re-organize:

a. Delete unnecessary data,

program/s and processes.

b. Organize:

i. Classify the process into a

cluster with related data,

program/s, and processes.

(e.g.: Process Image) –

Identify whether the process

is I/O or processor bound.

ii. Merge Relevant Clusters

(Use procedures/ System

calls/ parameters)

iii. Do necessary Prioritizations.

iv. Add to the Ready queue.

3. Activate by loading into the main

memory.

Repetition (𝐴̅𝑠𝑒̅𝑣𝑎𝑛𝑎)

Delete-Absence of any condition

Co-nascence (𝑆𝑎ℎ𝑎𝑗𝑎̅𝑡𝑎), Presence

(𝐴𝑡𝑡ℎ𝑖), Non-disappearance

(𝐴𝑣𝑖𝑔𝑎𝑡𝑎)Presence (𝐴𝑡𝑡h𝑖)

, Association (𝑆𝑎𝑚𝑝𝑎𝑦𝑢𝑘𝑡ℎ𝑎),

Mutuality (𝐴𝑛̃𝑛̃𝑎𝑚𝑎𝑛̃𝑛̃𝑎)

Merge- Association

(𝑆𝑎𝑚𝑝𝑎𝑦𝑢𝑘𝑡ℎ𝑎), Mutuality

(𝐴𝑛̃𝑛̃𝑎𝑚𝑎𝑛̃𝑛̃𝑎)

Pre-dominance (𝐴𝑑ℎ𝑖𝑝𝑎𝑡𝑖)

Non-disappearance (𝐴𝑣𝑖𝑔𝑎𝑡𝑎),

Pre-nascence (𝑃𝑢𝑟𝑒̅𝑗𝑎̅𝑡𝑎)

4. Ready →

Running

This is an existing

transition.

1. Move the currently executing cluster

out. (Preemptive/Non-Preemptive)

a. Expiring the allowed time duration.

(Time-out) – Clock interrupt.

b. Blocking due to another interrupt. –

I/O interrupts, Operating system

calls, Signals

c. Entering a higher priority cluster

into the ready queue.

2. Dispatch (short-time scheduling)

Disappearance (𝑉𝑖𝑔𝑎𝑡𝑎)

Time-Disappearance (𝑉𝑖𝑔𝑎𝑡𝑎)

Interrupts-Presence (𝐴𝑡𝑡h𝑖)

Pre-dominance (𝐴𝑑ℎ𝑖𝑝𝑎𝑡𝑖),

Presence (𝐴𝑡𝑡h𝑖)

70

a. Switching context –save the status

of the old process in its PCB and

load the status of the new process.

b. Switching to user mode (to execute

the user process)

c. Jumping to proper location in the

user program

Proximity (𝐴𝑛𝑎𝑛𝑡𝑎𝑟𝑎)

5. Running →

Ready

This is an existing

transition.

1. Time-out: expires the allocated time

limit.

Major concerns: Availability of Space,

Level of priority

Space, interrupt, process cluster-

Presence (𝐴𝑡𝑡h𝑖)

Process cluster- Pre-dominance

(𝐴𝑑ℎ𝑖𝑝𝑎𝑡𝑖)

Time, running process cluster-

Disappearance (𝑉𝑖𝑔𝑎𝑡𝑎)

6. Running →

Blocked

This is an existing

transition.

1. Interrupt the currently executing

process.

a. Request made by the currently

executing process is not responded

promptly. (service calls/ resources

are not available)

b. Initiate an action (child process)

which is to be completed before

continues.

c. Delays in Inter Process

Communications (IPC) – data/

message.

(Interrupts:

Program: as a result of instruction

execution-ex: division by zero,

Timer: to perform in regular basis

I/O: to signal normal completion or

error

H/W failure)

Interrupt- Presence (𝐴𝑡𝑡ℎ𝑖),

Running process- Disappearance

(𝑉𝑖𝑔𝑎𝑡𝑎)

7. Blocked →

Ready

This is an existing

transition.

1. Event occurs Event- Presence (𝐴𝑡𝑡ℎ𝑖), Post-

nascence (𝑃𝑎𝑐𝑐ℎ𝑎𝑗𝑎̅𝑡𝑎)

Process- Pre-nascence (𝑃𝑢𝑟𝑒̅𝑗𝑎̅𝑡𝑎)

8. Running →

Sleep

This is an existing

transition.

1. Complete the currently executing

process

2. Release the processor.

Current process- Disappearance

(𝑉𝑖𝑔𝑎𝑡𝑎)

Processor, Next process- Presence

(𝐴𝑡𝑡ℎ𝑖)

9. Sleep →

Ready

This is also a

newly introduced

by SSPM for the

1. Re-organize:

a. Delete unnecessary data,

program/s and processes.

b. Organize:

Repetition (𝐴̅𝑠𝑒̅𝑣𝑎𝑛𝑎)

Delete- Absence of any condition

71

Please note that Six-state continuous processing system is so-called due to the six states

‘New,’ ‘Ready,’ ‘Running,’ ‘Blocked,’ ‘Sleep’, and ‘Terminate’. Then, there are ten

transitions between these states. For example, the moving a process from ‘New’ state to

‘Ready’ state, which is denoted by ‘New -> Ready’, is a transition. Such away, there are

six states and ten transitions.

Introducing the model such a way, the coming section illustrates the implementation of

the proposed model.

4.9 Implementation

The earlier sections have discussed the new approach towards the new computing model

and the model itself. Then, this section has reported the implementation or the

customization details of the proposed computing model, the SSPM. For the

purpose of

reorganizing and

reusing executed

processes.

i. Classify the process into

a cluster with related

data, program/s, and

processes. (e.g. Process

Image) – Identify

whether the process is

I/O or processor bound.

ii. Merge Relevant Clusters

(Use procedures/ System

calls/ parameters)

iii. Do necessary

Prioritizations.

iv. Add to the Ready queue.

2. Activate by loading into the main

memory.

Co-nascence (𝑆𝑎ℎ𝑎𝑗𝑎̅𝑡𝑎), Presence

(𝐴𝑡𝑡ℎ𝑖), Presence (𝐴𝑡𝑡h𝑖),

Association (𝑆𝑎𝑚𝑝𝑎𝑦𝑢𝑘𝑡ℎ𝑎),

Mutuality (𝐴𝑛̃𝑛̃𝑎𝑚𝑎𝑛̃𝑛̃𝑎)

Merge- Association

(𝑆𝑎𝑚𝑝𝑎𝑦𝑢𝑘𝑡ℎ𝑎), Mutuality

(𝐴𝑛̃𝑛̃𝑎𝑚𝑎𝑛̃𝑛̃𝑎)

Pre-dominance (𝐴𝑑ℎ𝑖𝑝𝑎𝑡𝑖)

Non-disappearance (𝐴𝑣𝑖𝑔𝑎𝑡𝑎),

Pre-nascence (𝑃𝑢𝑟𝑒̅𝑗𝑎̅𝑡𝑎)

10. Ready →

Terminate

This is the last

newly introduced

transition which

occurs due to

absence any of

the causal

relations.

1. Absence of every cause or

condition such as input, event,

actions, all necessities for re-

organizations, empty ready

queues, empty blocked queues.

(No further improvements or

executions)

72

demonstration, testing and evaluation purposes the SSPM customized a Fraction

Calculator (SSPM-FC). Other than the SSPM-FC, the model also customized a Sorting

Program (SSPM-Sorting), Quadratic Equation Solver (SSPM-QES) and a Simulated

Process Scheduler (SSPM-PS). These programs were specially selected to be customized

by the SSPM, because those can be executed through continuous processing over program

execution cycles without making an overhead for processing. All the important source

codes are stored in the Appendix A.

4.9.1 Fraction Calculator (SSPM-FC)

The SSPM-FC has been implemented with Java in Netbeans 8.1 integrated development

environment (IDE). Further, MySQL has been used with Notepad++ to record time

values. Furthermore, SSPM-FC has facilitated to calculate any fractional expression with

+, -, *, and d (division). It can work well with simple expression as well as complex

expressions such as expressions with brackets and whole numbers. Longer expressions

also can be computed and it can continuously do its processing. It has been possible to

find some examples as follows.

 6/7*8/9

3/5-2 5/7d1/9*(2/3+12/17)

Then, the following section has described the reasons behind selecting particular

technologies.

4.9.1.1 Why use the technologies

First, it discusses why those technologies have been selected for this implementation from

a large basket of such other technologies. The following sub sections discusses why it has

been selected the technologies Java, Netbeans and MySQL in the implementation

process.

73

4.9.1.1.1 Java

First and foremost, Java has been free and has a large pool of open source libraries.

Further, the Java has been an object oriented programming language, which has provided

flexibility, modularity and extensibility. Moreover, it has supported for potential

development tools, such as Netbeans and Eclipse.

4.9.1.1.2 Netbeans

The Netbeans also a free and open source integrated development environment. Further,

the Netbeans IDE has provided user friendly, rapid user-interface development, and fast

and smart code editing environment with efficient project management facility. In

addition to that it supports for many plugins.

4.9.1.1.3 MySQL

This has been an open source database management system software, which allows

adding, accessing, querying and managing content easily. Further, it has allowed

processing quickly, with guaranteed reliability. Moreover, it has provided a connector for

Netbeans. Next section explains how this SSPM-FC has been implemented.

4.9.1.2 The Implementation Process

During this process, it has been focused on how the features of the six-state continuous

processing model can be implemented. As mentioned in earlier chapters, the model has

three features such as internal and external processes, continuous processing and evolving

tactics memory. All these have to be combined with the following set of tactics.

1. Recognize the incoming inputs and pertinent operations.

2. Create relevant header or library files for new operations.

3. Do necessary classifications with inputs and operations.

4. As necessary do job prioritizations for the execution.

5. Create modules for frequent operations.

6. Delete inefficient or unnecessary items.

74

The Figure. 4.5 has displayed the flow of the proposed model integrated Fraction

Calculator. However, it should be noted that the system has been more complexed than

this high level diagram and the attempts to improve the autonomy could have increased

the complexity more.

Figure. 4.5: High level flow chart for the proposed model

This model has been implemented under five major modules namely, Input Analyser,

Process Switcher, Operation Organizer, Write Engine, and the Small Compiler. The

diagram that has linked these modules together are displayed in the Figure. 4.6.

Is Event

Occurred?

Is time out?

Start Internal Input Create Process

Do Calculation

Classify

Prioritize

Load into the Memory (Activate)

Delete Unnecessary Components

Sleep

Is External Input

Available?

Are improvements/
executions available

(given time limit)?

Terminate

End

Yes

No

 No

Yes

No

No

Yes

Yes

Is Blocked?

 No

Yes

75

Figure. 4.6: How the modules have been connected

Further, the pseudo codes for the algorithm has been showed in the Figure. 4.7. (a), (b),

(c), (d), (e), and (f).

Internal

Input

Process

Switcher

External

Input

Internal

Process

Operation

Organizer

External

Process

Calculate

Write

Engine

Input –

Content-

Analyser

Output

Small

Compiler

Update

Tactics

Memory

Create

Log File

Create/

Delete

Module

Update

Program

Codes

Create

Internal Input

76

(a)

Fraction Calculator

While (true) do

Input Expression(Internal/External);

Call Input-Content Analyser;

Call Process Switcher(Internal/External);

Call Operation Organizer;

Calculate;

Display Output;

End-while

End

(b)

Input-Content Analyser

 Get expression;

While (not end of expression) do

Split the expression;

Find Braces;

Find Operations;

Find Fractional Operands;

End-while

End

(c)

Process Switcher

Get Input

If (category of input = internal)

Internal Process;

Create Internal Input;

Else If (category of input = external)

External Process;

End-If

End

(d)

Operation Handler

Do

 If (ready)

 Execute process – Calculate;

 Display Results;

else

 Call Write Engine;

Call Compiler;

 End-If

 Until no execution or improvement

End

(e)

Write Engine

Create/ Delete Module

Update Codes

Create Log

Update Tactics Memory if necessary

End

(f)

Small Compiler

 Get new changes (created or deleted modules)

 Compile;

 Set Class Path;

 Create Class Loaders;

 Load Classes;

End

Figure. 4.7: Algorithm for Fraction Calculator (SSPM-FC). (a) Fraction Calculator as a

whole, (b) Input-Content Analyser, (c) Process Switcher, (d) Operation Handler, (e)

Write Engine, (f) Small Compiler.

77

The coming section discusses the how the QES was customized according to the SSPM

model.

4.9.2 Quadratic Equation Solver (SSPM-QES)

The SSPM-QES program development process was similar to how the SSPM was set in

the FC, except its Input-Content Analyser, internal input creation and the calculation,

where this QES was focused on solving quadratic equations.

4.9.3 Sorting Program (SSPM-Sorting)

The sorting program based on Quicksort customized by the SSPM. In fact, the Quicksort

is highly efficient algorithm for sorting and is based on partitioning the data set into two

subsets. In Quicksort, the original list of elements is divided into two sub lists, one of

which holds values lower than a selected particular value, the pivot, depending on which

the division is made and the other list holds values higher than the pivot value.

Further, it was concentrated on comparing this system with the quicksort programs

customized by some other computing models such as parallel computing, ADAPTON,

Self-Adjusting computing, Dynamically Tuned Library and Evolutionary computing.

This development process was also similar to that of the above SSPM-FC, except its

Input-Content Analyser, internal input creation and the calculation as it had work with

lists of elements, with respect to the relevant computing techniques. However, it had to

do comparisons with the lists of larger number of inputs, it has been used internal process

case more. Specially, in the scenario, which was tried to compare the model with the

Dynamically Tuned library and the Evolutionary computing, the standard deviation and

the distribution of data were also mattered. Therefore, when creating the internal scenario,

rather than creating lists with random numbers, it was required to write the code so to

create normally distributed data with fixed standard deviation. In contrast to the FC and

QES, The SSPM-Sorting program has been implemented so to support all the input

78

patterns mentioned in the above section 4.3. Further, this had the techniques such as Insert

for IP1, Equal for IP4, delete for IP3, and delete and insert or sort for IP2. However, with

FC, it couldn’t implement the IP1, and IP3, and with QES, only the Frequent Module

creation and IP4 were implemented.

Note:

1. 𝐼𝑃1: 𝑋 ⊂ 𝑌, 𝐼𝑃2: 𝑋 ⊈ 𝑌, 𝑌 ⊈ 𝑋 ⇒ 𝑋⋂𝑌 ≠ 𝜙 𝑜𝑟 𝑋⋂𝑌 = 𝜙, 𝐼𝑃3: 𝑌 ⊂ 𝑋,

𝐼𝑃4: 𝑋 = 𝑌 ≠ 𝜙

2. In the section 4.3, it was supposed that X and Y were sets as it was easy to illustrate

the idea in the identification of inputs assuming that no repeated elements are

there. However, during the implementation process in Java, ArrayLists were used

and repeated elements were handled accordingly, where the removal or insertion

of repeated elements were explicitly handled as per the arising conditions also

using the containAll(), retainAll(), and removeAll() methods.

4.9.4 SSPM-PS

This has been a simple example of a simulated process scheduler that has been

implemented using Turbo C programming environment and displays the ability to evolve

over processing cycles. The particular algorithm has been illustrated in the Figure. 4.8.

79

Simulated Process Scheduler

While (True) do

Input Processes, Scheduler Algorithms;

Select FCFS;

Do

 Execute Processes;

Record Waiting Times;

Record Burst Times;

Calculate Turnaround Times;

Calculate Average Waiting Time;

Calculate Average Turnaround Time;

Select Scheduler Algorithm;

Until execution or improvement are available

End-while

End

Figure. 4.8: Algorithm for Simulated Process Scheduler

Particularly, this was done for the simulation purpose. This was the very first example,

which has been implemented to show the evolving ability in a program. Initially,

implementations were started with the C Language. However, it has been moved from C

language to the Java language for the straightforward implementation for rest of the

programs.

4.10 Experimental Mechanism of SSPM

As stated above the hypothesis of this research is “the processing power of the computer

can be enhanced with the support of a smaller tactics memory, which improves as a result

of continuous processing.” This has been used as the statistical hypothesis for the

statistical analyses in each testing scenario, as follows.

H0: There is no change among the means of time values collected before and after

organizing the smaller tactics memory through continuous processing.

80

 (i.e. the system gained no performance enhancement over generations of program

executions)

 (𝐻0: 𝜇𝐷 =𝑑0, 𝑑0=0)

H1: The mean value of the time values collected before organizing smaller tactics

memory is greater than the mean value of the time values collected after organizing

smaller tactics memory.

 (i.e. the system gained a performance enhancement over generations of program

executions)

 (𝐻1: 𝜇𝐷 >𝑑0, 𝑑0=0)

Here, a set of arbitrarily selected inputs, was used for the execution. Then, the execution

times were recorded for each input before and after organizing the smaller tactics memory

as it was required to check whether the system has gained a considerable improvement

due to the modification. Therefore, this kind of study is called as a crossover study [129].

Further, the recommended statistical tests for doing this kind of crossover analysis are the

Sign test, Wilcoxon Signed Rank test, and Paired-t Test [130]. Nevertheless, the paired-t

test is the most powerful test among these [130], [131], that test can be applied only under

three conditions. These three conditions are: the data should be in continuous scale, the

set of differences of paired time values should have a normal distribution [132], and the

set of differences of paired time values should have no outliers [131]. In fact, the

Wilcoxon Signed Rank test must be applied only if the samples seriously violates these

three conditions [130], and the samples have a symmetric continuous distribution [133].

Further, if the samples satisfy none of these conditions, then the Sign test [132], [133]

can be applied. However, The latter two non-parametric tests have lower power than the

paired-t test and have been considered as alternatives [130] for the paired-t test. In

addition to these, the power test has been applied using Minitab 17 for the sets of time

values collected in each scenario to prove the suitability of applying the statistical test

(paired-t test) with the given sample size. Moreover, to apply paired-t test, the sample

size become immaterial, if the sample has a normal distribution [132]. This is also a good

81

justification for applying paired-t test with different sample sizes for different mean

differences. Therefore, the selected sample sizes do not harm the results of the statistical

analysis. In some cases, such as testing scenario 2 in SSPM-FC and testing scenario of

SSPM-QES, and testing scenario 1.1 of the SSPM-Sorting, the sets of time values

reported here are the populations that could be recorded having minimum hardware and

software disturbances such as heap size. Further, it could use MedCalc which is a

statistical software to justify the selection of sample sizes in each case. For example, as

shown in Figure 4.9, the required minimum sample size was 4 for the testing scenario 1.1

of SSPM-FC as it has a good power for applying paired-t test, when considering its mean

difference. Here, the beta level was set as 0.02, i.e. 80% power and it is a higher value.

Figure 4.9: Sample size determination using MedCalc for

testing scenario 1.1 of SSPM-FC

82

4.11 Simulation of SSPM in a Turing Machine

The SSPM has been simulated in a Turing Machine to prove the real-world applicability

in theoretical level. A detailed description on this regard has been included in section

6.11.

4.12 Summary

This chapter has started with introducing the based hypothesis, which has been focused

in improving the efficiency of computing. Next, it discussed about the inputs for the

proposed processing model, while the next section has described the output of the

processing model. Meanwhile, the section 4.5 presented the six-state continuous

processing model, the section 4.6 has discussed its features, later discussing about the

users of the system. Further, it has been discussed how a set of twenty-four CRs in BTM

has been exploited in describing the thought-process, and how a set of fifteen CRs has

been exploited in designing the six-state continuous processing model. Finally, this

chapter has discussed about how the six-state continuous processing model (SSPM) has

been implemented in SSPM-FC, SSPM-QES, SSPM-Sorting, and SSPM-PS. Further,

this has mentioned SSPM was simulated with a Turing Machine. In addition to that, the

reasons for using the respective technologies.

Then, the Chapter 5 will illustrate how the system works under the four examples,

highlighting the features of the proposed system.

83

CHAPTER 05

HOW THE SYSTEM WORKS

5.1 Introduction

The fourth chapter presented the methodology of this research, which described the

proposed model, how BTM has been exploited in modelling, design and customizing

some existing programs with the Six-state continuous processing model, the SSPM. This

chapter has explained how the SSPM model behave. Further, several working scenarios

of the systems customized by SSPM have been described under four sections, such as

SSPM-FC, SSPM-QES, SSPM-Sorting, and SSPM-PS in order to illustrate the major

characteristics of the SSPM and the ability of SSPM and the smaller tactics memory to

gain improvements over subsequent program execution cycles. In each case, the time

taken for processing each of the input has been recorded for the evaluation purpose and

it should be noted that a detailed report of the evaluation of the performance gained by

each customized case after the modification is included in the chapter 06.

5.2 Fraction Calculator (SSPM-FC)

This section discusses how the SSPM-FC produced internal and external outputs, and

how the smaller tactics memory as well as the processing were improved with the time.

By customizing the FC with the SSPM, the SSPM-FC was introduced. The SSPM-FC

computes the expressions of fractions and produce results. In fact, the fractions have three

categories proper fractions (denominator is less than the numerator), improper fractions

(denominator is greater than the numerator), and mixed fractions (consists of whole part

as well). The input for this SSPM-FC consist of the fractions belonged to one of the above

three categories. Further, there could be bracketed sub-fractional-expressions and the

operators used in the system is multiplication, division, subtraction, and additions.

Although, there were no limitation was imposed on the expression length. If the input is

lengthy, two fractions were processed at a time with the aforementioned binary operations

and produced a partial fractional output and finally produced the final output.

84

Like the human mind, there are two processes in the SSPM-FC such as internal process

and external process. At the beginning, the SSPM-FC begins with an internal process

resulting from an internal expression generated through the system by choosing an

operation randomly from the current operations list and arbitrary fraction array. Then, the

internal results are produced. The external mode of SSPM-FC was triggered due to the

fractional expressions inserted externally by the user. The input has been an expression

of two or more fractional operands operated on +, -, *, d (division). This can be done only

when the internal process has been in ‘Sleep’ state. In this case the computation results

can be seen by the users. The system returns to the internal process, in the absence of an

external process. Here, the internal fractional expression is generated again through the

operators that were included in the most recent external or internal expression. Such a

way as per the arising conditions through internal and external processes the continuity is

maintained.

In this system, initially, the smaller tactics memory has been filled with the entries related

to the instructions that are already inserted to the system by the developers and starts with

an internal input. As the system continuously does processing, the smaller tactics memory

has been evolved due to the tactics apply on the system. Further, the smaller tactics

memory contains a set of records, which correspond to the operators that are using. For

instance, the entry (+,1,1,SumCalcModule) is the corresponding record of the plus

operator as seen in Figure. 5.1.

85

Figure. 5.1. Smaller tactics memory starts with the entries relevant to the instructions

that are inserted into the system

The continuous processing of the SSPM-FC is done through the smaller tactics memory

by using both the external and internal processes. Throughout these processing, a set of

actions was taken place. The performance of the SSPM-FC was improved and the smaller

tactics memory is updated over program execution cycles due to these actions. The set of

actions of the SSPM are concisely explained as follows;

 The current input and the respective operators are identified:

The input expression is analysed and then classified considering the fractions and

the operators in the input as seen in the Figure. 5.2. (a) and (b):

(a)

86

(b)

Figure. 5.2. Identify the input (a) Different Operator, Same Expression, Same

Operator, (b) New Operator

1. A fractional expression that includes a new operation: Input contains a currently

unavailable operator in the smaller tactics memory or the knowledgebase/

instruction set. As seen in the Figure. 5.1 no entry for division in the smaller

tactics memory as its instruction is not inserted into the system.

2. A fractional expression that includes a different operation: Here, the current

operation is dissimilar to the most recently executed operation. (the fractions in

the current expression can be similar or dissimilar to the fractions in the most

recently executed expression)

3. A fractional expression that includes the same operator: The operator in the

current expression is alike the operator in the most recently processed input, but

the set of fractions in the expressions are dissimilar.

4. Same fractional Expression: The most recently executed expression is exactly

equal to the current expressions. (All the array of operators and the arrays of

denominators and numerators in the input are similar in the order.)

All the operators and the fractions in an input can be separately listed and can be

categorised according to the explanations given in the above section 4.3 in the Input

regard.

87

 The libraries for novel operations are added.

If current fractional expression contains a new operator (d) as seen in the Figure.

5.3, the particular instructions set that can perform the operation is added to the

system through the given interface as a library file DivCalcModule.java as shown

in the Figure. 5.4. (a) and (b). Routinely, a respective entry on the operator

(+,1,2,DivCalcModule) is then recorded in the smaller tactics memory as displayed

in the Figure. 5.5.

Figure. 5.3. Current Fractional Expression contains a New Operator

88

(a)

(b)

Figure. 5.4. (a) Insert the relevant instruction set for the new operator. (b) create

and save the library.

89

Figure. 5.5. Update the smaller tactics memory with an entry for the instruction set

of the new operator

Another examples: if no entry was recorded in the smaller tactics memory for the

Addition, when an expression with the plus operator has inserted, the SSPM-FC

defines the current input as an input with a new operation. Next, the SSPM-FC gives

the space to the user to add the set of instructions that can perform the fractional

addition as a library file. Further, a respective entry for the plus operator is recorded

in the smaller tactics memory with the priority, and the number of alternative

methods that have been stored in the library file, which can perform the same

addition operation. The particular entry in the smaller tactics memory is

(+,1,1,SumCalcModule).

 The operations are classified together with the relevant instructions and data, and

the classes were prioritized, for the execution.

When, a fractional expression is inserted, the SSPM-FC dynamically calls relevant

methods in the library files with respect to the operator/s in the fractional expression

and generates a module. Then, SSPM-FC dynamically compiles it and compute the

fractional expression to the allocated priorities.

90

 The operating modules are created for the frequently executing operations.

The SSPM-FC initially begins with a specific file called “SubMain.java”.

Depending on the operators in the inserted fractional expression, the content of this

java file is modified dynamically by calling relevant methods in appropriate

libraries. It should be noted that the separate modules for all the operations were not

saved as their nature of the execution has not been recognized at the beginning.

Throughout the SSPM-FC execution cycles, it recognizes the frequency of the

invocation of each method in the library file and creates operating modules for the

operations that are executed more frequently.

Stated in another way, unless an operator is frequently applied, the system does not

save respective operating modules, but creates them dynamically. if the same

operator is computed throughout several program execution cycles, then the

respective operator is marked as a frequent operator and its operating module is

permanently stored as shown in Figure 5.6 (b). Furthermore, the 4-tuple entry of the

particular operator in the smaller tactics memory is updated to a 5-tuple entry with

the name of the module as shown in Figure. 5.6 (a). Therefore, gaining the

straightforward access to the respective module through the smaller tactics memory.

91

(a)

(b)

Figure. 5.6. For the frequently executing plus operator, the module is created.

(a) The respective entry is updated to a 5-tuple in the smaller tactics memory, (b) File of

the particular module is created and stored

 Irrelevant or inefficient instructions or modules, or irrelevant data are deleted.

A single operation can have pool of different computing methods. In such a case,

over program execution cycles, SSPM-FC finds the most efficient method and

retain it eliminating the other inefficient computing methods in the pool.

For this scenario, an example has been drawn from the multiplication computation.

At the beginning, two alternative computing methods were there for the

92

multiplication, namely, MulCalc2() and MulCalc1() (Appendix A.7). The SSPM-

FC selects the most efficient method among the two methods, by analysing the

recorded nanoseconds values in each processing cycle executing the inputs via both

the computing methods. Then, the inefficient method is eliminated by the SSPM-

FC, and respective entry in the smaller tactics memory is updated by reducing the

number of alternative methods of multiplication operator from two to one.

Moreover, the system can delete unnecessary instructions or modules that are no

longer required for the processes in the SSPM-FC. However, the decision for this

elimination is currently taken, when the respective instructions or modules have not

been triggered within a given period of time. If so, the particular entry in the smaller

tactics memory also get deleted automatically as showed in Figure. 5.7. Initially,

for the Multiplication two methods (+,2,2,MulCalcModule) were there, then the

number of methods in the entry of multiplication was reduced to one

(+,1,2,MulCalcModule).

93

(a)

(b)

Figure. 5.7. Update the relevant entry in the smaller tactics memory due to

deleting the inefficient method (a) How the states are changing, (b) How the

smaller tactics memory and the program update

94

Sample Scenario:

Figure. 5.8: User interface with all the details

Once, the system starts to get expressions such as ½ + ½ as inputs to the system through

the interface showed in the Figure. 5.8, first it identifies operation and creates the process,

then doing classification and prioritization before do the calculation. However, initially,

the system doesn’t have the instructions on fractional addition or any other fractional

operation unless a developer has inserted. In that case, the incoming operator is classified

as a ‘New’ operator. Therefore, the knowledge related to execution of that operation

should be inserted into the system, before continue the particular operation. Then, the

smaller tactics memory starts to be filled up with relevant label like records with an

internal process. For example, such a record could be like this: (Operator, Presidency,

Number of algorithms (there could be more than one algorithm to accomplish a certain

operation), Name of the library file that contains instructions for the particular operation).

E.g. (+,1,1,SumCalcModule). Other than the ‘New’ category, there are four other

categories such as ‘Same Expression’, ‘Same Operator’, ‘Different Operator’, and

‘Frequent Operator’. If the inserted expression is classified into the ‘Same Expression’

class, the SSPM-FC does not process the expression, but the previous response is

95

displayed in response to the current input without taking extra time unnecessarily. Then,

until the operation is not frequent, the system dynamically creates a file calling the

particular method importing the particular library (collecting related things together for

processing) file without filling the memory unnecessary time. If a particular operation

frequently inserts into the system, the file, which was created dynamically according to

the incoming operation will permanently store in the system adding that label into the

smaller tactics memory. E.g. (+,1,1,SumCalcModule,SumCalcModuleMain).

Meantime, if there more than one algorithm, the most efficient algorithm will be selected

by removing the inefficient algorithm and updating the record in the smaller tactics

memory. E.g. (+,2,1,MulCalcModule,MulCalcModuleMain). All these preparation

processes are internally carried out. Eventually, the smaller tactics memory fills up with

four such records for four operators. The modifications applied on the smaller tactics

memory, and the answers produced for the internal inputs can be considered as the

internal outputs, while the answers produced for the external inputs can be considered as

the external outputs. Then, it has been apparent that the memory has not been overloaded

and has been a result of processing. Furthermore, it could empirically verify that the

modifications have been applied both on the smaller tactics memory and the system

through continuous processing. Further, due to these modifications system could

efficiently perform its processing.

The SSPM-FC displayed the behavior of the smaller tactics memory better, where it was

well showed how its smaller tactics memory was updated according to the actions

(tactics) applied on the system and the inputs. Although, each of the four program cases

considered in this research have specific operations, the application of the tactics or

actions was similar to the internal process illustrated with figures in the section 5.2 of

SSPM-FC.

Next section has illustrated a testing scenario of the Quadratic Equation Solver with a

similar interface as had in SSPM-FC.

96

5.3 Quadratic Equation Solver (SSPM-QES)

This has also been similar to the above SSPM-FC. In this case, the calculations have been

dependent on the nature of the discriminant such as positive (1), equal (0), and negative

(-1). Then, the classifications have been made accordingly. In Figure. 5.9, it can be seen

the SSPM-QES user interface.

Figure.5.9. User interface for Quadratic Equation Solver when a class has been created

for positive discriminant module (updated record in the smaller tactics memory), during

an external process

Sample Scenario:

Sample Input : 𝑥2 + 2𝑥 − 4 = 0

Such a way, this has identified the equation and its discriminant, has created, and

classified the process. However, initially, the system doesn’t have the instructions

regarding the particular discriminant. In that case, the incoming expression category is

classified as a ‘New’. Therefore, the knowledge related to execution of that operation

should be inserted into the system, before continue the particular operation. Then, the

smaller tactics memory starts to be filled up with relevant label like records with an

97

internal process. For example, such a record could be like this: (Symbol for Discriminant,

Name of the Module for the discriminant). E.g. (1,positDiscrimModule). Other than the

‘New’ category, there are four other categories such as ‘Same Expression’, ‘Same

Discriminant’, ‘Different Discriminant’, and ‘Frequent Discriminant’. Here also, if the

inserted equation is classified under the ‘Same Expression’ class, without processing the

input further, the SSPM-QES displays the respective earlier response without

unnecessarily taking extra time. Then, until the discriminant is not frequent, the system

dynamically creates a file calling the particular method importing the particular library

(collecting related things together for processing) file without filling the memory

unnecessarily. If a particular operation frequently inserts into the system, the file, which

was created dynamically according to the incoming operation will permanently store in

the system adding that label into the smaller tactics memory. E.g. (1,positDiscrimModule,

positDiscrimModuleMain).

5.4 Sorting Program (SSPM-Sorting)

This is also similar to the above two cases. In this customization regard the sorting on

lists are reliant on the nature of the input pattern with compared to the most recent input

and the respective computing technique to be selected: Insert, Equal, delete, and sort.

Then, the classifications of the inputs and the relevant libraries or modules of instructions

are made according to the computing technique. The Figure. 5.10 shows the SSPM-

Sorting interface, before introduce the record ‘delete’ as a new technique into the smaller

tactics memory.

98

Figure. 5.10. User interface for SSPM-Sorting, before introduce delete to the system.

In determining the particular computing technique, the identification of input was done

also considering the input patterns (IPs) mentioned in the section 4.3, where

𝐼𝑃1: 𝑋 ⊂ 𝑌, 𝐼𝑃2: 𝑋 ⊈ 𝑌, 𝑌 ⊈ 𝑋 ⇒ 𝑋⋂𝑌 ≠ 𝜙 𝑜𝑟 𝑋⋂𝑌 = 𝜙, 𝐼𝑃3: 𝑌 ⊂ 𝑋, 𝐼𝑃4: 𝑋 =

𝑌 ≠ 𝜙 (X is the previous list and the Y is the current list. When, analyzing the input in

SSPM-Sorting input patterns were also used. This was something beyond the above two

cases, where the SSPM-FC and SSPM-QES considered only the New Op, Different Op,

Same Op, Same Exp, Frequent Op, and Unnecessary or inefficient module/method.

These, IPs were also applicable in the SSPM-FC as well, and it was not worth to address

at this level in SSPM-QES as it always solves quadratic equations with three or two

components. However, when it comes to SSPM-Sorting it was a complex work to use the

operators such a way, because the operators used within the program were > (less than)

and < (greater than) to compare list elements, and Swap or Move to place the element is

the appropriate position in the list. That was the major reason behind using the input

patterns in SSPM-Sorting for the illustration of the nature of the SSPM in simple manner.

99

From the Figure. 4.2 (b), the input patterns for this SSPM-Sorting with examples are;

𝐼𝑃1: 𝑋 ⊂ 𝑌

Let 𝑋 = [1,2,3] and 𝑌 = [2,3,1,5,6] , then 𝑋⋂𝑌 = [1,2,3] ≠ 𝜙

For this particular pattern the applicable technique was ‘Insert’, where the additional

elements in the current list (Y) can be inserted to appropriate places in the previously

sorted list X.

𝐼𝑃2: 𝑋 ⊈ 𝑌, 𝑌 ⊈ 𝑋 ⇒ 𝑋⋂𝑌 ≠ 𝜙 𝑜𝑟 𝑋⋂𝑌 = 𝜙

1. Let 𝑋 = [1,2,3,4] and 𝑌 = [2,3,1,5,6] , then 𝑋⋂𝑌 = [1,2,3] ≠ 𝜙

Here, the both the techniques ‘Delete’ and ‘Insert’ had to be used. First, the additional

element/s from the list X was/were deleted, and the additional element/s of the list Y

was/were inserted into the sorted X.

Or

2. Let 𝑋 = [1,2,3] and 𝑌 = [4,5,6] , then 𝑋⋂𝑌 = [] = 𝜙

In this scenario, no common elements were present. Therefore, the ‘Quicksort’

algorithm is applied directly.

𝐼𝑃3: 𝑌 ⊂ 𝑋

 Let 𝑋 = [1,2,3,4,5,6] and 𝑌 = [2,3,1] , then 𝑋⋂𝑌 = [1,2,3] ≠ 𝜙

 The ‘Delete’ was applied to remove additional element of the sorted list X.

𝐼𝑃4: 𝑋 = 𝑌 ≠ 𝜙

 Let 𝑋 = [1,2,3] and 𝑌 = [2,3,1] , then 𝑋⋂𝑌 = 𝑋 = 𝑌 = 𝑋𝑈𝑌 = [1,2,3] ≠ 𝜙

 Here, ‘Equal’ was used. No additional operation was applied other than displaying

the previous sorted list X as the X and Y are equal.

100

Sample Scenario:

Sample Input, 𝑋 = [7,2,5,1,8]

As in the scenarios of SSPM-FC and SSPM-QES, the knowledge regarding the insert,

delete, equal, and sort should be stored in the system and should be organized with the

smaller tactics memory before use a particular technique. Then, at first the system

recognizes the input list and compare with the most recent input. However, initially, the

system doesn’t have a previously sorted input. In that case, the elements of the incoming

list are sorted with the quicksort using the record (s,1,sorCalcModule), which was stored

in the smaller tactics memory. Here, the system works according to the four input patterns

as in section 4.3, and frequent modules will be created accordingly.

For example, if the input is belonged to the ‘Same List’ category (IP4), it will not execute

the input further, but it displays the previously sorted list without unnecessarily taking

additional time.

Then, until a particular technique is not frequent, the system dynamically creates a file,

calling the particular method importing the particular library (collecting related things

together for processing) file without filling the memory unnecessarily. If a particular

operation frequently inserts into the system, the file, which was created dynamically

according to the incoming operation will permanently store in the system adding that

label into the smaller tactics memory. E.g. (s,1,sorCalcModule, SorCalcModuleMain).

This is similar to the SSPM-FC.

Here, it has been considered SSPM-S-Equal, and SSPM-S-Insertion specifically

considering the techniques Equal (IP4), and Insert (IP1, and IP2.1) respectively.

However, there are a few other restrictions in selecting the particular computing

technique, such as size of the list, and size of the cache line and the standard deviation of

the elements in the list. These has been discussed in the evaluation chapter. Overall, by

selecting the appropriate computing technique as per the rising conditions or

requirements, while executing the program in consecutive program execution cycles, the

performance of computing can be enhanced.

101

5.5 Simulated Processes Scheduler (SSPM-PS)

As introduced, this was the very first example customized by SSPM. However, it was a

simple demonstration to show the ability of SSPM to improve processing time by

identifying the nature of the inputs and appropriately selecting the serving algorithm.

Three processes such as P1, P2 and P3 were created. In the first round, those have been

considered in the first come first serve (FCFS) basis in the incoming order P1, P2, and P3

assigning burst times manually. Then the turnaround times have been recorded. After

executing the processes in the first round, system has learned the burst times, turnaround

times and waiting times of each process. Then, the system did some preprocessing by

comparing the burst time before enter into the next round. Then, the scheduling algorithm

was changed to Shortest Job First (SJF) Algorithm rearranging the order of the processes

in the ascending order of the respective burst times.

There have been three processes such as P1, P2 and P3 used in this system with the given

burst time as shown in the Table 6.1. In the first round, those have been executed in the

first come first serve (FCFS) basis in the order P1, P2, and P3. Then the turnaround times

have been recorded. See the Table 6.1. Initially, the processes that have been queued for

the execution do not reveal any fact on the burst time before the execution. Therefore,

FCFS would have been the best approach. In this case, average waiting time is 4.6667 ms

and average turnaround time is 8.6667 ms.

Table 6.1: Process execution with FCFS basis.

Process Burst Time (ms) Waiting Time (ms) Turnaround Time (ms)

P1 5 0 5

P2 4 5 9

P3 3 9 12

102

But after executing the processes in the first round, system has learned the burst time of

each process. Then, the system has done preprocessing by comparing the burst time

before the next round and has changed the scheduling algorithm to Shortest Job First

(SJF) Algorithm. Then, the result of the second round has been recorded in the Table 6.2.

In this case, average waiting time is 3.3333 ms and average turnaround time is 7.3333

ms.

Table 6.2: Process execution with SJF basis.

Process Burst Time (ms) Waiting Time (ms) Turnaround Time (ms)

P3 3 0 3

P2 4 3 7

P1 5 7 12

According to the results appeared in the Table 6.3, it has been apparent that the system

has gained improvements.

Table 6.3: Results after Selection

Round Average Waiting Time (ms) Average Turnaround Time (ms)

1 4.6667 8.6667

2 3.3333 7.3333

Normally, in an OS, the scheduling techniques are applied in different levels such as long-

term scheduling level, medium-term scheduling level, short-term scheduling level, and

I/O scheduling level. As the short-term scheduling level does immediate process

execution and directly involves in processing, it was considered for the demonstration of

SSPM. In fact, the above description includes customizing a scheduling process that has

the scheduling techniques FCFS and SJF with three processes. This attempt was further

extended by involving some other scheduling techniques to schedule the processes

together with the newly incoming processes in each processing execution cycles. There,

the scheduling techniques such as Round Robin (RR), and Shortest Remaining Time

(SRT) could be applied with the preemption technique. Hence, it could improve the

103

waiting time and turnaround time by changing both the scheduling technique and the

schedule of processes as in the above scenario. Further, the techniques such as

exponential averaging can be used by referring the previously recorded burst times to

predict future burst times and can accordingly allocate a suitable scheduling technique as

well. In this scenario, the smaller tactics memory contains the entries to drive the

scheduling process. This idea is yet to be developed, tested, and compared. Overall, the

processing speed could be improved over subsequent OS processing cycles by

customizing the scheduling process with the SSPM.

5.6 Summary

This chapter has presented how the proposed system works. First, it has started with

explaining how the features of the models evident in the Fraction Calculator. Next, it has

discussed a sample scenario with a given input. Latter, it has briefly mentioned how the

other three systems: QES, Sorting, and PS work.

The next chapter has discussed the testing and the evaluation process conducted over the

customized programs. Further, it describes the formal verification of the SSPM.

104

CHAPTER 06

TESTING AND EVALUATION

6.1 Introduction

The preceding chapter explained how the programs customized by the SSPM worked.

This chapter reports the testing and evaluation processes, which were conducted over the

proposed model. The testing has conducted for all the programs that have been

customized by the proposed computing model or part of it. In addition to that, SSPM-FC,

SSPM-QES, and SSPM-Sorting were evaluated empirically. Further, this sorting

mechanism has been compared with some other exciting methods such as sorting with

self-adjusting computing, incremental computing, dynamically tuned libraries, and

genetic algorithmic approach. Moreover, the formal verification of the new computing

model on the Turin Machine, has also been presented.

6.2 Experimental Mechanism of SSPM-FC.

This section focused on reporting the testing and evaluation process carried out for the

prototype SSPM-FC, where the FC is customized by the new computing model with the

continuous processing. Further, it tested the results of two key updates applied on the

system, while executing the program over generations, through this testing process. Those

two were reported separately under two testing setups.

The testing scenario one is allocated for the modification “Generate and store the

operating modules for frequent operations”. Then the second scenario is for “Eliminate

inefficient methods and keep the most efficient method”. By evaluating this, it was

necessary to determine whether the system improved its processing power due to these

modifications through generations of program executions. The following section

onwards, it has been discussed the testing scenarios.

105

6.3 SSPM-FC - Testing Scenario 1

Under this scenario, the effect of “Generating and storing the operating modules for

frequent operations through generations of program executions” was checked and

evaluated. Further, this scenario has three sub-scenarios for addition, subtraction, and

multiplication.

6.3.1 Experimental Setup

Throughout this testing scenario, the analysis was done separately for the operations

addition (Plus Operator), subtraction (Minus Operator) and Multiplication

(Multiplication Operator) as the process deviations can generated non-normal data [134].

For the same reason, the Division Operator has been omitted under this scenario as it uses

Multiplication Operator in the algorithm.

6.3.2 Choice of Expressions and The Responses

For each of the sub scenarios sets of 100 expressions of fractions with relevant operators

have been selected. For example, for the plus operator, a set of 100 fractional expressions

with the addition has been used before and after the modification. Then, the same set of

expressions was executed before and after organizing the smaller tactics memory. The

time (nanoseconds) spent for the execution of each fractional expression was collected

all over the consequent program execution cycles.

Mean Time Values (ns):

Addition

 After = 22746925.12

 Before = 43311187.9

Subtraction

After = 22383131.87

 Before = 47069304.56

106

Multiplication

After = 21675694.22

 Before = 45193156.85

6.3.3 Testing Scenario 1.1: Addition (Plus Operator):

Under this scenario the modification in the SSPM-FC was “Generate and store the

operating module for the plus operator over e frequent operations on plus operator over

generations of program executions.”.

Step 1:

As mentioned in the previous section, a set of 100 fractional expressions (using MedCalc,

the required minimum sample size was determined as 4) with plus operator has been

sequentially executed before and after the modification. The time taken during the each

of expression execution has been recorded in nanoseconds. Hence, two sample sets of

time values have been collected. As seen in the Figure 6.1, clear difference was evident

in the collected paired time values.

Figure. 6.1: Time values taken for computing fractional before and after organizing the

smaller tactics memory of the FC with addition.

0

10000000

20000000

30000000

40000000

50000000

60000000

1/
4+

3
/5

1/
5+

3
/6

1/
5+

5
/6

1/
6+

4
/7

1/
6+

6
/7

1/
7+

2
/8

1/
7+

4
/8

1/
7+

6
/8

1/
8+

2/
9

1/
8+

7
/9

2/
3+

1
/4

2/
4+

2
/5

2/
5+

3
/6

2/
5+

5
/6

2/
6+

3
/7

2/
7+

3
/8

2/
7+

7
/8

2/
8+

4
/9

2/
8+

8
/9

3/
4+

3
/5

3/
5+

5
/6

3/
6+

2/
7

3/
6+

5
/7

3/
7+

1
/8

3/
7+

5
/8

3/
8+

2
/9

3/
8+

7
/9

4/
5+

5
/6

4/
6+

2
/7

4/
6+

6
/7

4/
7+

3
/8

4/
8+

4
/9

4/
8+

8
/9

5/
6+

4
/7

5/
6+

6
/7

5/
7+

2
/8

5/
7+

6
/8

5/
8+

1
/9

5/
8+

5/
9

5/
9+

4
/9

5/
9+

6
/9

6/
7+

3
/8

6/
7+

5
/8

6/
8+

2
/9

6/
8+

6
/9

6/
8+

8
/9

7/
8+

4
/9

7/
8+

8
/9

7/
9+

2
/9

7/
9+

6
/9

D
u

ra
ti

o
n

 (
N

s)

Expressions

1.1 Plus Operator

After Before

107

Size of the Sample =100

Mean Values:

Before the modification= 43311187.9 ns

After the modifications= 22746925.12 ns

Step 2:

Next, it was required to analyse the paired time values sets to identify the appropriate

statistical test. For that, it was necessary to check whether the collected time values fulfil

the assumptions or conditions stated in section 6.3.3.

Condition 1: Are the time values in continuous scale?

As the time values were collected at time intervals in nanoseconds, these two sets of time

values and their paired differences are from continuous scale.

Condition 2: Does the set of differences of the paired time values have a Normal

distribution?

Then, normality of the set of time values was determined using Anderson Darlin (AD)

test using Minitab 17(with this test, it can be proved that there is no departure from

normality) [134] by drawing the probability plot of difference that is showed in Figure.

6.2.

108

(a) (b)

Figure. 6.2: Probability plot for addition (differences)

(a) Probability Plot (b)Values

Referring the graph of the Figure. 6.2, which has been drawn with Minitab 17, it has been

proved the normality.

As it has given:

P-Valuecalculated(0.023)> P-Valuetabulated(0.01) and

ADcalculated(0.885)< ADcalculated (1.035).

Condition 3:

Do the differences of the paired time values have significant outliers?

In order to find outliers, the Grubb’s test [136] has been applied as follows using Minitab

17.

Outlier Test with Difference:

H0 = All data values come from the same normal population

H1 = Smallest or largest data value is an outlier

109

Significance level α = 0.01 (Figure 6.3)

(a) (b)

Figure. 6.4: Outlier Plot for addition (a) Outlier Plot (b) Values for Differences

Grubbs' Test:

Table 6.4: Values from Grubbs’ Test

Variable N Mean (ns) StDev (ns) Min (ns) Max (ns) G P

Difference 100 20564263 4721465 7661265 31544463 2.73 0.544

Considering the values from Table 6.4;

Since, P-Valuecalculated = 0.544 is greater than the P-Valuetabulated (= 0.01), #

Hence, the H0 cannot be rejected and no outlier at the 1% level of significance.

Consequently, the differences of the paired time values have satisfied all the above

mentioned conditions. Then, the power and the size of the paired-t test with related to

these dependent samples has been checked as follows.

350000003000000025000000200000001500000010000000

7661265.00 31544463.00 2.73 0.544

Min Max G P

Grubbs' Test

Difference

Outlier Plot of Difference

350000003000000025000000200000001500000010000000

7661265.00 31544463.00 2.73 0.544

Min Max G P

Grubbs' Test

Difference

Outlier Plot of Difference

110

Step 3:

Further, power of the paired t-test with the sample size 100 has also been determined.

Figure 6.4, has showed the relevant power curve.

Power and Sample Size for Paired t Test

Figure. 6.5. Power Curve for Paired-t Test with size 100 (Addition)

Testing mean paired difference = 0 (versus > 0)

Power for mean paired difference at α = 0.01 and the assumed standard deviation of paired

differences = 4721465

Table 6.5: Values from Power Test for Paired-T Test

Difference (ns) Size Power

20564263 100 1

For the sample size at 100 with 20564263 as the mean of paired differences as seen in

Table 6.5, it has been resulted that the power of applying the paired-t test with 100 values

has been high because the calculated Power value is 1.

111

This is the best justification for choosing the sample size 100. Further, it could prove that

the most appropriate test to do this crossover analysis is paired-t test. Therefore, it was

not necessary to go for the alternatives.

Step 4:

After checking the conditions, power, and the sample size, the paired-t test was applied

for the two dependent set of times values with 99% confidence level.

Test Statistics;

 𝑇 =
𝐷̅− 𝜇𝐷

𝑆𝑑 √𝑛⁄

 Tcalculated = t =
𝑑̅− 𝑑0

𝑠𝑑 √𝑛⁄

𝐷̅=Random variable of mean of differences of values

𝜇𝐷=Mean of Differences of population

𝑑̅=Mean of Differences of values (Estimate of 𝐷̅)

𝑆𝑑=Random variable of standard deviation of differences of values

𝑠𝑑=standard deviation of differences of values (Estimate of 𝑆𝑑)

n = Sample Size

𝑑0 = Population mean

Applying paired-t Test in Minitab 17 for the paired differences, the results are listed in

the Table 6.6.

Table 6.6: Values for The Paired-T Test (Addition)

 N Mean (ns) StDev (ns) SE Mean (ns)

Before Select 100 43311188 2706548 270655

After Select 100 22746925 4253045 425304

Difference 100 20564263 4721465 472147

From Table 6.6;

112

𝑠𝑑 √𝑛⁄ = SE Mean = 472147 𝑠𝑑 = StDev =4721465 (ns)

𝑑̅=20564263 (ns) n = N =100

99% lower bound for mean difference: 19447822 (ns)

t-test of mean difference = 0 (vs > 0): T-Value = 43.55 P-Value = 0.000

Hence, Tcalculated = 𝑑̅ (𝑠𝑑 √𝑛)⁄⁄

= 43.55

 Ttable(99,0.01) = 2.365 (degree of freedom = N-1 = 99)

Tcalculated > Ttable

Therefore, the H0 can be rejected.

Hence, it was concluded that there is a significant improvement in the system after

organizing the smaller tactics memory as the mean value of the times values collected

before organizing the smaller tactics memory through creating and saving the computing

modules for frequently executing addition operation, is greater than the mean value of the

time values collected after organizing the smaller tactics memory.

6.3.4 Testing Scenario 1.2: Subtraction (Minus Operator)

The modification in the SSPM-FC considered under this scenario was “Generate and

store the operating module for the minus operator over e frequent executions on minus

operator over generations of program executions”.

Step 1:

Here, a set of 100 expressions of fractions (using MedCalc, the required minimum sample

size was determined as 4) with minus operator have been selected. Then, the rest of the

procedure has been exactly similar to the procedure of scenario 1.1. The two sets of 100

time values per each expression with respect to the set of 100 expressions have been

collected for the two cases; before and after the modification. A clear difference was

evident in the collected paired time values as seen in the Figure. 6.5.

113

Figure. 6.5: Time values collected before and after organizing the smaller tactics

memory of the FC with subtraction.

Sample size = 100

Mean Values:

Before the modification = 47069304.56 (ns)

After the modification = 22383131.87 (ns)

Step2:

As similar to the above scenario 1.1, it has been required to select the most suitable

statistical test for this crossover study. Then, the paired samples were checked for the

conformity to the conditions that have been mentioned in Testing Scenario 1.1.

Condition 1: Are the time values in continuous scale?

As the time values were collected at time intervals in nanoseconds, these two sets of time

values and their paired differences are from continuous scale.

Condition 2: Does the set of differences of the paired time values have a Normal

distribution?

0

10000000

20000000

30000000

40000000

50000000

60000000

70000000

1
/4

-4
/5

1
/5

-4
/6

1/
6-

2/
7

1
/7

-2
/8

1
/7

-5
/8

1
/8

-1
/9

1
/8

-4
/9

2
/3

-1
/4

2
/4

-3
/5

2
/6

-1
/7

2
/6

-5
/7

2
/7

-2
/8

2
/8

-1
/9

2
/8

-4
/9

2
/8

-7
/9

3
/4

-3
/5

3
/5

-3
/6

3
/6

-1
/7

3
/6

-6
/7

3
/7

-5
/8

3
/8

-4
/9

3
/8

-7
/9

4
/5

-3
/6

4
/6

-2
/7

4
/7

-1
/8

4
/7

-4
/8

4
/7

-7
/8

4
/8

-3
/9

4
/8

-8
/9

5
/6

-6
/7

5
/7

-4
/8

5/
8-

1/
9

6
/7

-2
/8

6
/7

-7
/8

D
u

ra
ti

o
n

 (
N

s)

Expressions

1.2 Minus Operator

After Before

114

Then, normality of the set of time values was determined using Anderson Darlin (AD)

test using Minitab 17(with this test, it can be proved that there has not been a departure

from normality) [134] by drawing the probability plot of difference that is showed in

Figure. 6.6.

Figure. 6.6: Probability plot of difference for Subtraction

Hence, it has been proved the normality.

As it has given;

P-Valuecalculated(0.248)> P-Valuetabulated(0.01)

and ADcalculated(0.466)< ADcalculated (1.035) [135] with Minitab 17.

Condition 3:

Do the differences of the paired time values have significant outliers?

In order to find outliers, the Grubb’s test [136] has been applied as follows using Minitab

17.

115

Outlier Test with Difference:

H0 = All data values come from the same normal population

H1 = Smallest or largest data value is an outlier

Significance level: α = 0.01 (Figure 6.7)

Figure. 6.7: Outlier Plot of Subtraction (a) Outlier Plot (b) Values for difference

Grubbs' Test:

Table 6.7: Values from Grubbs’ Test

Variable N Mean (ns) StDev (ns) Min (ns) Max (ns) G P

Difference 100 24686173 4910244 16134887 36485867 2.40 1.000

Considering the values from the Table 6.7;

Since, P-Valuecalculated =1.000 is greater than P-Valuetabulated =0.01 (Significance Level) as

in the Table 6.7.

Hence, the H0 cannot be rejected and No outlier at the 1% level of significance.

3500000030000000250000002000000015000000

16134887.00 36485867.00 2.40 1.000

Min Max G P

Grubbs' Test

Difference

Outlier Plot of Difference

116

Consequently, the paired differences satisfy all the conditions. Then, the power and the

size of the paired-t test with related to these dependent samples was checked as follows.

Step 3:

Further, power of the paired t-test with the sample size 100 has also been determined.

Figure 6.8, shows the relevant power curve.

Power and Sample Size for Paired t Test

Figure. 6.8. Power Curve for Paired t Test with size 100 (Subtraction)

Testing mean paired difference = 0 (versus > 0)

Calculating power for mean paired difference at α = 0.01 and assumed standard deviation

of paired differences = 4910244

Table 6.8: Values from Power Test for Paired-T Test with sample size 100

Difference (ns) Size Power

24686173 100 1

117

For the sample size at 100 with 24686173 as the mean of paired differences as seen in

Table 6.8, it has been resulted that the power of applying the paired-t test with 100 values

was high because the calculated Power value is 1.

This is the best justification for choosing the sample size 100. Further, it could prove that

the most appropriate test to do this crossover analysis is paired-t test. Therefore, it was

not necessary to go for the alternatives.

Step 4:

After checking the conditions, power, and the sample size, the paired-t test was applied

for the two dependent samples with 99% significance level. Considering the difference

between the time values collected before and after generate the frequent Subtraction

module, the results were recorded in the Table 6.9.

Table 6.9: Values for The Paired-T Test (Subtraction)

From Table 6.9;

𝑠𝑑 √𝑛⁄ = SE Mean = 491024 𝑠𝑑 = StDev =4910244 (ns)

𝑑̅=24686173 (ns) n = N =100

99% lower bound for mean difference: 23525094 (ns)

T-Test of mean difference = 0 (vs > 0): T-Value = 50.27 P-Value = 0.000

Hence, Tcalculated = 𝑑̅ (𝑠𝑑 √𝑛)⁄⁄

 N Mean (ns) StDev (ns) SE Mean (ns)

Before Select 100 47069305 4969214 496921

After Select 100 22383132 3873931 387393

Difference 100 24686173 4910244 491024

118

= 50.27

 Ttable(99,0.01) = 2.365 (degree of freedom = N-1 = 99)

 Tcalculated > Ttable

Further, the calculated P-value is less than the table P-value (significance level- 0.01)

Therefore, the H0 can be rejected.

Hence, it was concluded that there is a significant improvement in the system after

organizing the smaller tactics memory as the mean value of the times values collected

before organizing the smaller tactics memory through creating and saving the computing

modules for frequently executing subtract operation, is greater than the mean value of the

time values collected after organizing the smaller tactics memory.

6.3.5 Testing Scenario 1.3: Multiplication (Multiplication Operator)

“Generate and store the operating module for the multiplication operator over the frequent

operations on multiplication operator over generations of program executions” is the

modification in SSPM-FC considered here.

Step 1:

Here, a set of 100 expressions of fractions (using MedCalc, the required minimum sample

size was determined as 4) with multiplication operator have been selected. Then, the rest

of the procedure is exactly similar to the procedure appeared in scenarios 1.1 and 1.2. The

two sets of 100 time values per each expression with respect to the set of 100 expressions

were collected for the two cases, before and after organizing the smaller tactics memory.

A clear difference was evident in the collected paired time values as seen in the Figure.

6.9. However, it should be noted that this testing scenario has been conducted after

finishing the below testing scenario 2 of SSPM-FC and selecting the best algorithm, i.e.,

this scenario has been conducted only with the method MulCalc1() after removing the

inefficient algorithm MulCalc2().

119

Figure. 6.9: Time values collected before and after organizing the smaller tactics

memory of the FC with Multiplication. (it is possible to refer the complete

samples in the appendix)

Sample size = 100

Mean Values:

Before the modification = 45193156.85 (ns)

After the modification = 21675694.22 (ns)

Step2:

Here also, first appropriate statistical test has been determined after checking the paired

samples for the conditions as similar to the above scenarios 1.1 and 1.2. Since, the time

data has been collected at time intervals, the samples and their differences have been in

the continuous scale. Then, the differences of the paired samples have been checked for

the normality using Anderson Darlin (AD) test and the probability plot of differences has

been drawn using Minitab 17 as seen in Figure. 6.10.

0

10000000

20000000

30000000

40000000

50000000

60000000

1
/4

*2
/5

1
/5

*3
/6

1
/6

*3
/7

1
/7

*5
/8

1
/8

*4
/9

1
/8

*8
/9

2
/5

*5
/6

2
/6

*6
/7

2
/7

*5
/8

2
/8

*4
/9

3
/4

*3
/5

3
/5

*4
/6

3
/6

*4
/7

3
/7

*2
/8

3
/7

*7
/8

3
/8

*6
/9

4
/5

*4
/6

4
/6

*3
/7

4
/7

*2
/8

4
/7

*6
/8

4
/8

*3
/9

5
/6

*2
/7

5
/6

*6
/7

5
/7

*6
/8

6
/7

*3
/8

1.3 Multiplication Operator

After Before

120

Figure. 6.10: The probability plot of differences (Multiplication)

Hence, it has been proved the normality,

As it has given,

P-Valuecalculated(0.018)> P-Valuetabulated(0.01) and

ADcalculated(0.925)< ADtabulated (1.035) with Minitab 17.

Condition 3:

Do the differences of the paired time values have significant outliers?

In order to find outliers, the Grubb’s test [136] has been applied as follows using Minitab

17.

121

Outlier Test for Difference:

H0 = All data values come from the same normal population

H1 = Smallest or largest data value is an outlier

Significance level α = 0.01 (Figure 6.11)

(a)

(b)

Figure. 6.11: Outlier Plot of Difference (a) Outlier Plot (b) Values (Multiplication)

Grubbs' Test:

Table 6.10: Values From

Grubbs’ Test

Variable N Mean (ns) StDev (ns) Min (ns) Max (ns) G (ns) P (ns)

Difference 100 23517463 4125809 16261473 30548517 1.76 1.000

32

50
00

00

300
00

00
0

27
500

00
0

250
00

00
0

22
500

00
0

200
00

00
0

17
500

00
0

15
00

000
0

16261473.00 30548517.00 1.76 1.000

Min Max G P

Grubbs' Test

Difference

Outlier Plot of Difference

32
50

00
00

300
00

00
0

27
500

00
0

250
00

00
0

22
500

00
0

200
00

00
0

17
500

00
0

15
00

000
0

16261473.00 30548517.00 1.76 1.000

Min Max G P

Grubbs' Test

Difference

Outlier Plot of Difference

122

Considering the values from Table 6.10;

Since, P-Valuecalculated =1.000 is greater than P-Valuetabulated =0.01 (Significance Level),

the null hypothesis cannot be rejected and No outlier at the 1% level of significance.

Thus, the differences of the paired samples have satisfied all the conditions. With all

these, as the next step, the power and the size of the paired-t test with related to these

dependent samples has been checked as follows.

Step 3:

Further, power of the paired t-test with the sample size 100 has also been determined.

Figure 6.12, shown the relevant power curve.

Power and Sample Size for Paired t Test

Figure. 6.12. Power Curve for Paired t Test with size 100 (Multiplication)

Testing mean paired difference = 0 (versus > 0)

123

Calculating power for mean paired difference at α = 0.01 and assumed standard deviation

of paired differences = 4125809 (ns)

Table 6.11: Values from Power Test for Paired-T Test with sample size 100

Difference (ns) Size Power

23517463 100 1

For the sample size 100 with 23517463 ns as the mean of paired differences, it has been

resulted that the power of applying the paired-t test with 100 values has been high because

the power value is 1 as showed in Table 6.11. Also this result of the power test has

provided a justification for selecting this sample size. Hence, it was determined that the

most relevant test to do this analysis was paired-t test and it was not necessary go for the

alternatives.

Step 4:

After checking the conditions, power with the given sample size, finally the paired-t test

was applied for the two dependent samples with 99% significance level. Considering the

difference between the time values collected before and after generate the frequent

Multiplication module, the results were recorded in the Table 6.12.

Table 6.12: Values for The Paired-T Test (Multiplication)

 N Mean (ns) StDev (ns) SE Mean (ns)

Before Select 100 45193157 3970568 397057

After Select 100 21675694 3117660 311766

Difference 100 23517463 4125809 412581

From Table 6.12;

𝑠𝑑 √𝑛⁄ = SE Mean = 412581 (ns) 𝑠𝑑 = StDev =4125809

𝑑̅=23517463 (ns) n = N =100

99% lower bound for mean difference: 22541871 (ns)

124

T-Test of mean difference = 0 (vs > 0): T-Value = 57.00, P-Value = 0.000

Hence, Tcalculated = 𝑑̅ (𝑠𝑑 √𝑛)⁄⁄ = 57.00

 Ttabulated(99,0.01) = 2.365 (degree of freedom = N-1 = 99)

 Tcalculated > Ttabulated

Therefore, the H0 can be rejected.

Hence, it was concluded that there is a significant improvement in the system after

organizing the smaller tactics memory as the mean value of the times values collected

before organizing the smaller tactics memory through creating and saving the computing

modules for frequently executing multiplication operation, is greater than the mean value

of the time values collected after organizing the smaller tactics memory.

Longer or shorter fractional expressions with mixed operations, or proper or improper or

fractions with whole numbers, or bracketed sub fractional expressions are all allowed in

our model. In fact, the results retrieved from the executions of fractional expressions with

mixed operations are non-normal. Then, for these non-normal data sets, it is possible to

apply Wilcoxon Signed Rank test or Sign Test, which are the alternatives for paired-t test,

but with lower power. Please note that, since our plan was to apply the most powerful

statistical test (paired-t test) to these crossover studies and the paired-t test does not

support non-normal data, the different operations were not mixed up in fractional

expressions.

6.4 SSPM-FC - Testing Scenario 2:

This scenario was used to check and evaluate the effect of “Elimination of inefficient

methods, while keeping the most efficient algorithm in multiplication over program

execution cycles”. Stated in another way, it was expected to check whether the system

had gained an improvement through the modification.

125

6.4.1 Experimental Setup

As mentioned in the prior subsection 6.3.1, the main hypothesis of this research has been

reduced to the following hypothesis.

The hypothesis, which has been tested in this scenario is;

H0: No difference exists between the means time values.

 (No processing speed improvement over consecutive program execution cycles)

 (𝐻0: 𝜇𝐷 =𝑑0, 𝑑0=0)

H1: The mean value of the time values collected when using the inefficient

algorithm is greater than the mean value of the time values collected with the

selection process and thereafter.

 (processing speed has improved over consecutive program execution cycles)

 (𝐻1: 𝜇𝐷 >𝑑0, 𝑑0=0)

Since, the method MulCalc2() took a longer time to perform multiplication than the

method MulCalc1() from the two methods MulCalc1() and MulCalc2(), MulCalc1() was

decided as the most efficient algorithm among those two.

If a programmer unknowingly uses inefficient MulCalc2() for multiplication all over the

execution cycles, it would be certainly time consuming and requires more processing.

Therefore, in early program execution cycles, allocating some time for pre-processing to

select best algorithm and continuing with the selected best algorithm, improves quality

and speed of program execution than using the inefficient algorithm throughout the

cycles.

6.4.2 Choice of Inputs and The Responses

The time values were collected by executing same set of expressions of fractions with

multiplication operator during both the selection process and when using the inefficient

algorithm. For an arbitrary set of twenty such expressions, time values that were retrieved

126

are shown in the Table 6.13. Next, for these two cases, total time values were computed

as shown in the last raw of Table 6.13. (Selection Process = 2323140714 ns, Inefficient

Algorithms (MulCalc2()) = 2786388917 ns).

Table 6.13: Selection Process Vs Inefficient Algorithm

Expression
Selection MulCalc2()

Duration (ns) Duration (ns) Method

1/2*2/3 116316738 M1 272323879

1/2*2/3 128066758 M2

1/3*1/4 46576950 M1 153578831

1/3*1/4 117959285 M2

1/3*2/4 55910434 M1 146680499

1/3*2/4 144987812 M2

1/3*3/4 41370224 M1 135732195

1/3*3/4 122324023 M2

1/4*1/5 47899063 M1 131248869

1/4*1/5 129464903 M2

1/4*2/5 55854554 M1 145145888

1/4*2/5 123275507 M2

1/4*3/5 42021777 M1 122066299

1/4*3/5 115556058 M2

1/4*4/5 54413837 M1 131729741

1/4*4/5 125718270 M2

1/5*3/6 51362864 M1 132207953

1/5*3/6 150794411 M2

1/5*4/6 53335011 M1 127790389

1/5*4/6 166784509 M2

1/5*5/6 41904696 M1 160376426

127

2/3*1/4 55239494 M1 124228894

2/3*2/4 42032801 M1 131434375

2/3*3/4 54646100 M1 136603847

2/4*1/5 52533684 M1 152881281

2/4*2/5 46813394 M1 206332993

2/4*3/5 41045968 M1 111717091

2/4*4/5 55861016 M1 136422523

3/4*1/5 43070573 M1 127886944

3/4*2/5 55433363 M1 143891059

Total Time 2323140714 2786388917

Similarly, 20 total values were computed from executing 20 sets of twenty different

expressions as seen in the Table 6.14.

Table 6.14. Total Values for Selection Process and Inefficient Algorithm (M2)

Sample Selection (ns) MulCalc2() (ns)

1 2323140714 2786388917

2 2134226128 2471722339

3 2438671461 2633183668

4 2737122465 2983123800

5 2160134007 2526952881

6 2534930827 2860031523

7 2140585380 2503459176

8 2223174431 2591368949

9 3217582268 3237629193

10 2141014233 2457161559

11 3376966266 3624723832

12 2251626854 2521410904

128

13 2177035960 2458623236

14 2505120834 2633126388

15 2768560208 3171579564

16 2521708504 2714581461

17 2202959895 2812596076

18 2355105321 2739438643

19 2785844294 3185859802

20 2138863042 2473804734

6.4.3 Relevant Statistical Tests

This analysis can also be considered as a crossover study, since the same set of

expressions of fractions has been used as in testing scenario 1. Therefore, it is not

necessary to repeat the description of selection of relevant statistical tests here.

6.4.4 The Scenario

Step 1:

As mentioned earlier, total time values taken during the execution of twenty sets of

expressions (using MedCalc, the required minimum sample size was determined as 6)

with the efficient algorithm after the selection process and with the inefficient algorithm,

has been used in this scenario. Those values have been illustrated in Figure 6.13. There,

a clear difference has been observed.

129

Figure. 6.13: Total time values in nanoseconds for best multiplication algorithms with

selection process vs inefficient multiplication algorithm (MulCalc2())

Descriptive statistics:

Variable N Mean (ns) StDev (ns)

Difference 20 316657478 127920870

Mean Values

With inefficient Method M2= 2769338332 (ns)

With the selection and the best algorithms= 2456718655 (ns)

Step2:

As similar to the above testing scenario 1.1, 1.2, and 1.3, the paired samples have been

checked for the conditions. All the used time durations have been belonged to the

continuous scale.

0

500000000

1E+09

1.5E+09

2E+09

2.5E+09

3E+09

3.5E+09

4E+09

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Sample Total Values for Selection Process and Inefficient
Algorithm (MulCalc2)

Selection (Ns) MulCalc2()(Ns)

130

Figure 6.14: The probability plot of differences (Total Time Values)

Then, the differences of the paired samples have been checked for the normality using

Anderson Darlin (AD) test and the probability plot of differences has been drawn by

Minitab 18 as seen in the Figure. 6.14.

Hence, it has been proved the normality,

As it has given;

P-Valuecalculated(0.537)> P-Valuetabulated(0.01) and

ADcalculated(0.305)< ADtabulated (1.035) [135] with Minitab 18.

The last assumption to check was whether the differences of the paired samples have

significant outliers. For this, the Grubbs’ test [136] was applied as follows using Minitab

18.

131

Outlier Test for Difference:

H0 = All data values come from the same normal population

H1 = Smallest or largest data value is an outlier

Significance level α = 0.05 (Figure 6.15)

Figure. 6.15: Outlier Plot of Difference (a) Outlier Plot (b) Values (Total Time values)

Grubbs' Test:

Table 6.15: Values from Grubbs’ Test

Variable N Mean (ns) StDev (ns) Min (ns) Max (ns) G P

Difference 20 316657478 127920870 20046925 609636181 2.32 0.256

Considering the values from Table 6.15;

Since, P-Valuecalculated =0.256 is greater than P-Valuetabulated =0.01,

H0 cannot be rejected.

Hence, no outlier at the 1% level of significance.

600
000

000

50
000

000
0

40
000

000
0

30
000

000
0

20
000

00
00

10
00

000
000

20046925.00 6.09636E+08 2.32 0.256

Min Max G P

Grubbs' Test

Difference

Outlier Plot of Difference

132

Consequently, the mean paired differences have satisfied all conditions. With all of these,

as the next step, the power and the size of the paired-t test with related to these dependent

samples has been checked as follows.

Step 3:

Further, power of the paired t-test with the sample size 20 has also been determined.

Figure 6.16, has showed the relevant power curve.

Power and Sample Size for Paired t Test

Figure. 6.16: Power Curve for Paired t Test with size 20 (Total Time Values)

Testing mean paired difference = 0 (versus > 0)

Calculating power for mean paired difference

α = 0.05 and assumed standard deviation of paired differences = 125888527

133

Table 6.16: Values from Power Test for Paired-T Test with sample size 20

Difference (ns) Size Power

312619678 20 1

For the sample size 20 with 312619678 as the mean of paired differences, it has been

resulted that the power of applying the paired-t test with 20 values has been high because

the power value is 1 as in Table 6.16. Further, it could prove that the most appropriate

test to do this crossover analysis with 20 values, is paired-t test. Therefore, it was not

necessary to go for the alternatives.

Step 4:

After checking the conditions, power with the given sample size, finally the paired-t test

was applied for the two dependent samples with 99% significance level. In this scenario,

the difference between the times values before and after removing the inefficient

algorithm and selecting the best algorithm were considered. The results were reported in

the Table 6.17.

Table 6.17: Values for The Paired-T Test (Total Time Values)

 N Mean (ns) StDev (ns) SE Mean (ns)

M2 20 2769338332 322477375 72108133

With Selection 20 2456718655 361500451 80833958

Difference 20 312619678 125888527 28149530

134

From Table 6.17;

𝑠𝑑 √𝑛⁄ = SE Mean = 28149530 (ns) 𝑠𝑑 = StDev =125888527 (ns)

𝑑̅=312619678 (ns) n = N =20

99% lower bound for mean difference: 312619678 (ns)

T-Test of mean difference = 0 (vs > 0): T-Value = 11.11 P-Value = 0.000

Hence, Tcalculated = 𝑑̅ (𝑠𝑑 √𝑛)⁄⁄ = 11.11

 Ttable(19,0.01) = 2.539 (degree of freedom = N-1 = 19)

 Tcalculated > Ttable

Therefore, the H0 can be rejected.

Hence, it was concluded that there is a significant improvement in the system after

organizing the smaller tactics memory as the mean value of the times values collected

before organizing the smaller tactics memory through removing inefficient algorithm and

keeping most efficient algorithm, is greater than the mean value of the time values

collected after organizing the smaller tactics memory.

6.5 Summarizing Results of the Experiments on SSPM-FC

Since, it has been just passed a long line of experiments and results on SSPM-FC, it has

been required to summarize the results in a table to convince the significance of the

proposed model. Here, the Table 6.18 has briefed the results.

Table 6.18: Summary of Results (SSPM-FC)

Scenario N Tcalculated Ttable Null Hypothesis Improvement has

gained (Yes/No)

Testing Scenario 1.1 100 43.55 2.365 Rejected Yes

Testing Scenario 1.2 100 50.27 2.365 Rejected Yes

Testing Scenario 1.3 100 57.00 2.365 Rejected Yes

Testing Scenario 2 20 11.11 2.539 Rejected Yes

135

6.6 SSPM-QES Testing Scenario

This testing scenario was conducted for creating and saving modules for positive

discriminant as it has been frequently occurring. Moreover, this testing scenario has been

similar to the testing scenario 1 of SSPM-FC in [16]. Then, the particular hypothesis was

same as the hypothesis mentioned in the 4.10

Method:

A set of 59 quadratic equations (using MedCalc, the required minimum sample size was

determined as 5) with positive discriminant has been executed before and after the

modification and execution durations were recorded in nanoseconds in consecutive

calculation cycles. It could observe a clear difference between the paired samples (two

time samples) as shown in the below Figure. 6.17. Then, it was necessary to choose the

best statistical test for analysis. Therefore, these paired samples were checked to

determine, whether those are in continuous scale and normally distributed, and have no

outliers.

Figure. 6.17: Graph of Time values recorded with the quadratic equations with positive

discriminant before and after organizing the smaller tactics memory of the SSPM-QES.

0
10000000
20000000
30000000
40000000
50000000
60000000
70000000

2
.0
x²
+6

.0
x-
…

2
.0
x²
+8

.0
x-
…

2
.0
x²
-1
.0
x-
…

2
.0
x²
-3
.0
x-
…

2
.0
x²
-5
.0
x-
…

2
.0
x²
-7
.0
x-
…

2
.0
x²
-9
.0
x-
…

1
.0
x²
-4
2
.0
x+
-…

1
.0
x²
-4
4
.0
x+
-…

1
.0
x²
-4
6
.0
x+
-…

1
.0
x²
-4
8
.0
x+
-…

1
.0
x²
-3
2
.0
x+
-…

1
.0
x²
-3
4
.0
x+
-…

1
.0
x²
-2
2
.0
x+
-…

1
.0
x²
-2
4
.0
x+
-…

1
.0
x²
-1
3
.0
x+
-…

1
.0
x²
-1
5
.0
x+
-…

1
.0
x²
-1
7
.0
x+
-…

QES for Create Frequent Modules

Before After

136

Descriptive Statistics:

Mean values:

Before the modification= 44738692 (ns)

After the modification= 25210417 (ns)

These paired populations are in continuous scale as those have been collected at time

intervals in nanoseconds.

After applying Anderson-Darling test for the differences of the paired samples at

significance level of 0.05, it has been obtained the P-value as 0.1897.

For the Anderson Darling Test:

Null hypothesis
H₀: Differences of the paired samples follow a normal

distribution

Alternative hypothesis
H₁: Differences of the paired samples do not follow a

normal distribution

Here, the P-value is greater than the significance level, the null hypothesis cannot be

rejected. Therefore, Differences of the paired samples follow a normal distribution.

Next, it was necessary to check for outliers in the paired samples. The Grubb’s test has

been used for this purpose with the significance level 0.05.

For the Grubb’s Test:

Null hypothesis : All data values come from the same normal population

Alternative hypothesis : Smallest or largest data value is an outlier

137

Here also, the critical value obtained is 3.19 and it is greater than significance level 0.05.

Then, it has been decided that the null hypothesis cannot be rejected. Therefore, the

differences of paired samples have no outliers.

Since, all the three conditions are satisfied by the differences of the paired samples, the

paired-t test could be applied for the analysis.

Finally, the paired-t test has been applied for the two dependent samples with 99%

significance level.

Test Statistics;

 𝑇 =
𝐷̅− 𝜇𝐷

𝑆𝑑 √𝑛⁄

 Tcalculated = t =
𝑑̅− 𝑑0

𝑠𝑑 √𝑛⁄

𝐷̅=Random variable of mean of differences of values

𝜇𝐷=Mean of Differences of population

𝑑̅=Mean of Differences of values (Estimate of 𝐷̅)

𝑆𝑑=Random variable of standard deviation of differences of values

𝑠𝑑=standard deviation of differences of values (Estimate of 𝑆𝑑)

n = Sample Size

𝑑0 = Population mean

Applying paired-t Test for the difference between Before Create and After Create the

particular module:

Table 6.19: Values for The Paired-T Test QES

 N Mean (ns) StDev (ns) SE Mean (ns)

Before create 59 44738692 7356546 957740

After create 59 25210417 7228602 941083

138

Difference 59 19528275 7233449 941714

From Table 6.19;

𝑠𝑑 √𝑛⁄ = SE Mean = 941714

𝑠𝑑 = StDev =7233449 (ns)

𝑑̅=19528275 (ns)

n = N =59

95% lower bound for mean difference: 17643228 (ns)

t-test of mean difference = 0 (vs > 0): T-Value = 20.7369

Hence, Tcalculated = 𝑑̅ (𝑠𝑑 √𝑛)⁄⁄

= 20.7369

 Ttable(58,0.05) = 1.658

(degree of freedom = N-1 = 58)

Tcalculated > Ttable

Therefore, the null hypothesis can be rejected and it is possible to conclude that there is

a significant improvement in the system after the modification as the mean value of the

sample collected before the modifications (Create and Save the computing modules for

frequently executing quadratic equations with positive discriminant) is greater than the

mean value of the sample collected after the modification.

Hence, it was proved that the system would become more efficient in succeeding

execution cycles due to the conditionally evolving memory. Having this empirical proof

of the applicability of the new model [17], as the next step, it was conducted a formal

verification by simulating the model in a Turing Machine.

139

6.7 Experimental Mechanism on the Implementation of Sorting Program

This section has reported on the testing and evaluation process conducted over the

Quicksort algorithm customized by the six-state continuous processing model (SSPM),

which includes SSPM insertion. First, it has tested the model’s ability to evolve over

generations of executions by creating and saving computing modules for frequently

executing operations. This case was similar to the Testing Scenario 1 of SSPM-FC.

Similarly, this scenario was named. Through this scenario, it is expected to determine

whether the system has improved its processing power due to the modifications through

generations of program executions. Next, several experimental setups were designed in

order to compare the SSPM model with the Quicksort algorithms, which has been

implemented using parallel computing, incremental computing [29]/ self-adjusting

computing [48], [50], a Dynamically Tuned Library [51] and Sorting with Genetic

algorithmic approach [89]. These have been considered under the Testing Scenario 2. The

following section onwards, it has been discussed the testing scenarios.

6.8 SSPM Sorting - Testing Scenario 1:

Under this scenario, the effect of “Generating and storing the operating modules for

frequent operations through the generations of program executions” was checked and

evaluated. Further, this scenario has two subsections; first subsection (Testing Scenario

1.1) is allocated to test “when the current input has some/many (not all similar) similar

values to the elements of a previous list and some/many (tested with one new element,

however, there could be more like one/ two/ five/ half/ all are new elements) were

necessary to be inserted into previously sorted list”, the second was “when all the

elements of the current input equal to all the elements of a previous input.”

6.8.1 Experimental Setup

As stated in the above section dedicated to SSPM-FC the overall hypothesis of this

research has reduced to the following hypothesis.

140

The hypothesis, which was tested in this scenario is;

H0: There is no difference between the means of time values before and after

organizing the tactics memory by organizing smaller tactics memory through

continuous processing.

 (No Performance Improvement over program execution cycles)

 (𝐻0: 𝜇𝐷 =𝑑0, 𝑑0=0)

H1: The mean value of the time values collected before organizing memory is

greater than the mean value of the time values collected after organizing memory.

 (Performance has improved over program execution cycles)

 (𝐻1: 𝜇𝐷 >𝑑0, 𝑑0=0)

6.8.2 Choice of Expressions and The Responses

For each of the sub scenarios, lists of 100 integers in-between 0 and 1000 have been

randomly generated. For examples, to check InsCalcModule, a set of 75 lists of 100

integers have been used before and after creating the module. Then, those list have been

sorted before the modification and collected the time taken by each expression for the

execution in nanoseconds. In the same way, after the modification, the time values have

been collected for the same set of expressions in nanoseconds. This collection process

has been conducted in subsequent sorting cycles.

6.8.3 Testing Scenario 1.1: InsCalcModule

Under this scenario the modification in the SSPM-Sorting was “create and save the

computing module for frequently executing insertion associated sorting over execution

cycles”.

Step 1:

141

As mentioned in the above section, a set of 75 lists of 100 integers (using MedCalc, the

required minimum sample size was determined as 7) have been sequentially sorted before

and after the modification. The time taken during the each of lists sorting has been

recorded in nanoseconds. Hence, two sample lists of times values have been collected.

As seen in the Figure 6.18, it was able to see a clear difference between the time values

of two samples.

Figure 6.18: Graph of Time values recorded for sorting lists (InsCalcModule) before

and after organizing the smaller tactics memory of the sorting program.

Descriptive Statistics:

Mean Values:

Before modification = 766052 (ns)

After modification= 612507 (ns)

Step 2:

Then as the second step, the samples have been analysed to determine which test could

be applied in these paired samples. For that, it has been necessary to determine whether

the samples satisfy the above stated conditions.

0

200000

400000

600000

800000

1000000

1200000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73

Sorting: InsCalcModule case

Before After

142

These paired samples are in continuous scale as those have been collected at time intervals

in nanoseconds.

After applying Anderson-Darling test for the differences of the paired samples at

significance level of 0.05, it has been obtained the P-value as 0.1104.

For the Anderson Darling Test:

Null hypothesis H0 : Differences of the paired samples follow a normal

 distribution.

Alternative hypothesis H1 : Differences of the paired samples do not follow a

 normal distribution.

Since, the P-value is greater than the significance level (0.1104>0.05), the null hypothesis

cannot be rejected. Therefore, Differences of the paired samples follow a normal

distribution.

Next, it was necessary to check for outliers in the paired samples. The Grubb’s test has

been used for this purpose with the significance level 0.05.

For the Grubb’s Test:

Null hypothesis : All data values come from the same normal population.

Alternative hypothesis : Smallest or largest data value is an outlier.

Here also, the critical value obtained is 3.283 and it is greater than the significance level

0.05. Thus, it has been decided that the null hypothesis cannot be rejected. Therefore, the

differences of paired samples have no outliers.

Since, all the three conditions are satisfied by the differences of the paired samples, the

paired-t test could be applied for the analysis.

143

Step 3:

After checking the conditions and power with the given sample size, finally the paired-t

test has been applied for the two dependent samples with 99% significance level.

Test Statistics;

 𝑇 =
𝐷̅− 𝜇𝐷

𝑆𝑑 √𝑛⁄

 Tcalculated = t =
𝑑̅− 𝑑0

𝑠𝑑 √𝑛⁄

𝐷̅=Random variable of mean of differences of values

𝜇𝐷=Mean of Differences of population

𝑑̅=Mean of Differences of values (Estimate of 𝐷̅)

𝑆𝑑=Random variable of standard deviation of differences of values

𝑠𝑑=standard deviation of differences of values (Estimate of 𝑆𝑑)

𝑑0 = Population mean

n = Sample Size

Applying paired-t Test for the difference between Before Create and After Create

the InsCalc module:

Table 6.20: Values for The Paired-T Test (InsCalcModule)

 N Mean (ns) StDev (ns) SE Mean (ns)

Before Create 75 766052 91253 10537

After Create 75 612507 82545 9531

Difference 75 153545 82511 9528

From Table 6.20;

𝑠𝑑 √𝑛⁄ = SE Mean = 9528 (ns)

𝑠𝑑 = StDev =82511 (ns)

144

𝑑̅=153545 (ns)

n = N =75

t-test of mean difference = 0 (vs > 0): T-Value = 16.115

Hence, Tcalculated = 𝑑̅ (𝑠𝑑 √𝑛)⁄⁄ = 16.115

 Ttable(74,0.05) = 1.667,

Where, degree of freedom = N-1 = 74

Thus, Tcalculated > Ttable

Therefore, the null hypothesis can be rejected and it is possible to conclude that there is

a significant improvement in the system after the modification as the mean value of the

sample collected before the modifications (Create and Save the computing modules for

frequently executing quadratic equations with positive discriminant) is greater than the

mean value of the sample collected after the modification.

Hence, it was proved that the system would become more efficient in succeeding

execution cycles due to the conditionally evolving memory.

6.8.4 Testing Scenario 1.2: Similar List to Sort (EquCalcModule)

Under this scenario the modification in the SSPM-Sorting was “create and save the

computing module for frequently sorting the similar list over execution cycles”.

Step 1:

Here also, 74 lists of 100 elements (using MedCalc, the required minimum size was

determined as 4) have been randomly generated and used for the testing and scenario is

exactly similar to the above testing scenario 1.1. As seen in Figure. 6.19, it was able to

see a considerable difference between the time values of two populations.

145

Figure 6.19: Graph of Time values recorded for sorting lists (Same List) before

and after organizing the smaller tactics memory of the Sorting program.

Descriptive Statistics:

Mean Values:

Before the modification= 765803 (ns)

After the modification= 91578 (ns)

Step2:

These paired samples are in continuous scale as those have been collected at time intervals

in nanoseconds.

After applying Anderson-Darling test for the differences of the paired samples at

significance level of 0.05, it has been obtained the P-value as 0.0632.

For the Anderson Darling Test:

Null hypothesis H0 : Differences of the paired samples follow a normal

 distribution

Alternative hypothesis H1 : Differences of the paired samples do not follow a

 normal distribution

0

200000

400000

600000

800000

1000000

1200000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73

Sorting: EquCalcModule Case

Before After

146

Since, the P-value is greater than the significance level (0.0632>0.05), the null hypothesis

cannot be rejected. Therefore, Differences of the paired samples follow a normal

distribution.

Next, it was necessary to check for outliers in the paired samples. The Grubb’s test has

been used for this purpose with the significance level 0.05.

For the Grubb’s Test:

Null hypothesis : All data values come from the same normal population.

Alternative hypothesis : Smallest or largest data value is an outlier.

Here also, the critical value obtained is 3.278 and it is greater than the significance level

0.05. Thus, it has been decided that the null hypothesis cannot be rejected. Therefore, the

differences of paired samples have no outliers.

Since, all the three conditions are satisfied by the differences of the paired samples, the

paired-t test could be applied for the analysis.

Step 3:

After checking the conditions, and power with the given sample size, finally the paired-t

test was applied for the two dependent samples with 99% significance level.

Paired-t Test for the difference between Before Creating and After Creating the

particular module:

Table 6.21: Values for The Paired-T Test (EquSortModule)

 N Mean (ns) StDev (ns) SE Mean (ns)

Before modification 74 765803 105742 12292

After modification 74 91578 21444 2493

Difference 74 674225 93875 10,916

147

From Table 6.21;

𝑠𝑑 √𝑛⁄ = SE Mean = 10,916 (ns)

𝑠𝑑 = StDev =93875 (ns)

𝑑̅=674225 (ns)

n = N =74

t-test of mean difference = 0 (vs > 0): T-Value = 61.784

Hence, Tcalculated = 𝑑̅ (𝑠𝑑 √𝑛)⁄⁄ = 61.784

 Ttable(73,0.05) = 1.667, where

degree of freedom = N-1 = 73

Thus, Tcalculated > Ttable

Therefore, the null hypothesis can be rejected and it is possible to conclude that there is

a significant improvement in the system after the modification as the mean time value

collected before the modifications (Create and Save the computing modules for

frequently executing modules) is greater than the mean value of the sample collected after

the modification.

Hence, it was proved that the SSPM-Sorting would become more efficient in succeeding

execution cycles due to the conditionally evolving memory.

6.9 Trade-Offs: SSPM Sorting Vs Original Quicksort-Testing Scenario 1

When the number of elements in the current list was ranged from 2 to 2300, SSPM

insertion showed better performance for any number of new elements in the current list

with compared to the previous list than purely applying the original Quicksort on the

current list. For example, when only one new element was present in the current list

compared to the previous list, SSPM insertion showed better performance, up to 2737

elements. However, there was no performance gain at all afterwards (see the Figure. 6.20

148

(a)). Similarly, it was up to 2439 for two new elements (see the Figure. 6.20 (b)) and for

five elements it was up to 2344 (see the Figure. 6.20 (c)).

(a)

(b)

0
5000000

10000000
15000000
20000000

1
0

5
0

1
0

0

5
0

0

1
0

0
0

1
5

0
0

2
0

0
0

2
4

5
0

2
4

7
5

2
5

5
0

2
6

5
0

2
7

2
5

2
7

3
7

2
7

4
0

3
0

0
0

Ti
m

e(
N

s)

No of Elements

Comparison when one new element
is available

Before After

0

5000000

10000000

15000000

1
0

5
0

1
0

0

5
0

0

1
0

0
0

1
5

0
0

1
8

0
0

1
9

0
0

2
0

0
0

2
3

0
0

2
4

0
0

2
4

3
5

2
4

4
0

2
5

0
0

2
7

5
0

Ti
m

e
(N

s)

No of Elements

Comparison when two new elements
available

Before After

149

(c)

Figure. 6.20: Comparison when (a) one new element was available (b) two new

elements were available (c) Five new elements were available.

However, when the number of elements in the current list rose, this pattern was changed,

where the better performance appeared only when “some percentage” of the current list

was newer than the previous list as in the Figure. 6.21. To understand this “some

percentage”, let’s consider an example: There received a current set Y, which consists of

100,000 elements. Then 10% or less than of this set Y are similar to the elements in a

previously received set X, i.e., 90% or more of the set Y are newer than the previously

received set X, where input pattern of Y belonged to 𝐼𝑃1: 𝑋 ⊂ 𝑌 or 𝐼𝑃2: 𝑋 ⊈

𝑌 𝑎𝑛𝑑 𝑌 ⊈ 𝑋, 𝑎𝑛𝑑 𝑋⋂𝑌 ≠ 𝜙 𝑜𝑟 𝑋⋂𝑌 = 𝜙. When the SSPM insertion was applied for

the set Y, it sorted the set Y faster than applying original Quicksort on Y. However, if the

current set with 100,000 elements had 50% or less of new elements than a previous set,

SSPM insertion is not better than the original Quicksort. Such a way, each number of

elements in a list had a particular threshold-percentage for having new elements, which

enables the SSPM to perform better. Then, Figure. 6.21 shows how threshold-percentage

of new elements, which contributed to the better performance by the SSPM insertion

changed across the total number of element in a current list. Finally, when the total

0

5000000

10000000

15000000

20000000

25 75 250 750 125017502250234525003000
Ti

m
e(

N
s)

No of Elements

Comparison when five new elements are
available

Before After

150

number of elements of a list was greater than or equal 25,000, this threshold-percentage

becomes a constant, which is equal to 90%.

Figure 6.21: Percentage of new Elements in each list, above which showed better

performance on SSPM compared to the original

The better performance has illustrated by calculating the speedup. Here, the speedup was

calculated by dividing the time (Ns) taken by the original quicksort by the time taken by

SSPM-Sorting. If the newer percentage of elements of a list was getting bigger for a given

total number of elements, the speedup compared to the original was slowly decreasing in

the each of the lists of approximately ranged from 2 elements to 1,250 elements (Figure

6.22). Next, showed a stability between 1,250 and 1,750 exclusively (Figure 6.22). Then,

slowly started to rise from 1,750, but with a small drop when the entire list is new as

showed in the Figure 6.22.

0

20

40

60

80

100
SS

C
M

Total No of Elements in the Current List

Percentage of new Elements, above which shows better
performance on SSPM-Sorting compared to the original

quicksort

Percentage of new Elements which shows speedup compared to the original

151

0

1

2

3

4

1 2 5 6 7 8 9 10Sp
ee

d
 U

p
 R

at
io

No of New Elements

Total Number -10

0

2

4

6

8

1 2 5 10 20 30 40 50Sp
ee

d
 U

p
 R

at
io

No of New Elements

Total Number-50

0

2

4

6

8

1 2 5 25 50 75 100150200250

Sp
ee

d
u

p
 R

at
io

No of New Elements

Total Number - 250

0

1

2

3

1 2 5 100 200 300 400 500 600 750Sp
ee

d
 U

p
 R

at
io

No of New Elements

Total Number-750

0
0.5

1
1.5

2

Sp
ee

d
U

p
 R

at
io

No of New Elements

Total Number-1250

0

1

2

3
1 2 5

1
0

0

2
5

0

5
0

0

7
5

0

1
0

0
0

1
2

5
0

1
5

0
0

sp
ee

d
u

p
 R

at
io

No of New Elements

Total Number-1500

0

1

2

3

1 2 5

1
0

0

4
0

0

7
0

0

1
0

0
0

1
3

0
0

1
6

0
0

1
7

5
0

Sp
ee

d
u

p
 R

at
io

No of New Elements

Total Number-1750

0
0.5

1
1.5

2

Sp
ee

d
u

p
 R

at
io

No of New Elements

Total Number 2000

152

0
0.5

1
1.5

2

Sp
ee

d
u

p
 R

at
io

No of New Elements

Total Number 2250

0
0.5

1
1.5

2

Sp
ee

d
u

p
 R

at
io

No of New Elements

Total Number 2500

0
0.5

1
1.5

2

1 2 5
1

0
0

5
0

0
7

5
0

1
0

0
0

1
5

0
0

2
0

0
0

2
2

5
0

2
5

0
0

2
7

5
0

3
0

0
0

Sp
ee

d
u

p
 R

at
io

No of New Elements

Total Number 3000

0

0.5

1

1.5

2

1 2 5

1
0

0

5
0

0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

3
5

0
0

4
0

0
0

Total Number 4000

0
0.5

1
1.5

2

1

1
0

0
0

2
5

0
0

5
0

0
0

7
0

0
0

8
0

0
0

9
0

0
0

1
0

0
0

0

1
1

0
0

0

1
2

0
0

0

1
4

0
0

0

1
5

0
0

0

Sp
ee

d
u

p
 R

at
io

No of New Elements

Total Number 15000

0
0.5

1
1.5

2
1

2
5

0
0

5
0

0
0

7
5

0
0

1
0

0
0

0

1
2

5
0

0

1
5

0
0

0

1
7

5
0

0

2
0

0
0

0

2
2

5
0

0

2
5

0
0

0

Sp
ee

d
u

p
 R

at
io

No of New Elements

Total Number 25000

0

1

2

3

1

5
0

0
0

1
0

0
0

0

1
5

0
0

0

2
0

0
0

0

2
5

0
0

0

3
0

0
0

0

3
5

0
0

0

4
0

0
0

0

4
5

0
0

0

5
0

0
0

0

Sp
ee

d
u

p
 R

at
io

No of New Elements

Total Number 50000

0
1
2
3

Sp
ee

d
u

p
 R

at
io

No New Elements

Total Number 100000

153

Figure. 6.22: How speedup of SSPM insertion varies depending on the percentage of

new elements within a list

6.10 SSPM Sorting - Testing Scenario 2

Other comparisons have stated under this scenario. There are three main subsections; first

subsection compares the SSPM-Sorting with Parallel Quicksort, then the second section

compares it with the incremental computing and the self-organizing computing, finally,

the last section was allocated to compare the SSPM sorting with Dynamically tuned

library for sorting and sorting with Genetic algorithmic approach.

6.10.1 SSPM Sorting - Testing Scenario 2.1

This section compares the speedup of the SSPM-Sorting with the speedup of the parallel

Quicksort [72]. (Here the speedups are calculated with respect to the original quicksort

algorithm). Here, it has randomly generated nine lists with the number of elements: 10,

100, 1,000, 10,000, 25,000, 50,000, 75,000, 100,000, and 150,000. Then, the time taken

for each sorting has recorded in milliseconds, before and after the modifications. The

obtained values are recorded as in Table 6.22.

0

2

4

165000 175000 185000 200000

Sp
ee

d
u

p
 R

at
io

No of New Elements

Total Number 200000

0

2

4

200000 220000 225000 250000

Sp
ee

d
u

p
 R

at
io

No of New Elements

Total Number 250000

154

Table 6.22. Comparison Tables (a) Average run times for different thresholds and

number of elements for parallel QS (Source: [72]), (b) Relevantly tested SSPM, sorting

list results with original QS, when there are 1, half and all new, all equal elements

than/to previous list in SSPM

(a) No of

elements

T=1,000

(ms)

T=5,000

(ms)

T=50,000

(ms)

10 0.01 0 0.01 0001

100 0.01 0.020001 0.050004

1000 0.250016 0.270011 0.260018

10000 2.010118 2.880166 3.060169

25000 5.380318 6.120344 9.15052

50000 11.36065 11.320644 19.61112

75000 18.14103 18.251045 28.60164

100000 24.91142 22.591294 34.19196

150000 36.41208 34.551976 46.99269

(b) No of

Elements

QS (ms)

(Original)

SSPM (Ins)

Sorting (ms)

(New-1)

SSPM (Ins)

Sorting (ms)

(New-All)

SSPM (Ins)

Sorting (ms)

(New-Half)

SSPM (Equ)

Sorting (ms)

10 0.066632 0.018038 0.03806067 0.0391916 0.003218

100 0.539753 0.07334 0.3489822 0.24314837 0.002344

1,000 3.739901 1.930715 3.8016484 2.39315618 0.013139

10,000 55.54588 170.6803 30.75075283 58.83381293 0.0598

25,000 110.98429 235.13991 105.1489939 467.412058 0.336187

50,000 284860552 975723774 260.123507 1514.949977 0.542807

75,000 467.85857 2011.65497 449.4495079 3625.401822 0.597209

100,000 678.709937 4018.92315 719.3368731 7379.429526 1.139867

150,000 1534.8744 8671.315424 1338.664077 16466.73955 1.436503

The speedup of relevant methods compared to the original methods were considered as

in Figure. 6.23. Since, these speedups are in different scales taking those into a single

graph would minimize the visibility of their variations.

155

(a)

(b)

(c)

0

2

4

6

8

1
0

1
0

0

1
0

0
0

1
0

0
0

0

2
5

0
0

0

5
0

0
0

0

7
5

0
0

0

1
0

0
0

0
0

1
5

0
0

0
0

SS
C

M

No of Elements

Speedup of SSPM - One New
Element

Speedup of
SSPM

0

1

2

3

4

Sp
ee

d
u

p
 R

at
io

No of Elements

Speedup of SSPM - All of the Elements are
New

Speedup

156

(d)

(e)

Figure. 6.23: (a) Graph showing speed up ratio by using

parallel quicksort. (b) Speedup of the SSPM Sorting when one new element available

(c) Speedup of the SSPM Sorting when all are new elements (d) Speedup of the SSPM

Sorting when half of the demands are new elements (e) Speedup of the SSPM Sorting

when all elements are equal.

6.10.2 SSPM Sorting - Testing Scenario 2.2

This section compares the SSPM sorting with the Quicksort with self-adjusting

computing [50] and the incremental computing [29]. The testing results obtained by the

0

0.5

1

1.5

2

2.5

Sp
ee

d
u

p
 R

at
io

No of Elements

Speedup of SSPM -
Half of the Elements are New

Speedup

0
1000
2000
3000
4000
5000
6000
7000
8000

1
0

1
0

0

1
0

0
0

1
0

0
0

0

2
5

0
0

0

5
0

0
0

0

7
5

0
0

0

1
0

0
0

0
0

1
5

0
0

0
0

Sp
ee

d
u

p
 R

at
io

No of Elements

Speedup If All Elements Are Equal

Speedup

157

respective researchers have been compared here with the results obtained through

executing different SSPM-Sorting techniques as seen in the tables Table 6.23 and 6.24.

Case 1: Comparison with Self adjusting sort.

In this scenario, all the tests had used lists with total number of elements 100,000 as the

input and compared the speedup gained by those compared to the original quicksort as

seen in the Table 6.19

Table 6.23. (a.) Speedup calculation

(b.) Quicksort with Self-adjusting computing [51] Vs SSPM sorting

(a.)
No. of New

elements in the list.

Original (O)

(ns)

SSPM (S)

(ns)

Difference

(ns)

Speedup

=O/S

S
S

P
M

 S
o
rt

in
g

90% 1617721603 1327240833 290480770.4 1.218860634

95% 1528648990 668087075.9 860561914.2 2.288098431

100% 1506086212 624955845.1 881130367.2 2.409908194

Equal 678709937 1139867 677570070 595.4290606

(b.) Sorting Technique Size of

the list

Speedup

Quicksort with Self-Adjusting Computing 1*105 654.06

SSPM-S-Insertion (90% new) 1*105 1.218861

SSPM-S-Insertion (95% new) 1*105 2.288098

SSPM-S-Insertion (100% new) 1*105 2.409908

SSPM-S-Equal 1*105 595.45

Case 2: Comparison with Incremental computing sort.

Under this, it has been considered four approaches, which have been upgraded with the

incremental sorting. Here also, the size of the lists used consist of 100,000 elements. In

addition to the speedup gained, the utilized maximum heap size used for the comparison

is shown in the Table 6.24 below.

158

Table 6.24. Quicksort with ADAPTON [29] with incremental computing

Vs SSPM sorting

Sorting technique Size of

the list

Speedup Maximum utilized

heap size (MB)

Quicksort – LazyBidirectional-Eager 1*105 21600 162

Quicksort – LazyBidirectional-Lazy 1*105 2020 162

Quicksort – EagerTotalOrder - Eager 1*105 245 2680

Quicksort – EagerTotalOrder - Lazy 1*105 22.9 2680

SSPM-S-Insertion (90% new) 1*105 1.218861 2626

SSPM-S-Insertion (95% new) 1*105 2.288098 3127

SSPM-S-Insertion (100% new) 1*105 2.409908 1347

SSPM-S-Equal 1*105 595.45 2144

6.10.3 SSPM Sorting - Testing Scenario 2.3

This testing scenario, which compares the SSPM-Sorting with the ‘Dynamically Tuned

Library (DTL) for Sorting’ [51] and ‘Sorting with Genetic Algorithmic Approach (GAA)’

[89], was complicated than all the tests conducted so far. The DTL research [51]

suggested that the characteristics of input data and some architectural features affect the

sorting. Particularly, the distribution of data, standard deviation, number of elements in

the list, size of the cache, size of the cache line, and number of registers are among the

factors. First, six list of normally distributed 2M (M=220) elements have been created.

Each list was created so as to have a single standard deviation (stdv) for all the elements

in each list, where those six standard deviations were {100, 1,000, 10,000, 100,000,

1,000,000, and 10,000,000}. Same testing scenario has been conducted in two different

computers: Intel(R) Xeon(R) CPU ES-2623 V3 @ 3.00 GHz with Turbo Boost up to

2.0GHz with 16GB cache size, 64B cache line size and 4 registers in SUSE Linux

(Server) (Figure. 6.24), and Intel(R) Core i7-8550U 1.8GHz with Turbo Boost up to

4.0GHz with 4608MB cache size, 64B cache line size and 8 registers in Windows 10

operating system (Laptop) (Figure. 6.25). There is an apparent speedup gain in the SSPM-

159

Sorting for the lists with a standard deviation approximately less than 1,000 as shown in

the figures Figure. 6.24 and Figure. 6.25.

Figure. 6.24: Speedup ratio, when 2M elements are there in the list (Server)

Figure. 6.25: Speedup ratio, when 2M elements are there in the list (Laptop)

Then, again the SSPM-Sorting has been compared with the different improvements

gained by the Quicksort after applying different adapting techniques through

Dynamically Tuned Library (DTL) and a Genetic Algorithmic Approach (GAA) for

sorting (Gene-Sort) [89] in an Intel PIII Xeon computer with 512KB cache size in RedHat

7.3 Operating System as seen in Table 6.25.

0
0.5

1
1.5

2
2.5

3

Sp
ee

d
u

p
 R

at
io

Standard Diviation

Server - Speedup 2M

Speedup

0

2

4

6

8

10

12

14

16

Sp
ee

d
u

p
 R

at
io

Standard Deviation

Laptop - Speedup 2M

160

Table 6.25: (a.) Speedup Calculation (b.) Comparisons of SSPM sorting with DTL [51]

and GAA [89] sorting.

(a.)
No. of New

elements in the list.
Original (O) (ns) SSPM (S) (ns)

Speedup

=O/S

S
er

v
er

S
S

P
M

 S
o
rt

in
g

100% 1.72765E+12 1.99998E+11 8.638342601

95% 1.72143E+12 2.73105E+11 6.303186834

90% 1.72732E+12 5.30574E+11 3.255558307

L
a
p

to
p

S
S

P
M

 S
o
rt

in
g

No. of New

elements in the list.
Original (O) (ns) SSPM (S) (ns)

Speedup

=O/S

100% 29261182771 3418760879 8.55900246

95% 28500803520 3569688935 7.984114033

90% 29699991415 7619283828 3.898003026

Equal 29683523901 45412649 653.6400002

(b.) Sorting Technique Speedup

DTL – Insert Sort at the end 1.1173

DTL – Insert Sort at each partition 1.0465

DTL – Sorting Networks 1.1672

GAA – Gene Sorting 2.5714

SSPM-S-Insertion (90% new) (Server) 3.25556

SSPM-S-Insertion (95% new) (Server) 6.30319

SSPM-S-Insertion (100% new) (Server) 8.63834

SSPM-S-Insertion (90% new) (Laptop) 3.898003

SSPM-S-Insertion (95% new) (Laptop) 7.984114

SSPM-S-Insertion (100% new) (Laptop) 8.559002

SSPM-S-Equal (0% new) (Laptop) 653.64

161

6.11 Formal Verification

In this work, the new processing model is formally simulated on a Turing Machine (TM)

for the formal verification of the model. Then, the model has been classified into the

polynomial hierarchy by checking satisfiability. Hence, its real-world applicability has

been proved in theoretical level.

6.11.1 Why the Turing Machine has been Used?

Turing machine (TM) is an abstract machine that was introduced nearly eighty years ago

by Alan Turing. Further, a TM has been capable of doing anything that a real computer

can do, and has been more precise [56] and accurate. Moreover, the tape of TM has been

divided into cells and these cells can hold any one of a finite number of symbols called

input alphabet. For this system, the input is a finite-length string of symbols chosen from

the input alphabet. In addition to that, TM has a pointer, which enables the finite control

and is named as ‘head’. Further, it reads the tape symbols. Accordingly, at a given time,

the system is in any one of finite set of states. Furthermore, the system will be stopped,

when the TM finishes reading all the symbols in the string. TM has few variations such

as Multiple tape Turing Machines, and Nondeterministic Turing Machines. Further, the

Pushdown automata is a computational machine that accepts language, whereas the TM

can be used both as a language accepter and a transducer. There are two similarities exist

with the Turing Machine and the Pushdown Automata [138]. First similarity is both are

Finite-state machines. The second is both have Deterministic and Nondeterministic

Machines. Further, this has many features those differentiate this with the other such

machines [137]. There, the TM can read from the tape and the write on the tape, and the

read-write head can move to both left and right. Moreover, this has an unlimited and

unrestricted memory since having an infinite tape, and the effect would be immediately

taken place as the special states are there for rejecting and accepting. The most of all, the

TM can be used to determine the nature of a problem [138], which includes decidability

and satisfiability of the problem. Furthermore, if an algorithm is Turing Complete, then

it is applicable in the real-world.

162

6.11.2 Nondeterministic Turing Machine (NTM)

For the SSPM, a Nondeterministic Turing Machine (NTM) (T) has been designed as a

Transducer as seen in figure. 6.26. However, when designing the NTM, it is required to

split the ‘Ready’ state in the new computing model into four states as ‘Classified’,

‘Prioritized’, ‘Ready’, and ‘deleted’, since the actions in the transitions should be

expressed distinctly. Therefore, TM consists of ten states including initial state.

This section discusses the mathematical model designed to simulate the storage and the

flow of the proposed continuous processing model. It is a Nondeterministic Turing

Machine (NTM) T define by a 7-tuple and a single tape in place of the storage or memory.

Figure. 6.26: Transition Diagram

163

Further, the T was designed as a transducer, which produces an output for a given input

according to the proposed model. T has 10 internal states. Moreover, the input alphabet

consists of 10 symbols and the tape can have 20 symbols, which consists of all the actions,

changes in the storage, and the blank symbol. In addition to that, the initial state is q0, the

final state is q9, and the blank is denoted by B.

The Turing Machine T is given by T=(Q,∑,Γ,δ,q0,B,F), where

 Q={q0, q1, q2, q3, q4, q5, q6, q7, q8, q9} (Finite set of Internal States -All Processing

States) where q0= Initial q1= New, q2= Classified, q3= Prioritized, q4= Ready, q5=

Running, q6= Blocked, q7= Sleep, q8=Deleted, q9=Terminate

 ∑={n,?,p,+,d,-,s,r,t,M} (Input Alphabet–All the sub processes), where n=Create,

?=Classify, p=Prioritize, +=Activate, d=Dispatch, -=Delete, s=Event-wait/ Block,

t=No further improvements, M=Initial Memory.

 Γ= {n,?,p,+,d,-,s,r,t,M,N,C,P,R,D,X,S,E,H,B} Tape Symbols, where ∑⊆Γ\{B}, and

N,C,P,R,D,X,S,E,H are the changed Memories after the actions such as Create,

Classify, Prioritize, Activate, Dispatch, Delete, Event-Wait/Block, Release, and

No-Improvements respectively.

 δ = Transition function, where δ(q,X)=(p,Y,D), q∈Q is the current state, X∈Γ, p∈Q

is the next state, Y∈Γ is the sub process which replaces the scanned sub process on

the tape, D is the Direction (left or right) of the head to move (all transitions are

tabulated into Table 6.26).

 q0∈Q is the start state.

 B: Blank symbol, initially, the input is surrounded by blanks.

 F=Set of Final States, where F={q9}, q9∈Q

164

Table 6.26: Transition Table

State

Symbol

Actions Storage

B
 (

B
la

n
k

)

n
 (

C
re

at
e)

?
(C

la
ss

if
y

)

p
 (

P
ri

o
ri

ti
ze

)

+
(A

ct
iv

at
e)

d
 (

D
is

p
at

ch
)

-
 (

D
el

et
e)

s
(B

lo
ck

ed
 /

E
v

en
t-

W
ai

t)

r
(R

el
ea

se
)

t
(T

er
m

in
at

e
–

N
o

Im
p

ro
v

em
en

ts
)

M
 (

In
it

ia
l

M
em

o
ry

)

N
 (

A
ft

er
 n

)

C
 (

A
ft

er
 ?

)

P
 (

A
ft

er
 p

)

A
 (

A
ft

er
 +

)

D
 (

A
ft

er
 d

)

X
 (

A
ft

er
 -

)

S
 (

A
ft

er
 s

)

E
 (

A
ft

er
 r

)

T
(A

ft
er

 t
)

(Initial)

q0

 (q
0
,n

,R
)

(q
0
,?

,R
)

(q
0
,p

,R
)

(q
0
,+

,R
)

(q
0
,d

,R
)

(q
0
,-

,R
)

(q
0
,s

,R
)

(q
0
,r

,R
)

(q
0
,r

,R
)

(q
1
,N

,L
)

(New)

q1

 (q
1
,?

,L
)

(q
1
,?

,R
)

(q
1
,p

,L
)

(q
1
,p

,R
)

(q
1
,+

,L
)

(q
1
,+

,R
)

(q
1
,d

,L
)

(q
1
,d

,R
)

(q
1
,-

,L
)

(q
1
,-

,R
)

(q
1
,s

,L
)

(q
1
,s

,R
)

(q
1
,r

,L
)

(q
1
,r

,R
)

(q
1
,t

,L
)

(q
1
,t

,R
)

 (q
2
,C

,L
)

(Classified) q2

 (q
2
,?

,L
)

(q
2
,?

,R
)

(q
2
,p

,L
)

(q
2
,p

,R
)

(q
2
,+

,L
)

(q
2
,+

,R
)

(q
2
,d

,L
)

(q
2
,d

,R
)

(q
2
,-

,L
)

(q
2
,-

,R
)

(q
2
,s

,L
)

(q
2
,s

,R
)

(q
2
,r

,L
)

(q
2
,r

,R
)

(q
2
,t

,L
)

(q
2
,t

,R
)

 (q
3
,P

,L
)

(Prioritized)

q3

 (q
3
,?

,L
)

(q
3
,?

,R
)

(q
3
,p

,L
)

(q
3
,p

,R
)

(q
3
,+

,L
)

(q
3
,+

,R
)

(q
3
,d

,L
)

(q
3
,d

,R
)

(q
3
,-

,L
)

(q
3
,-

,R
)

(q
3
,s

,L
)

(q
3
,s

,R
)

(q
3
,r

,L
)

(q
3
,r

,R
)

(q
3
,t

,L
)

(q
3
,t

,R
)

 (q
4
,A

,L
)

(Ready)

q4

 (q
4
,?

,L
)

(q
4
,?

,R
)

(q
4
,p

,L
)

(q
4
,p

,R
)

(q
4
,+

,L
)

(q
4
,+

,R
)

(q
4
,d

,L
)

(q
4
,d

,R
)

(q
4
,-

,L
)

(q
4
,-

,R
)

(q
4
,s

,L
)

(q
4
,s

,R
)

(q
4
,r

,L
)

(q
4
,r

,R
)

(q
4
,t

,L
)

(q
4
,t

,R
)

 (q
5
,D

,L
)(

q
8
,X

,L
)(

q
3
,P

,L
)(

q
2
,C

,L
)

(Running)

q5

 (q
5
,?

,L
)

(q
5
,?

,R
)

(q
5
,p

,L
)

(q
5
,p

,R
)

(q
5
,+

,L
)

(q
5
,+

,R
)

(q
5
,d

,L
)

(q
5
,d

,R
)

(q
5
,-

,L
)

(q
5
,-

,R
)

(q
5
,s

,L
)

(q
5
,s

,R
)

(q
5
,r

,L
)

(q
5
,r

,R
)

(q
5
,t

,L
)

(q
5
,t

,R
)

 (q
6
,S

,L
)(

q
7
,E

,L
)

(q
4
,A

,L
)

(Blocked)

q6

 (q
6
,?

,L
)

(q
6
,?

,R
)

(q
6
,p

,L
)

(q
6
,p

,R
)

(q
6
,+

,L
)

(q
6
,+

,R
)

(q
6
,d

,L
)

(q
6
,d

,R
)

(q
6
,-

,L
)

(q
6
,-

,R
)

(q
6
,s

,L
)

(q
6
,s

,R
)

(q
6
,r

,L
)

(q
6
,r

,R
)

(q
6
,t

,L
)

(q
6
,t

,R
)

 (q
4
,A

,L
)

(Sleep)

q7

 (q
7
,?

,L
)

(q
7
,?

,R
)

(q
7
,p

,L
)

(q
7
,p

,R
)

(q
7
,+

,L
)

(q
7
,+

,R
)

(q
7
,d

,L
)

(q
7
,d

,R
)

(q
7
,-

,L
)

(q
7
,-

,R
)

(q
7
,s

,L
)

(q
7
,s

,R
)

(q
7
,r

,L
)

(q
7
,r

,R
)

(q
7
,t

,L
)

(q
7
,t

,R
)

 (q
4
,A

,L
)

165

6.11.3 Configurations of NTM

This section develops a notation for the configurations of this Nondeterministic Turing

Machine T. These configurations are also called as the array of Instantaneous

Descriptions (IDs) and use to formally describe what this NTM does for a typical input

[56].

Input (w) = n?p+dr+-tM

Length of the input w = 10.

Tape at the Beginning: Bn?p+dr+-tMBB𝐵ሶ

Table 6.27 shows how the read/write head moves through the tape depending on the input

(w). The states in the Table 6.27 shows the position of the head in the tape in each move.

Further, there are 83 moves accounted with respect to this particular input with 10

symbols. These moves were formed according to the Transitional Table appeared in Table

6.27. Next, a sample scenario is explained to show how the head moves on the tape.

The initial configuration is α0. There, the head is in the position of the state q0. The rest

of the symbols of α0 represent the tape at the beginning. Then consider the second

configuration α1, which represents the first move. There the head reads ‘n’, which

symbolize the action ‘Create’. There, the head doesn’t do any change on the particular

cell and keep the symbol ‘n’ as it is, according to the transition δ(q0,n)=(q0,n,R) in Table

6.26. The machine is in the state q0 until the head writes the result of the action ‘Create’.

That is until α9. Then after writing in α10, the storage (memory) has been changed from

M to N. The state has been changed to q1. After that, the head moves back on the tape to

read the next input ‘?’, which denotes the action ‘Classification’. Similarly, the head

moves along the tape back and forth to read the input and write the results, until it finishes

(Deleted) q8

 (q
8
,-

,R
)

 (q
8
,t

,R
)

 (q
9
,H

,L
)

(Terminate)q9

 (q
9
,t

,R
)

166

all the symbols in the input. Further, it is important to consider that this machine is

discussed in a high level and it is not explained in the bit level.

Table 6.27: Configurations of the NTM (p(n)=number of moves)

ID 0 1 2 3 4 5 6 7 8 9 10 11

α0 q0 n ? p + d r + - t M B

α1 n q0 ? p + d r + - t M B

α2 n ? q0 p + d r + - t M B

α3 n ? p q0 + d r + - t M B

α4 n ? p + q0 d r + - t M B

α5 n ? p + d q0 r + - t M B

α6 n ? p + d r q0 + - t M B

α7 n ? p + d r + q0 - t M B

α8 n ? p + d r + - q0 t M B

α9 n ? p + d r + - t q0 M B

α10 n ? p + d r + - t q1 N B

α11 n ? p + d r + - q1 t N B

α12 n ? p + d r + q1 - t N B

α13 n ? p + d r q1 + - t N B

α14 n ? p + d q1 r + - t N B

α15 n ? p + q1 d r + - t N B

α16 n ? p q1 + d r + - t N B

α17 n ? q1 P + d r + - t N B

α18 n ? q1 P + d r + - t N B

α19 n ? P q1 + d r + - t N B

α20 n ? p + q1 d r + - t N B

α21 n ? p + d q1 r + - t N B

α22 n ? p + d r q1 + - t N B

α23 n ? p + d r + q1 - t N B

α24 n ? p + d r + - q1 t N B

α25 n ? p + d r + - t q1 N B

α26 n ? p + d r + - t q2 C B

α27 n ? p + d r + - q2 t C B

α28 n ? p + d r + q2 - t C B

α29 n ? p + d r q2 + - t C B

α30 n ? p + d q2 r + - t C B

167

α31 n ? p + q2 d r + - t C B

α32 n ? p q2 + d r + - t C B

α33 n ? p q2 + d r + - t C B

α34 n ? p + q2 d r + - t C B

α35 n ? p + d q2 r + - t C B

α36 n ? p + d r q2 + - t C B

α37 n ? p + d r + q2 - t C B

α38 n ? p + d r + - q2 t C B

α39 n ? p + d r + - t q2 C B

α40 n ? p + d r + - t q3 P B

α41 n ? p + d r + - q3 t P B

α42 n ? p + d r + q3 - t P B

α43 n ? p + d r q3 + - t P B

α44 n ? p + d q3 r + - t P B

α45 n ? p + q3 d r + - t P B

α46 n ? p + q3 d r + - t P B

α47 n ? p + d q3 r + - t P B

α48 n ? p + d r q3 + - t P B

α49 n ? p + d r + q3 - t P B

α50 n ? p + d r + - q3 t P B

α51 n ? p + d r + - t q3 P B

α52 n ? p + d r + - t q4 A B

α53 n ? p + d r + - q4 t A B

α54 n ? p + d r + q4 - t A B

α55 n ? p + d r q4 + - t A B

α56 n ? p + d q4 r + - t A B

α57 n ? p + d q4 r + - t A B

α58 n ? p + d r q4 + - t A B

α59 n ? p + d r + q4 - t A B

α60 n ? p + d r + - q4 t A B

α61 n ? p + d r + - t q4 A B

α62 n ? p + d r + - t q5 D B

α63 n ? p + d r + - q5 t D B

α64 n ? p + d r + q5 - t D B

α65 n ? p + d r q5 + - t D B

α66 n ? p + d r q5 + - t D B

α67 n ? p + d r + q5 - t D B

168

α69 n ? p + d r + - q5 t D B

α70 n ? p + d r + - t q5 D B

α71 n ? p + d r + - t q7 E B

α72 n ? p + d r + - q7 t E B

α73 n ? p + d r + q7 - t E B

α74 n ? p + d r + q7 - t E B

α75 n ? p + d r + - q7 t E B

α76 n ? p + d r + - t q7 E B

α77 n ? p + d r + - t q4 A B

α78 n ? p + d r + - q4 t A B

α79 n ? p + d r + - q4 t A B

α80 n ? p + d r + - t q4 A B

α81 n ? p + d r + - t q8 X B

α82 n ? p + d r + - t q8 X B

α83 (P(n)=83) n ? p + d r + - t q9 H B

6.11.4 Satisfiability of NTM

The satisfiability of a NTM can be determined by applying the Cook’s Theorem.

6.11.4.1 Cook’s Theorem

Satisfiability Problem (SAT) is NP-Complete [56], [137]–[139].

According to the proof of the Cook’s Theorem, a Boolean Expression ET,w can be derived

for the Nondeterministic Turing Machine (NTM) T for a particular input w. The Boolean

Expression ET,w can be written as follows;

ET,w = U ˄ S ˄ N ˄ F, where

˄ is used to denote logical AND

U denotes that there is a unique symbol at each cell

S denotes Start of the T

N denotes the Moves according to the rules in T

F denotes the final state of T.

169

Before proceed in deriving the Boolean Expression, let’s make some clarifications:

Table 6.27 shows the Configurations or the Instantaneous Descriptions (ID) of the NTM

T for a particular input w. These configurations are used in deriving the Boolean

expression. Further, a single notation can be used to represent the symbols in the Table

6.27 and to denote them as Boolean variables. For example, to represent the Xij (ij
th cell)

which has A as the content, can be represented with the Boolean variable YijA

6.11.4.2 Deriving Boolean Expression

Let’s derive the components of the Boolean Expression separately and take the

conjunction of them.

1. U – There is a unique symbol in each cell

U = ⋀ ~(Yijα ˄ Yijβ)0≤𝑖,𝑗≤𝑝(𝑛) , where α ≠ β, p(n)=83 → 1

If we refer the Table 6.27, It is visible that each cell has at least one and exactly one

symbol.

Therefore, ∀ ∝,β ∈ Q∪Γ, ∃Yijα such that Yijα ⇒ ~Yijβ [56], where α ≠ β

And let substitute the values; Yijα = 1 , Yijβ = 0 in above 1

Then, U = ⋀ ~(1 ˄ 0)0≤𝑖,𝑗≤𝑝(𝑛) = ⋀ ~(0)0≤𝑖,𝑗≤𝑝(𝑛) = ⋀ 10≤𝑖,𝑗≤𝑝(𝑛) = 1

U = 1 → 2

2. S – The Initial ID/ Configuration appeared in the Table 6.27. (q0w followed by

blanks)

S =

Y0,0,q0 ˄ Y0,1,𝑛˄ Y0,2,?˄ Y0,3,𝑝˄ Y0,4,+˄ Y0,5,𝑑˄ Y0,6,𝑟˄ Y0,7,+˄ Y0,8,−˄ Y0,9,𝑡˄ Y0,10,𝑀˄ Y0,11,𝐵

 → 3

170

3. F - Finishes Right (Final states)

F = Y83,9,q9
 → 4

4. N – Next Move is right. (i.e. the Move correctly follows the transition rules of the

NTM T)

𝑁 = ⋀ (⋀ (𝐴𝑖𝑗 ∨ 𝐵𝑖𝑗)0≤𝑗≤𝑝(𝑛)0≤𝑖≤𝑝(𝑛)−1)

The expression 𝐴𝑖𝑗 says:

a) 𝑋𝑖𝑗 is the state in 𝛼𝑖.

b) There is a move according to the transition rules.

𝑋𝑖𝑗+1 is the scanned symbol.

With that, the sequence 𝑋𝑖𝑗−1˄𝑋𝑖𝑗˄𝑋𝑖𝑗+1is transformed into 𝑋𝑖+1𝑗−1˄𝑋𝑖+1𝑗˄𝑋𝑖+1𝑗+1.

If 𝑋𝑖𝑗 is the accepting state, then no move will occur and the same sequence will be

repeated.

 𝐴𝑖𝑗 𝑖𝑠 𝑓𝑜𝑟𝑚𝑒𝑑 𝑏𝑦 𝑋𝑖𝑗−1˄𝑋𝑖𝑗˄𝑋𝑖𝑗+1˄𝑋𝑖+1𝑗−1˄𝑋𝑖+1𝑗˄𝑋𝑖+1𝑗+1

 𝐴00 = Y0,0,q0
 ˄ Y0,1,𝑛 ˄ Y1,0,𝑛˄ Y1,1,q0

 𝐴11 = Y1,0,𝑛˄ Y1,1,q0
˄ Y1,2,? ˄ Y2,0,𝑛 ˄ Y2,1,? ˄ Y2,2,q0

 𝐴22 = Y2,1,? ˄ Y2,2,q0
˄ Y2,3,p˄ Y3,1,? ˄ Y3,2,𝑝 ˄ Y3,3,q0

 𝐴33 = Y3,2,𝑝 ˄ Y3,3,q0
˄ Y3,4,+ ˄ Y4,2,𝑝 ˄ Y4,3,+ ˄ Y4,4,q0

 𝐴44 = Y4,3,+ ˄ Y4,4,q0
˄ Y4,5,d ˄ Y5,3,+ ˄ Y5,4,𝑑 ˄ Y5,5,q0

 𝐴55 = Y5,4,𝑑˄ Y5,5,q0
˄ Y5,6,r ˄ Y6,4,d ˄ Y6,5,r ˄ Y6,6,q0

 𝐴66 = Y6,5,r ˄ Y6,6,q0
 ˄ Y6,7,+˄ Y7,5,r ˄ Y7,6,+ ˄ Y7,7,q0

…

𝐴82,9 = Y82,8,t ˄ Y82,9,q8
 ˄ Y82,10,E ˄ Y83,8,t ˄ Y83,9,q9

 ˄ Y83,10,E

171

The expression 𝐵𝑖𝑗 says:

a) 𝑋𝑖𝑗 is not the state in 𝛼𝑖.

b) 𝑋𝑖𝑗−1 and 𝑋𝑖𝑗+1 are not the states in 𝛼𝑖 either, then 𝑋𝑖+1𝑗 is equal to 𝑋𝑖𝑗.

𝐵𝑖𝑗 = (𝑌𝑖𝑗−1𝑞0
∨ 𝑌𝑖𝑗−1𝑞1

∨ … ∨ 𝑌𝑖𝑗−1𝑞9
) ∨

 (𝑌𝑖𝑗+1𝑞0
∨ 𝑌𝑖𝑗+1𝑞1

∨ … ∨ 𝑌𝑖𝑗+1𝑞9
) ∨

[(𝑌𝑖𝑗𝑍1
∨ 𝑌𝑖𝑗𝑍2

∨ … ∨ 𝑌𝑖𝑗𝑍21
) ∧

 {(𝑌𝑖𝑗𝑍1
∧ 𝑌𝑖+1𝑗𝑍1

) ∨ (𝑌𝑖𝑗𝑍2
∧ 𝑌𝑖+1𝑗𝑍2

) ∨ … ∨ (𝑌𝑖𝑗𝑍21
∧ 𝑌𝑖+1𝑗𝑍21

)}]

 Here, q0, q1, …, q9 are states and z1, z2, …, z21 are tape symbols of NTM T.

Here, two special cases j=0 or j=p(n) for both the Aij and Bij must be considered. In one

case there is no 𝑌𝑖𝑗−1𝑋 variable and in the other case there is no 𝑌𝑖𝑗+1𝑋. Since, the head

never moves to the left of its initial position and to the right of its last position, p(n) (=83),

particular terms can be eliminated from the expression.

𝑁𝑖 = {(𝐴𝑖0 ∨ 𝐵𝑖0)˄(𝐴𝑖1 ∨ 𝐵𝑖1)˄(𝐴𝑖2 ∨ 𝐵𝑖2)˄ … ˄(𝐴𝑖10 ∨ 𝐵𝑖10)˄(𝐴𝑖11 ∨ 𝐵𝑖11)˄ … ˄(𝐴𝑖83

∨ 𝐵𝑖83)}

N = ⋀ 𝑁𝑖0≤𝑖≤𝑝(𝑛)−1 (= 𝑁0˄𝑁1˄ … ˄𝑁83)

 = ⋀ (⋀ (𝐴𝑖𝑗 ∨ 𝐵𝑖𝑗)0≤𝑗≤𝑝(𝑛)0≤𝑖≤𝑝(𝑛)−1)

 =⋀ {(𝐴𝑖0 ∨ 𝐵𝑖0)0≤𝑖≤𝑝(𝑛)−1 ˄(𝐴𝑖1 ∨ 𝐵𝑖1)˄(𝐴𝑖2 ∨ 𝐵𝑖2)˄ … ˄(𝐴𝑖10 ∨ 𝐵𝑖10)˄(𝐴𝑖11 ∨

𝐵𝑖11)˄ … ˄(𝐴𝑖83 ∨ 𝐵𝑖83)}

 =[{(𝐴0,0 ∨ 𝐵0,0)˄(𝐴0,1 ∨ 𝐵0,1)˄(𝐴0,2 ∨ 𝐵0,2)˄ … ˄(𝐴0,10 ∨ 𝐵0,10)˄(𝐴0,11 ∨

𝐵0,11)˄ … ˄(𝐴0,83 ∨ 𝐵0,83)}˄

172

 {(𝐴1,0 ∨ 𝐵1,0)˄(𝐴1,1 ∨ 𝐵1,1)˄(𝐴1,2 ∨ 𝐵1,2)˄ … ˄(𝐴1,10 ∨ 𝐵1,10)˄(𝐴1,11 ∨

𝐵1,11)˄ … ˄(𝐴1,83 ∨ 𝐵1,83)}˄

 {(𝐴2,0 ∨ 𝐵2,0)˄(𝐴2,1 ∨ 𝐵2,1)˄(𝐴2.2 ∨ 𝐵2,2)˄ … ˄(𝐴2,10 ∨ 𝐵2,10)˄(𝐴2,11 ∨

𝐵2,11)˄ … ˄(𝐴2,83 ∨ 𝐵2,83)}˄

 {(𝐴3,0 ∨ 𝐵3,0)˄(𝐴3,1 ∨ 𝐵3,1)˄(𝐴3,2 ∨ 𝐵3,2)˄ … ˄(𝐴3,10 ∨ 𝐵3,10)˄(𝐴3,11 ∨

𝐵3,11)˄ … ˄(𝐴3,83 ∨ 𝐵3,83)}˄

 … ˄

 {(𝐴82,0 ∨ 𝐵82,0)˄(𝐴82,1 ∨ 𝐵82,1)˄(𝐴82,2 ∨ 𝐵82,2)˄ … ˄(𝐴82,10 ∨

𝐵82,10)˄(𝐴82,11 ∨ 𝐵82,11)˄ … ˄(𝐴82,83 ∨ 𝐵82,83)}

= [{(𝐴0,0)˄(𝐵0,2)˄ … ˄(𝐵0,10)˄(∨ 𝐵0,11)˄ … ˄(𝐵0,82)}˄

 {((𝐴1,1)˄(𝐵1,3)˄ … ˄(𝐵1,10)˄(𝐵1,11)˄ … ˄(𝐵1,82)}˄

 {((𝐵2,1)˄(𝐴2.2)˄ … ˄(𝐵2,10)˄(𝐵2,11)˄ … ˄(𝐵2,82)}˄

 {(𝐵3,0)˄(𝐵3,1)˄(𝐴3.3)˄ … ˄(𝐵3,10)˄(𝐵3,11)˄ … ˄(𝐵3,82)}˄

 … ˄

 {(𝐵82,0)˄(𝐵82,1)˄(𝐵82,2)˄ … ˄(𝐵82,10)˄(𝐵82,11)˄ … ˄(𝐴82,82)}

 =

[{(Y0,0,q0
 ˄ Y0,1,𝑛 ˄ Y1,0,𝑛˄ Y1,1,q0

)˄ (𝑌0,2,?˄𝑌1,2,?)˄ (𝑌0,3,𝑝˄𝑌1,3,𝑝)˄(𝑌0,4,+˄𝑌1,4,+)˄

(𝑌0,5,𝑑˄𝑌1,5,𝑑)˄(𝑌0,6,𝑟˄𝑌1,6,𝑟)˄(𝑌0,7,+˄𝑌1,7,+)˄(𝑌0,8,−˄𝑌1,8,−)˄(𝑌0,9,𝑡˄𝑌1,9,𝑡)˄(𝑌0,10,𝑀˄𝑌1,10,𝑀)

˄(𝑌0,11,𝐵˄𝑌1,11,𝐵)˄ …}˄

{(Y1,0,𝑛˄ Y1,1,q0
˄ Y1,2,? ˄ Y2,0,𝑛 ˄ Y2,1,? ˄ Y2,2,q0

)˄ (𝑌1,3,𝑝˄𝑌2,3,𝑝)˄(𝑌1,4,+˄𝑌2,4,+)˄

(𝑌1,5,𝑑˄𝑌2,5,𝑑)˄(𝑌1,6,𝑟˄𝑌2,6,𝑟)˄(𝑌1,7,+˄𝑌2,7,+)˄(𝑌1,8,−˄𝑌2,8,−)˄(𝑌1,9,𝑡˄𝑌2,9,𝑡)˄(𝑌1,10,𝑀˄𝑌2,10,𝑀)

˄(𝑌1,11,𝐵˄𝑌2,11,𝐵)˄ …}˄

{(𝑌2,0,𝑛˄𝑌3,0,𝑛)˄(Y2,1,? ˄ Y2,2,q0
˄ Y2,3,p˄ Y3,1,? ˄ Y3,2,𝑝 ˄ Y3,3,q0

)˄ (𝑌2,4,+˄𝑌3,4,+)˄

(𝑌2,5,𝑑˄𝑌3,5,𝑑)˄(𝑌2,6,𝑟˄𝑌3,6,𝑟)˄(𝑌2,7,+˄𝑌3,7,+)˄(𝑌2,8,−˄𝑌3,8,−)˄(𝑌2,9,𝑡˄𝑌3,9,𝑡)˄(𝑌2,10,𝑀˄𝑌3,10,𝑀)

173

˄(𝑌2,11,𝐵˄𝑌3,11,𝐵)˄ …}˄

{(𝑌3,0,𝑛˄𝑌4,0,𝑛)˄(𝑌3,1,?˄𝑌4,1,?)˄(Y3,2,𝑝 ˄ Y3,3,q0
˄ Y3,4,+ ˄ Y4,2,𝑝 ˄ Y4,3,+ ˄ Y4,4,q0

)˄

(𝑌3,5,𝑑˄𝑌4,5,𝑑)˄(𝑌3,6,𝑟˄𝑌4,6,𝑟)˄(𝑌3,7,+˄𝑌4,7,+)˄(𝑌3,8,−˄𝑌4,8,−)˄(𝑌3,9,𝑡˄𝑌4,9,𝑡)˄(𝑌3,10,𝑀˄𝑌4,10,𝑀)

˄(𝑌3,11,𝐵˄𝑌4,11,𝐵)˄ …}˄

 … ˄

{(𝑌82,0,𝑛˄𝑌83,0,𝑛)˄(𝑌82,1,?˄𝑌83,1,?)˄(𝑌82,2,𝑝˄𝑌83,2,𝑝)˄(𝑌82,3,+˄𝑌83,3,+)˄

(𝑌82,4,𝑑˄𝑌83,4,𝑑)˄(𝑌82,5,𝑟˄𝑌83,5,𝑟)˄(𝑌82,6,+˄𝑌83,6,+)˄(𝑌82,7,−˄𝑌83,7,−)˄

(Y82,8,t ˄ Y82,9,q8
 ˄ Y82,10,X ˄ Y83,8,t ˄ Y83,9,q9

 ˄ Y83,10,H)˄(𝑌82,11,𝐵˄𝑌83,11,𝐵)˄ …}] → 5

Now, Let’s combine the components (2 , 3 , 5 𝑎𝑛𝑑 4) together:

ET,w = U ˄ S ˄ N ˄ F

 = 1 ˄

(Y0,0,q0 ˄ Y0,1,𝑛˄ Y0,2,?˄ Y0,3,𝑝˄ Y0,4,+˄ Y0,5,𝑑˄ Y0,6,𝑟˄ Y0,7,+˄ Y0,8,−˄ Y0,9,𝑡˄ Y0,10,𝑀˄ Y0,11,𝐵˄ …) ∧

[{(Y0,0,q0
 ˄ Y0,1,𝑛 ˄ Y1,0,𝑛˄ Y1,1,q0

)˄ (𝑌0,2,?˄𝑌1,2,?)˄ (𝑌0,3,𝑝˄𝑌1,3,𝑝)˄(𝑌0,4,+˄𝑌1,4,+)˄

(𝑌0,5,𝑑˄𝑌1,5,𝑑)˄(𝑌0,6,𝑟˄𝑌1,6,𝑟)˄(𝑌0,7,+˄𝑌1,7,+)˄(𝑌0,8,−˄𝑌1,8,−)˄(𝑌0,9,𝑡˄𝑌1,9,𝑡)˄(𝑌0,10,𝑀˄𝑌1,10,𝑀)

˄(𝑌0,11,𝐵˄𝑌1,11,𝐵)˄ …}˄

{(Y1,0,𝑛˄ Y1,1,q0
˄ Y1,2,? ˄ Y2,0,𝑛 ˄ Y2,1,? ˄ Y2,2,q0

)˄ (𝑌1,3,𝑝˄𝑌2,3,𝑝)˄(𝑌1,4,+˄𝑌2,4,+)˄

(𝑌1,5,𝑑˄𝑌2,5,𝑑)˄(𝑌1,6,𝑟˄𝑌2,6,𝑟)˄(𝑌1,7,+˄𝑌2,7,+)˄(𝑌1,8,−˄𝑌2,8,−)˄(𝑌1,9,𝑡˄𝑌2,9,𝑡)˄(𝑌1,10,𝑀˄𝑌2,10,𝑀)

˄(𝑌1,11,𝐵˄𝑌2,11,𝐵)˄ …}˄

{(𝑌2,0,𝑛˄𝑌3,0,𝑛)˄(Y2,1,? ˄ Y2,2,q0
˄ Y2,3,p˄ Y3,1,? ˄ Y3,2,𝑝 ˄ Y3,3,q0

)˄ (𝑌2,4,+˄𝑌3,4,+)˄

(𝑌2,5,𝑑˄𝑌3,5,𝑑)˄(𝑌2,6,𝑟˄𝑌3,6,𝑟)˄(𝑌2,7,+˄𝑌3,7,+)˄(𝑌2,8,−˄𝑌3,8,−)˄(𝑌2,9,𝑡˄𝑌3,9,𝑡)˄(𝑌2,10,𝑀˄𝑌3,10,𝑀)

˄(𝑌2,11,𝐵˄𝑌3,11,𝐵)˄ …}˄

{(𝑌3,0,𝑛˄𝑌4,0,𝑛)˄(𝑌3,1,?˄𝑌4,1,?)˄(Y3,2,𝑝 ˄ Y3,3,q0
˄ Y3,4,+ ˄ Y4,2,𝑝 ˄ Y4,3,+ ˄ Y4,4,q0

)˄

(𝑌3,5,𝑑˄𝑌4,5,𝑑)˄(𝑌3,6,𝑟˄𝑌4,6,𝑟)˄(𝑌3,7,+˄𝑌4,7,+)˄(𝑌3,8,−˄𝑌4,8,−)˄(𝑌3,9,𝑡˄𝑌4,9,𝑡)˄(𝑌3,10,𝑀˄𝑌4,10,𝑀)

174

˄(𝑌3,11,𝐵˄𝑌4,11,𝐵)˄ …}˄

 … ˄

{(𝑌82,0,𝑛˄𝑌83,0,𝑛)˄(𝑌82,1,?˄𝑌83,1,?)˄(𝑌82,2,𝑝˄𝑌83,2,𝑝)˄(𝑌82,3,+˄𝑌83,3,+)˄

(𝑌82,4,𝑑˄𝑌83,4,𝑑)˄(𝑌82,5,𝑟˄𝑌83,5,𝑟)˄(𝑌82,6,+˄𝑌83,6,+)˄(𝑌82,7,−˄𝑌83,7,−)˄

(Y82,8,t ˄ Y82,9,q8
 ˄ Y82,10,X ˄ Y83,8,t ˄ Y83,9,q9

 ˄ Y83,10,H)˄(𝑌82,11,𝐵˄𝑌83,11,𝐵)˄ …}] ⋀

(Y83,9,q9)

Finally;

ET,w = (⋀ 𝑌𝑖,𝑗,𝐴0≤𝑖≤83,0≤𝑗≤10,∀A∈Q∪Γ\{B}) ∧ (⋀ 𝑌𝑖,𝑗,𝐵0≤𝑖≤83,11≤𝑗≤83,𝐵∈Γ) .

6.11.5 Results of Formal Verification

After simplifying the expression ET,w, it has been visible that the variables in the

expression has been operated only by the ⋀ operator. Further, for this Boolean expression,

2830 (≅6.6681E+240) truth assignment possibilities has been found (considering the

symbols other than blank B). If it has been drawn the truth table for this expression, it has

got the true value (1), only when all the variables are assigned the value true (1). As the

result, the value 1 has been obtained with approximately 1/2830 probability.

Hence, it could conclude that this problem is a satisfiable problem and according to the

Cook’s Theorem, this Satisfiability Problem is NP-Complete [137].

6.11.6 Time Complexity

Let’s analyze the complexity of the derivation to show that it is performed in polynomial

time. First, it is necessary to examine the size of ET,w and its variables. It has 832 (p2 (n))

= 6889 cells, and each cell contains at least and exactly one symbol from 30 (=10+20)

symbols (∈ 𝑄 ∪ 𝛤). As these symbols depends only on the Turing machine, not on the

length of the input, n, total number of variables is 𝑂(𝑝2(𝑛)). Then, considering the sizes

of each part U, S, N, and F of ET,w, the total size of the Boolean expression can be

expressed 𝑂(𝑝2(𝑛)) and it is polynomial.

175

6.12 Summary

From the entire thesis, this chapter has a more weight. This has first introduced the

experimental design and the results of the SSPM-FC, which has been discussed under

four testing scenarios. Similarly, SSPM-Sorting was tested. Further, it has proved that the

system gains improvements through subsequent execution cycles for both the cases, due

to the integrated proposed continuous processing model. Moreover, SSPM sorting was

compared with some other sorting techniques. Next, a formal verification has been done

for the model. There, it has discussed why T was designed as a Turing Machine. Then,

the NTM, the transition table, and the configurations of NTM, which demonstrates the

moves of the machine have been presented. Afterwards, it has proved the satisfiability of

the NTM., further proving the real-world applicability of the model in the theoretical

level.

The coming chapter is the last chapter of the thesis, which concludes the work.

176

CHAPTER 07

CONCLUSION AND FUTURE WORK

7.1 Introduction

Chapter 6 reported the evaluation of the model conducted in two levels. First, it has

evaluated the model empirically proving its ability to evolve over generations of program

execution cycles. Second, it has formally verified showing its appropriateness to the real-

world using a Turin Machine. This chapter has been concluded the work done for a long

period of time in modelling memory as conditional phenomena for a new theory of

computing. Further, this chapter has given an overall conclusion for the work interpreting

the results obtained in the previous chapter, while explaining how each and every

objective has been achieved. Finally, this has discussed the encountered limitations and

some further works.

7.2 Modelling Memory as Conditional Phenomena for a New Theory of Computing

In particular, the aim of this research work was to model computer memory as conditional

phenomena that enhance the efficiency of continuous processing over consecutive

program execution cycles. Further, several real-world scenarios that have displayed the

continuous processing and evolving nature of the human mind, have rooted the research

idea on the new approach in improving the computing power. Then, critically analyzing

the existing processing models, the new model was introduced, extending the features of

existing models by utilizing the concepts from BTM. As briefed down below by

achieving every objective one by one, a new theory of computing was introduced.

7.2.1 Critical study about various models for computing

The Computers have wide-spread usage in the world. Therefore, as mentioned in the

chapter one and chapter two, finding new hardware models and software models for

computing to improve processing power of the computer have been a constant research

challenge. In this continuous effort, the hardware level researchers have been successful

177

in accomplishing their duty by introducing different processors, memory models, data

access mechanisms thereby enhancing the processing power in hardware level.

Specifically, the modifications that have been applied to the VNA in both the hardware

and software level were based on the separation of memory from processing in VNA. In

addition to that, the software level developments have been inadequate yet to utilize under

laid hardware improvements. Some of these software models have been so specific and

have targeted to solve particular real-world problems, while suffering from their own

drawbacks such as need more processing or more memory or more resources. Therefore,

introducing a new computing model in software level with a new approach to enhance

the computing power was a significant challenge. In this background, it was difficult to

find a model to improve efficiency of computing with the processing similar to the

processing in human mind based on BTM, where the memory is a result of continuous

processing and improve the efficiency over the time.

7.2.2 In depth study about the Buddhist Theory of Mind

Chapter 3 has described the BTM, which has set the theoretical foundation for the

proposed model with the other inspirations. BTM has explained everything has been

arising as per the conditions. Further, BTM has a set of concepts called 24 CRs to explain

the relationship between the cause and effect. Stated in another way, BTM has provided

theories behind the formation of the continuity, strong establishment or improvement gain

through continuous practice, and behind theories of such other formations in the human

mind process.

7.2.3 Propose a new computing model where the memory is a result of continuous

processing

While Chapter 5 has described how the BTM has exploited in modelling the proposed

model, the Chapter 4 presents the proposed model, the Six-state Continuous Processing

Model. This model consists of three features, such as two processes (internal and

external), continuous processing, and conditionally evolving memory. The processing

178

states of the proposed processing model are new, ready, running, blocked, sleep and

terminate have been compared with the states of existing processing models as seen in

the Table 7.1.

Table 7.1: Comparison with Existing Processing Models

Proposed

Model

(Six-State)

Seven-State

Model

Linux

Six-State

Model

Five-State

Model

Three-State

Model

Two-State

Model

New New New

Ready Ready Ready Ready Ready Not-

Running

 Ready/

Suspend

Blocked Blocked Interruptible Blocked Blocked Not-

Running Un-interruptible

Stopped

 Blocked/

Suspend

Running Running Executing Running Running Running

Sleep Exit Zombie Exit

Terminate

Although, the terminology used for the states of the newly proposed SSPM are currently

using in the existing processing models, as explained in Chapter 4, the transitions of

SSPM are more functional than the existing transitions. Specially, the transitions New-

Ready, Ready-Ready, Ready-Terminate, Running-Ready, Sleep-Ready, Blocked-Ready,

and Running-Sleep are comprehensively defined by exploiting a set of CRs explained in

BTM. A transition-wise comparison of the proposed model with the existing OS

processing models can be seen in the Table 7.2.

179

Table 7.2: Transition-wise comparison of the proposed model with existing OS

processing models

Proposed

Processing

Model (Six-

State)

Five-State

Model

Linux Processing

Model

Solaris

Thread Model

Windows

Thread Model

Null → New
Null →

New

New →

Ready

New →

Ready

Ready →

Ready

Ready →

Running

Ready →

Running
Ready → Executing Run → OnProc

Ready → Standby

Standby → Running

Running →

Ready

Running →

Ready
Executing → Ready OnProc →Run Running → Ready

Running →

Blocked

Running →

Blocked

Running→Stopped

Running→

Uninterruptible

Running→

Interruptible

OnProc →Sleep

OnProc →Stop

Running → Waiting

Waiting→ Transition

Blocked →

Ready

Blocked →

Ready

Stopped→ Ready

Uninterruptible→

Ready

interruptible→ Ready

Sleep →Run

Stop →Run

waiting→ Ready

Transition→ Ready

Running →

Sleep

Running →

Exit
Executing→ Zombie

OnProc→

Zombie

Zombie→Free

Running → Terminated

Sleep→

Ready

Ready →

Terminate

During the subsequent system execution cycles, the new model SSPM examines the

inputs and the relevant instructions, and refines the system through a continuous process

considering the causal relations. In fact, ‘Repetition’, ‘Proximity’, ‘Karma’, ‘Support’,

and ‘Presence’ were the major concepts used in the modelling process. Eventually, the

180

SSPM completely rely on the fundamental principal concepts that was described in

Chapter 3. Therefore, the SSPM is not solely based on the concepts that have been applied

in current computing models such as the decentralization, the survival of the fittest, and

incrementalism. However, more efficient hybrid models can be introduced combining the

SSPM with existing technologies.

7.2.4 Customizing Programs with SSPM

As stated in Chapter 4, the proposed model customized a Fraction Calculator (SSPM-

FC), Quadratic Equation Solver (SSPM-QES), Sorting Program (SSPM-Sorting), and a

Simulated Process Scheduler (SSPM-PS). Among these, the SSPM-FC covers all the

features of the proposed model. As the proposed model SSPM has internal process,

continuous processing, and an evolving memory, the systems customized by SSPM can

gain self-improvements over program execution cycles through the actions stated in the

Chapter 4, when the external inputs or external processes are absent or vice-versa. Such

a way, the SSPM-FC can gain improvements. In addition to that, if the incoming

expression was longer (for example,
7

10
+ 8

1

7
+

12

15
∗ (

1

2
+

5

9
−

1

12
) ∗

11

20
−

2

3
+ 5

6

8
+

4

5
−

7

13
+

3

19
+

6

17
+

3

4
) in the SSPM-FC, then even at the end of the computation of such longer

expressions, the performance of SSPM-FC could be enhanced. Moreover, in all above

mentioned customized programs, the time taken by the expression evaluation can be

improved due to the characteristics of SSPM that can identify and classify the inputs

according to the input patterns and the operations, and do computations accordingly.

7.2.5 Evaluate the proposed model

The paired-t test was applied with 99% confidence level under the Testing Scenario 1 and

99% confidence interval under Testing Scenario 2. It has been able to prove that by

customizing the FC with the SSPM, it could improve the performance of an SSPM-FC,

when it executes over program execution cycles. Further, it could prove that the SSPM-

QES could gain improvement over subsequent execution cycles by applying paired-t test

181

with 95% confidence interval as similar to the SSPM-FC.

The program SSPM-Sorting was tested under five testing scenarios. Under the first

(SSPM-S-Insertion) and the second (SSPM-S-Equal), it could prove that the system can

gain improvement over consecutive program executions, by applying paired-t test with

95% confidence interval as similar to the above two cases. Though, the SSPM-S-Equal

shows improvement for any total number of elements in the set, the performance of the

SSPM-S-Insertion depends on the number of new elements and the total number of

elements in the set with compared to the previous set. Next three testing scenarios were

allocated to compare the model with the parallel computing, incremental computing. Self-

adjusting computing, dynamically tuned library for sorting and the evolutionary

computing. The respective results are summarized in each section. Through the smaller

tactics memory and the continuous processing, any of the computing technique in SSPM-

Sorting could be applied appropriately as per the arising conditions such as size of the set

or standard deviation. Hence, the performance of the SSPM-Sorting could be enhanced

consequently.

A formal verification has been provided by simulating the proposed model in TM. For

the single-tape NTM T which runs in a polynomial time 𝑝(𝑛) = 83 with the input w, this

Boolean expression is derived. This Boolean expression is a function of Both T and w.

There, S (Starts Right) is the only part which depends on the content of the input w. The

other parts U, N, and F depend on T and n, the length of the input. The Model is NP

complete, and time complexity has been calculated as 𝑂(𝑝2(𝑛)) [137].

Then, the simple scenario demonstrated by SSPM-PS also showed an improvement in its

processing when executing the system over generations of system executions.

Overall, it could conclude that by customizing applications with SSPM, the performance

could be enhanced thru the smaller tactics memory and the continuous processing over

182

consecutive program execution cycles.

7.3 Limitation

First, it should be mentioned that the data recording process has been affected by

environmental physical conditions. The condition has been severe as it has been

collecting time values in nanoseconds. The selection of the number of inputs was also

affected as it was required to minimize variation of utilization of underlined physical

resources. The user interface of the SSPM-FC, has initially consisted of test areas to

mention input, output, process state and process nature. Then, the time variation was

minimum. However, it has been modified to display the tactics smaller tactics memory,

the particular changes in the memory after modifications, and recorded time values after

each computation (The interface was modified for the illustration purpose). Then, a

considerable increase has been appeared in the time values recorded after the modification

due to the added additional code lines dedicated to system outputs. It could overcome by

using the SSPM-FC in its initial form.

7.4 Further Work

It is possible to adopt the proposed computing model in different ways. Some of the ideas

for the adoption are stated below. It is possible to customize the kernel of an OS using

the SSPM. For example, the SSPM can improve the OS to apply appropriate scheduling

algorithms through recognizing the patterns of iterative and incoming processes [140]. In

addition to that, this can customize an expert system [128]. Specifically, the inference

engine can be customized. With SSPM, it was expected to build a computer that becomes

more efficient in subsequent execution cycles similar to the mind model. With that

expectation, an expert system can be developed to solve more complex problems, as the

human experts accurately solve problems by using the proper set of steps, inferences,

rules/logic and facts in a specific domain with a minimum time duration. There are expert

systems developed for different domains such as medicine, business and engineering that

are belong to different technical categories such as object-oriented, frame-based, rule-

183

based and induction-based with multiple advantages. For this work, it can be considered

rule-based expert systems that consist of a user interface, explanation facility, facts used

by the rules, an inference engine, prioritizing facility, an agenda, knowledge acquisition

facility and conflict resolution facility. It has been a problem to build expert systems with

the ability in generalizing concepts, identifying the CRs among knowledge entities and

gaining improvements over generations of execution as human experts do. Another

possible application of SSPM would be adjusting the difficulty of levels of a game during

the game development scenario. As this process requires extensive refinement cycles, the

SSPM can contribute to enhance the processing speed of difficulty adjustment process

over subsequent adjustment cycles.

The SSPM can customize a compiler or an interpreter in a program development

environment. Then, the program developer can improve the software in consecutive

program development cycles as experience in the FC (This could be more applicable

while doing the testing). At the end, the software company can deliver an efficient

software to their client. (Note: By using this SSPM, within a program, the computing

power of the program can be enhanced over the time. The FC contains of both the

expression evaluator and the compiler, which compile the incoming expressions. Both of

these aspects were affected by the SSPM).

For the continuously processing computing systems, SSPM has been proved to be an

efficiency enhancer. In fact, the military or aviation based controlling systems can be

drawn as an example for the systems with continuous processing. Further, learning or

classification in some other soft computing mechanisms also can be with the SSPM.

Moreover, in improving the algorithm of a program, transformation techniques could be

applied at the program tree level. In addition to these, it is expected the SSPM to display

improvements in the quality and the accuracy more, over program execution cycles as

similar to the human mind.

184

Overall, it can be concluded that the new processing model, the SSPM introduces a novel

approach for the computing.

7.5 Summary

This has concluded the entire work that have been introduced a new computing model as

stated in the thesis further describing the proposed model and mentioning how the

objectives have been achieved. Finally, it has discussed about the limitations and further

works of this.

185

References

[1] W. Stallings, Computer organization and architecture: designing for performance.

Upper Saddle Rive, N.J.: Pearson Prentice Hall, 2006.

[2] J. Fuegi and Jo Francis, “Lovelace & Babbage and the Creation of the 1843

‘Notes,’” IEEE Ann. Hist. Comput., vol. 25, no. 4, pp. 16–26, Dec. 2003, doi:

10.1109/MAHC.2003.1253887.

[3] D. A. Patterson and J. L. Hennessy, Computer organization and design, 5th ed.

oxford: Morgan Kaufmann Publishers, 2014.

[4] R. Das, “Blurring the Lines between Memory and Computation,” IEEE Micro, vol.

37, no. 6, pp. 13–15, Nov. 2017, doi: 10.1109/MM.2017.4241340.

[5] S. A. McKee and others, “Reflections on the memory wall.,” in Conf. Computing

Frontiers, 2004, p. 162.

[6] P. Machanick, “Approaches to addressing the memory wall,” Sch. IT Electr. Eng.

Univ. Qld., 2002.

[7] D. A. Patterson and J. L. Hennessy, Computer organization and design, RISC-V.

Morgan Kaufmann Publishers, 2018.

[8] A. Jog et al., “Anatomy of GPU Memory System for Multi-Application Execution,”

in Proceedings of the 2015 International Symposium on Memory Systems, New

York, NY, USA, 2015, pp. 223–234, doi: 10.1145/2818950.2818979.

[9] K. Wang, X. Ding, R. Lee, S. Kato, and X. Zhang, “GDM: device memory

management for gpgpu computing,” ACM SIGMETRICS Perform. Eval. Rev., vol.

42, no. 1, pp. 533–545, 2014.

[10] G. W. Burr et al., “Phase change memory technology,” J. Vac. Sci. Technol. B

Nanotechnol. Microelectron. Mater. Process. Meas. Phenom., vol. 28, no. 2, pp.

223–262, 2010.

[11] C. Neumann, S. S. Qin, and X. Zheng, “Stanford Memory Trends,” Stanford

Nanoelectronics Lab, 2018. https://nano.stanford.edu/stanford-memory-trends

(accessed Mar. 29, 2019).

[12] S. Ambareesh and J. Fathima, “A Cached Middleware to Improve I/O Performance

Using POSIX Interface,” Procedia Comput. Sci., vol. 85, pp. 125–132, 2016, doi:

10.1016/j.procs.2016.05.197.

[13] M. Abd-El-Barr and H. El-Rewini, Fundamentals of computer organization and

architecture. Hoboken, N.J: Wiley, 2005.

[14] G. E. Moore, “Moore’s Law at 40. Chapter 7,” in Understanding Moore’s Law:

Four decades of innovation edited by D. C. Brock, Philadelphia, PA.: Chemical

Heritage Foundation, 2006, pp. 67–84.

[15] A. S. Karunananda, P. R. Goldin, G. Rzevski, S. Fernando, and H. R. Fernando,

“ON COMPUTING THE BEHAVIOR OF THE MIND FROM AN EASTERN

PHILOSOPHICAL PERSPECTIVE,” Int. J. Des. Nat. Ecodynamics, vol. 10, no. 3,

pp. 224–232, 2015, doi: 10.2495/DNE-V10-N3-224-232.

186

[16] W. A. C. Weerakoon, A. S. Karunananda, and N. G. J. Dias, “Six-state Continuous

Processing Model for a New Theory of Computing,” University of Moratuwa, 2019,

vol. 890, pp. 32–48, doi: https://doi.org/10.1007/978-981-13-9129-3_3.

[17] W. A. C. Weerakoon, A. S. Karunananda, and N. G. J. Dias, “A tactics memory for

a new theory of computing,” Apr. 2013, pp. 153–158, doi:

10.1109/ICCSE.2013.6553901.

[18] W. A. C. Weerakoon, A. S. Karunananda, and N. G. J. Dias, “Conditionally evolving

memory for computers,” Aug. 2015, pp. 271–271, doi:

10.1109/ICTER.2015.7377704.

[19] A. S. Karunananda, “Computer modelling of thought processes,” Int. J. Comput.

Appl. Technol., vol. 6, no. 2/3, pp. 135–140, 1993.

[20] Karunananda A. S., “Using an eastern philosophy for providing a theoretical basis

for some Heuristics used in artificial neural networks,” Malayasian J. Comput. Sci.,

vol. 15, no. 2, pp. 28–33, Dec. 2002.

[21] L. P. Ranatunga, “ON COMPUTING MENTAL STATES,” Malays. J. Comput.

Sci., vol. 9, no. 2, pp. 43–53, 1996.

[22] W. Stallings, Operating systems: internals and design principles, 7th ed. Boston:

Prentice Hall, 2012.

[23] A. S. Tanenbaum and H. Boss, Modern operating systems, 4th ed. Upper Saddle

River, N.J: Pearson/Prentice Hall, 2015.

[24] H. Kasim, V. March, R. Zhang, and S. See, “Survey on parallel programming

model,” in InIFIP International Conference on Network and Parallel Computing,

Oct. 2008, pp. 266–275.

[25] S. J. Russell and P. Norvig, Artificial intelligence: a modern approach. 2015.

[26] M. J. Wooldridge, An introduction to multiagent systems, 2nd ed. Chichester, U.K:

John Wiley & Sons, 2009.

[27] Black Paul E., D. Richard Kuhn, and Carl J. Williams, “Quantum computing and

communication,” Adv. Comput., vol. 56, pp. 189–244, 2002.

[28] Eiben A.E. and Smith J.E., Introduction to Evolutionary Computing, Second.

Springer, 2015.

[29] M. A. Hammer, K. Y. Phang, M. Hicks, and J. S. Foster, “Adapton: Composable,

demand-driven incremental computation,” 2014.

[30] I. J. Fister, X. S. Yand, I. Fister, J. Brest, and D. Fister, “A Brief Review of Nature-

Inspired Algorithms for Optimization,” Electrotech. Rev., vol. 80, no. 3, 2013.

[31] K. F. Man, K. S. Tang, and S. Kwong, “Genetic algorithms: concepts and

applications [in engineering design],” IEEE Trans. Ind. Electron., vol. 43, no. 5, pp.

519–534, Oct. 1996, doi: 10.1109/41.538609.

[32] P. J. Bentley, T. G. W. Gordon, J. Kim, and S. Kumar, “New trends in evolutionary

computation,” 2001, vol. 1, pp. 162–169, doi: 10.1109/CEC.2001.934385.

[33] A. K. Kar, “Bio inspired computing – A review of algorithms and scope of

applications,” Expert Syst. Appl., vol. 59, pp. 20–32, 2016, doi:

https://doi.org/10.1016/j.eswa.2016.04.018.

187

[34] N. Siddique and H. Adeli, “Nature Inspired Computing: An Overview and Some

Future Directions,” Cogn. Comput., vol. 7, no. 6, pp. 706–714, Dec. 2015, doi: DOI

10.1007/s12559-015-9370-8.

[35] A. S. Karunananda, Artificial intelligence. Tharanji Prints, 2004.

[36] J. Liu and K. C. Tsui, “Toward nature-inspired computing,” Commun. ACM, vol.

49, no. 10, pp. 59–64, 2006.

[37] S. Costantini and G. De Gasperis, “Memory, experience and adaptation in logical

agents,” in Management Intelligent Systems, Springer, 2013, pp. 17–24.

[38] B. Bakker, “Reinforcement learning with long short-term memory,” in Advances in

neural information processing systems, 2002, pp. 1475–1482.

[39] F. C. Bartlett, F. C. Bartlett, and W. Kintsch, Remembering: A study in experimental

and social psychology, vol. 14. Cambridge University Press, 1995.

[40] D. L. Schacter, “Constructive memory: past and future,” Dialogues Clin. Neurosci.,

vol. 14, no. 1, p. 7, 2012.

[41] Kenneth J. Malmberg, Jeroen G. W. Raaijmakers, and Richard M. Shiffrin, “50

years of research sparked by Atkinson and Shiffrin (1968),” Mem. Cognit., vol. 47,

no. 4, pp. 561–574, 2019.

[42] A. Baddeley, “Working memory,” Curr. Biol., vol. 20, no. 4, pp. R136–R140, 2010,

doi: https://doi.org/10.1016/j.cub.2009.12.014.

[43] K. A. De Jong, Evolutionary Computaion: A Unified Approach. London, England:

The MIT Press, Cambridge, Massachusetts, 2006.

[44] M. Sharma, P. Sindhwani, and V. Maheshwari, “Genetic Algorithm Optimal

approach for Scheduling Processes in Operating System,” Int. J. Comput. Sci. Netw.

Secur., vol. 14, no. 5, pp. 91–94, 2014.

[45] Sindhwani P. and Wadhwa V., “Genetic algorithm Approach for Optimal CPU

Scheduling,” IJCST, vol. 2, no. 2, pp. 92–95, Jun. 2011.

[46] M. U. Siregar, “A New Approach to CPU Scheduling: Genetic Round Robin,” Int.

J. Comput. Appl., vol. 47, no. 19, pp. 18–25, Jun. 2012.

[47] M. Carlsson, “Monads for incremental computing,” in The seventh ACM SIGPLAN

international conference on Functional programming, 2002, pp. 26–35.

[48] Matthew A. Hammer and Umut A. Acar, “Memory Management for Self-Adjusting

Computation,” presented at the Proceedings of the the 2008 International

Symposium on Memory Management, Tucson, Arizona, USA, 2008.

[49] U. A. Acar, G. E. Blelloch, and R. Harper, Selective memoization, vol. 38. ACM,

2003.

[50] U. A. Acar, G. E. Blelloch, M. Blume, R. Happer, and K. Tangwongsan, “An

experimental Analysis of Self-Adjusting Computation,” ACM Trans. Program.

Lang. Syst., vol. 32, no. 1, 2009.

[51] Xiaoming Li, Maria Jesus Grzaran, and David Padua, “A dynamically Tuned

Sorting Lirary,” Los Alamitos, Calif., 2004.

[52] Y. A. Liu, “Efficient computation via incremental computation,” in Pacific-Asia

Conf. on Knowledge Discovery and Data Mining, 1998, vol. 1574, pp. 194–203.

188

[53] W. F. Jayasuriya, The Psychology & Philosophy of Buddhism. Onalaska, USA:

pariyatti, 2016.

[54] R. C. N. Thero, Pattana Maha Pakarana Sannaya, 6th ed. Pokunuwita, Sri Lanka:

Sri Chandravimala Darma P, 2014.

[55] B. Bodhi, Comprehensive Manual of Abhidhamma: The Psychology of Buddhism

(Abhidhammattha Sangaha). Buddhist Publication Society, 2006.

[56] M. Sipser, Introduction to the Theory of Computation, Second. Thomson Course

Technology, 2007.

[57] Wong, H. S. P. and Salahuddin, S., “Memory leads the way to better computing,”

Nat. Nanotechnol., vol. 10, no. 3, pp. 191–194, Mar. 2015.

[58] S. Jain, A. Ranjan, K. Roy, and A. Raghunathan, “Computing in memory with spin-

transfer torque magnetic ram,” IEEE Trans. Very Large Scale Integr. VLSI Syst.,

vol. 26, no. 3, pp. 470–483, 2017.

[59] A. J. Smith, “Cache Memories,” ACM Comput. Surv., vol. 14, no. 3, pp. 473–530,

Sep. 1982.

[60] W. J. Starke et al., “The cache and memory subsystems of the IBM POWER8

processor,” IBM J. Res. Dev., vol. 59, no. 1, p. 3:1-3:13, Jan. 2015, doi:

10.1147/JRD.2014.2376131.

[61] LARRY HARDESTY, “Computer Chip Cores Communicate by Networks Instead

of Bus,” SciTechDaily, 2012. https://scitechdaily.com/computer-chip-cores-

communicate-by-networks-instead-of-bus/.

[62] Kevin Lee, “Best RAM 2019: the top memory for your PC,” Techrader: Source for

Tech buying Advices, Oct. 04, 2019. https://www.techradar.com/news/best-ram.

[63] Scharon Harding, “What Is CAS Latency in RAM? CL Timings Explained,” Tom’s

Hardware, Sep. 03, 2019. https://www.tomshardware.com/reviews/cas-latency-

ram-cl-timings-glossary-definition,6011.html (accessed Oct. 26, 2019).

[64] S. Ghose, K. Hsieh, A. Boroumand, R. Ausavarungnirun, and O. Mutlu, “Enabling

the adoption of processing-in-memory: Challenges, mechanisms, future research

directions,” ArXiv Prepr. ArXiv180200320, 2018.

[65] H. Asghari-Moghaddam, Y. H. Son, J. H. Ahn, and N. S. Kim, “Chameleon:

Versatile and practical near-DRAM acceleration architecture for large memory

systems,” in 2016 49th Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO), Taipei, Taiwan, Oct. 2016, pp. 1–13, doi:

10.1109/MICRO.2016.7783753.

[66] Mihir Patkar, “Intel Core i9 vs. i7 vs. i5: Which CPU Should You Buy?,”

Technology Explained, Dec. 06, 2018. https://www.makeuseof.com/tag/intel-core-

i9-vs-i7-vs-i5-cpu/.

[67] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C. Phillips, “GPU

computing,” 2008.

[68] J. Nickolls and W. J. Dally, “The GPU computing era,” IEEE Micro, vol. 30, no. 2,

pp. 56–69, 2010.

[69] Y. Kim, D. Han, O. Mutlu, and M. Harchol-Balter, “ATLAS: A scalable and high-

performance scheduling algorithm for multiple memory controllers,” in HPCA-16

189

2010 The Sixteenth International Symposium on High-Performance Computer

Architecture, 2010, pp. 1–12.

[70] Z. Guz, E. Bolotin, I. Keidar, A. Kolodny, A. Mendelson, and U. C. Weiser, “Many-

core vs. many-thread machines: Stay away from the valley,” IEEE Comput. Archit.

Lett., vol. 8, no. 1, pp. 25–28, 2009.

[71] F. Gebali, Algorithms and parallel computing. Hoboken, N.J: Wiley, 2011.

[72] A. H. Almutairi and A. H. Alruwaili, “Improving of Quicksort Algorithm

Performance by Sequential Thread or Parallel Algorithms,” Glob. J. Comput. Sci.

Technol. - Hardw. Comput., vol. 12, no. 10, 2012.

[73] A. Silberschatz, P. B. Galvin, and G. Gagne, Operating system concepts, Ninth

edition. India: Wiley India Pvt. Ltd., 2016.

[74] Yanhong A. Liu, Scott D. Stoller, and Tim Teitelbaum, “Discovering auxiliary

information for incremental computation,” in POPL ’96 Proceedings of the 23rd

ACM SIGPLAN-SIGACT symposium on Principles of programming languages,

Florida, USA, Jan. 1996, pp. 157–170.

[75] Liu Y A, “CACHET: an interactive, incremental-attribution-based program

transformation system for deriving incremental programs,” presented at the

Proceedings 1995 10th Knowledge-Based Software Engineering Conference, 1995.

[76] M. A. Hammer et al., “Incremental computation with names,” ACM SIGPLAN Not.,

vol. 50, no. 10, pp. 748–766, Oct. 2015.

[77] Yanhong A. Liu, Scott D. Stoller, and Tim Teitelbaum, “Static caching for

incremental computation,” ACM Trans. Program. Lang. Syst. TOPLAS, vol. 20, no.

3, pp. 546–585, May 1998.

[78] U. A. Acar, G. Blelloch, and R. Harper, “Self-adjusting computation,” PhD Thesis,

Citeseer, 2005.

[79] U. A. Acar, A. Ahmed, and M. Blume, “Imperative Self-adjusting Computation,”

SIGPLAN Not, vol. 43, no. 1, pp. 309–322, Jan. 2008, doi:

10.1145/1328897.1328476.

[80] P. Bhatotia, A. Wieder, R. Rodrigues, U. A. Acar, and R. Pasquin, “Incoop:

MapReduce for incremental computations,” in Proceedings of the 2nd ACM

Symposium on Cloud Computing, 2011, p. 7.

[81] M. A. Hammer, U. A. Acar, and Y. Chen, “CEAL: a C-based language for self-

adjusting computation,” in ACM Sigplan Notices, 2009, vol. 44, pp. 25–37.

[82] P. Bhatotia, P. Fonseca, U. A. Acar, B. B. Brandenburg, and R. Rodrigues,

“iThreads: A threading library for parallel incremental computation,” in ACM

SIGPLAN Notices, 2015, vol. 50, pp. 645–659.

[83] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. Hennessy,

Memory consistency and event ordering in scalable shared-memory

multiprocessors, vol. 18. ACM, 1990.

[84] A. S. Jensen and J. Villadsen, “A comparison of organization-centered and agent-

centered multi-agent systems,” Artif. Intell. Res., vol. 2, no. 3, Apr. 2013, doi:

10.5430/air.v2n3p59.

190

[85] N. R. Jannings, “An agent-based approach for building complex software systems,”

Coomunications ACM, vol. 44, no. 4, pp. 35–41, Jan. 2001.

[86] S. Costantini, “Defining and Maintaining Agent’s Experience in Logical Agents,”

in Informal Proc. of the LPMAS (Logic Programming for Multi-Agent Systems)

Workshop at ICLP 2011, and CORR Proceedings of LANMR 2011, Latin-American

Conference on NonMonotonic Reasoning, Mexico, 2011, pp. 151–165.

[87] Gero J. S., “Understanding behaviors of a constructive memory agent: A markov

chain analysis.,” Knowl.-Based Syst., vol. 22, no. 8, pp. 610–621, 2009.

[88] P.-S. Liew and J. S. Gero, “Constructive memory for situated design agents,” AI

EDAM, vol. 18, no. 2, pp. 163–198, 2004.

[89] Xiaoming Li, Maria Jesus Grzaran, and David Padua, “Optimizing sorting with

genetic algorithms,” New York, NY, USA., 2005, doi: 10.1109/CGO.2005.24.

[90] L. Daniel and K. T. Chaturvedi, “Review on Different Evolutionary Computing

Techniques In Particle swarm Optimization,” Int. J. Eng. Sci. Math., vol. 7, no. 3,

pp. 230–236, 2018.

[91] A. Ahilan and P. Deepa, “Improving lifetime of memory devices using evolutionary

computing based error correction coding,” in Computational intelligence, cyber

security and computational models, Springer, 2016, pp. 237–245.

[92] Gunther Raidl, “Evolutionary computation: An overview and recent trends,” OGAI,

pp. 2–7, 2005.

[93] P. de Wilde and G. Briscoe, ““Stability of evolving multiagent systems,” ” IEEE

Trans. Syst. Man Cybern. Part B Cybern., vol. 41, no. 4, pp. 1149–1157, 2011.

[94] C. Tacla and J.-P. Barthès, “A multi-agent architecture for evolving memories,”

2003.

[95] M. C. Mozer and others, “Neural net architectures for temporal sequence

processing,” in Santa Fe Institute Studies in the Sciences of Complexity-Proceedings

Volume-, 1993, vol. 15, pp. 243–243.

[96] M. D. Godfrey and D. F. Hendry, “The computer as von Neumann planned it,” IEEE

Ann. Hist. Comput., vol. 15, no. 1, pp. 11–21, 1993, doi: 10.1109/85.194088.

[97] L. Wang et al., “Superneurons: dynamic GPU memory management for training

deep neural networks,” in ACM SIGPLAN Notices, 2018, vol. 53, pp. 41–53.

[98] P. Chi et al., “Prime: A novel processing-in-memory architecture for neural network

computation in reram-based main memory,” in ACM SIGARCH Computer

Architecture News, 2016, vol. 44, pp. 27–39.

[99] S. Khadka, J. J. Chung, and K. Tumer, “Evolving memory-augmented neural

architecture for deep memory problems,” in Proceedings of the Genetic and

Evolutionary Computation Conference, 2017, pp. 441–448.

[100] A. Graves, G. Wayne, and I. Danihelka, “Neural turing machines,” ArXiv Prepr.

ArXiv14105401, 2014.

[101] J. J. A. Ansel, “Autotuning programs with algorithmic choice,” PhD Thesis,

Massachusetts Institute of Technology, 2014.

191

[102] P. Pfaffe, M. Tillmann, S. Walter, and W. F. Tichy, “Online-autotuning in the

presence of algorithmic choice,” in 2017 IEEE International Parallel and

Distributed Processing Symposium Workshops (IPDPSW), 2017, pp. 1379–1388.

[103] Y. Ding, J. Ansel, K. Veeramachaneni, X. Shen, U.-M. O’Reilly, and S.

Amarasinghe, “Autotuning algorithmic choice for input sensitivity,” in ACM

SIGPLAN Notices, 2015, vol. 50, pp. 379–390.

[104] J. Ansel et al., “Opentuner: An extensible framework for program autotuning,” in

Proceedings of the 23rd international conference on Parallel architectures and

compilation, 2014, pp. 303–316.

[105] J. Ansel, Y. L. Wong, C. Chan, M. Olszewski, A. Edelman, and S. Amarasinghe,

“Language and compiler support for auto-tuning variable-accuracy algorithms,” in

International Symposium on Code Generation and Optimization (CGO 2011), 2011,

pp. 85–96.

[106] J. Ansel et al., “Siblingrivalry: online autotuning through local competitions,” in

Proceedings of the 2012 international conference on Compilers, architectures and

synthesis for embedded systems, 2012, pp. 91–100.

[107] W.-C. Lee et al., “White-box program tuning,” in Proceedings of the 2019

IEEE/ACM International Symposium on Code Generation and Optimization, 2019,

pp. 122–135.

[108] P. Balaprakash et al., “Autotuning in High-Performance Computing

Applications,” Proc. IEEE, vol. 106, no. 11, pp. 2068–2083, 2018.

[109] P. Tillet and D. Cox, “Input-aware auto-tuning of compute-bound HPC kernels,”

in Proceedings of the International Conference for High Performance Computing,

Networking, Storage and Analysis, 2017, p. 43.

[110] Chen, G, Church, D. A, Englert, B. G., and Zubairy, M. S., “Mathematical models

of contemporary elementary quantum computing devices,” in Quantum Control:

Mathematical and Numerical Challenges, 2003, vol. 33, pp. 79–117.

[111] Calude C. S and Michel J. D., “Reflections on Quantum Computing,” 2000.

[112] Federman A., “What Buddhism Taught Cognitive Science about Self, Mind and

Brain,” Enrahonar Quad. Filos., vol. 47, pp. 39–62, 2011.

[113] Nàrada Mahà Thera, A Manual of Abhidhamma (Abhidhammattha Saïgaha of

Bhadanta Anuruddhàcariya). Malaysia: Biddhist Missionary Society, 1987.

[114] Nayanaponika Thero, Abhidhamma Studies: Researches in Buddhist Psycology.

Kandy, Sri Lanka: Buddhist Publication Society, 1976.

[115] Bhaddanta Dr. Rewata Dhamma, Process of Consiousness and Matter. Onalaska,

USA: Pariyatti, 2015.

[116] A. Rathnapala, Abhidharmartha Pradeepika, vol. 3. Sri Lanka: M. D. Gunasena,

1973.

[117] Rerukane Chandrawimala Nayaka Thero, Abhidharma Mulika Karunu, 12th ed.

2009.

[118] Nārada and Pali Text Society, Conditional relations (Paṭṭhāna). Bristol: Pali Text

Society, 2010.

192

[119] “Suwisi Pratya - Pattana Prakarana,” in Abhidhamma Pritaka, Buddha Jayanthi

Tipitaka Series, vol. 52–3, 2006.

[120] Pinker Steven, “How the mind works,” Ann. N. Y. Acad. Sci., vol. 882, no. 1, pp.

119–127, 1999.

[121] Litch Mary, “Computation, connectionism and modelling the mind,” Philos.

Psychol., vol. 10, no. 3, p. 357, 1997.

[122] A. V. Aho, “Computation and Computational Thinking,” Comput. J., vol. 55, no.

7, pp. 832–835, Jul. 2012, doi: 10.1093/comjnl/bxs074.

[123] Vallverdu J, “The Eastern Construction of the Artificial Mind,” Enrahonar

Quardens Filasofia 47, pp. 171–185, 2011.

[124] Elodzislaw Duch, “What constitutes a good theory of mind,” Am. Neopragmatism

Torun, vol. 8, pp. 8–12, 1998.

[125] Zhang J., “Memory Process and the Function of sleep,” J. Theor., vol. 6, no. 6,

2004.

[126] D. E. Nee and M. D’Esposito, “Working Memory,” in Brain Mapping, A. W.

Toga, Ed. Waltham: Academic Press, 2015, pp. 589–595.

[127] P. O. A. Haikonen, “The Challenges for Implementable Theories of Mind,” J.

Mind Theory, vol. 0, no. 1, pp. 99–110, 2008.

[128] W. A. C. Weerakoon, A. S. Karunananda, and N. G. J. Dias, “Enhancing the

Functionality of Rule-Based Expert Systems,” Kuala Lumpur, Malaysia, Sep. 2015,

p. 93.

[129] T. J. Cleophas and A. H. Zwinderman, SPSS for starters and 2nd levelers, 2. ed.

Heidelberg: Springer, 2015.

[130] G. E. Meek, C. Ozgur, and K. Dunning, “Comparison of the t vs. Wilcoxon

Signed-Rank Test for Likert Scale Data and Small Samples,” vol. 6, no. 1, pp. 91–

106, May 2007.

[131] A. Imam, U. Mohammed, and C. Moses Abanyam, “On Consistency and

Limitation of paired t-test, Sign and Wilcoxon Sign Rank Test,” vol. 10, no. 1

Ver.IV, pp. 01–06, Feb. 2014.

[132] S. C. Gupta and V. K. Kapoor, Fundamentals of Mathematical Statistics. Sultan

Chand & Sons, 2007.

[133] R. E. Walpole, Probability and statistics for engineers and scientists. Boston,

Mass: Pearson Education, 2012.

[134] Jim Colton, Minitab Inc., Detecting and Analyzing Non-Normal data. Florida,

2014.

[135] M. A. Stephen, “The Anderson-Darlin Statistics,” DEPARTMENT OF

STATISTICS STANFORD UNIVERSITY STANFORD, CALIFORNIA, 1979.

[136] F. E. Grubbs, “Procedures for Detecting Outlying Observations in Samples,” Am.

Stat. Assoc. Am. Soc. Qual., vol. 11, no. 1, pp. 1–21, Feb. 1969.

[137] H. J. Hopcroft, R. Motwani, and D. J. Ullman, Introduction to Automata Theory

Languages, and Computation, Third. Pearson Education, 2007.

[138] A. T. Sudkamp, Languages and Machines: An Introduction to the Theory of

Computer Science, Third. Pearson, 2005.

193

[139] C. J. Martin, Introduction to Languages and the Theory of Computation, 2007th

ed. McGraw Hill Education, 2014.

[140] W. A. C. Weerakoon, A. S. Karunananda, and N. G. J. Dias, “New Processing

Model for Operating Systems,” University of Kelaniya, 2016, p. 29, [Online].

Available: http://repository.kln.ac.lk/handle/123456789/15931.

194

APPENDIX A

SELECTED CODE SEGMENTS

A.1 Process Switcher

This is the main controller of the program, which allows to switch between the internal

and external processes during each of the “Sleep” state. Further, it made the continuation

of the system. The respective source code can be seen in the Figure. A.1.

public class ProcessSwitcher {
 ExternalProgram ep = new ExternalProgram();
 InternalProgram ip = new InternalProgram();
 public static void processSwitch() throws IOException, InterruptedException{
 ExternalProgram.externalExecution();
 while(cancelValue==false){
 if(InsertList.txtInsertList.getText().equalsIgnoreCase("")){
 InsertList.lblAlgoName.setText("");
 InsertList.txtAreaAns.setText("");
 InternalProgram.internalExecution();
 InsertList.txtAreaAns.setText("Internal");
 lblstat.setText("");
 systemState=systemState+"\n"+"Sleep -external";
 txtAreaState.setText(systemState);
 lblstat.setText("Sleep -external");
 sleep(1000);
 } else{
 if(InsertList.txtAreaAns.getText().equalsIgnoreCase("Internal"))
 InsertList.txtAreaAns.setText("External");
 else
 InsertList.txtAreaAns.setText(InsertList.txtAreaAns.getText());
 lblstat.setText("");
 systemState=systemState+"\n"+"Sleep -internal";
 txtAreaState.setText(systemState);
 lblstat.setText("Sleep -internal");
 sleep(1000);
 }
 }
 }
}
Figure. A.1: Source Code Segment for Process Switcher

195

A.2 Operation Organizer

This tries to recognize the pattern of the input as mentioned in the section 4.3 and pass

the input to accomplish the respective actions. The source code for the SSPM-FC

Operation Organizer with respect to “Same Op”, “Same Exp”, “Different Op”, and “New

Op” is showed in the Figure A.2 (a). In addition to that the longer expressions are handled

through recursively calling the same methods, considering the input patterns stated in the

section 4.3. Further, a part of the input pattern identification of SSPM-Sorting is showed

in the Figure. A.2 (b).

(a)
.
.
.

 if(!op.equalsIgnoreCase("*")){
 algorithmNo=1;
 }else if(op.equalsIgnoreCase("*")){
 if(countR>1){
 if(currentMethod.equalsIgnoreCase("MulCalc1()"))
 currentMethod="MulCalc2()";
 else if(currentMethod.equalsIgnoreCase("MulCalc2()"))
 currentMethod="MulCalc1()";
 else
 currentMethod="MulCalc1()";
 }else if(countR==1){
 currentMethod=lowestMethod();
 }
 }
.
.
.
 if(validNum==false)
 {
 txtAreaAns.setText("Invalid Numerator/s");
 resultRaw="Invalid Fraction/s";
 simpResult="Invalid Fraction/s";
 if(wStr.equalsIgnoreCase("External"))
 printAns();
 else if(wStr.equalsIgnoreCase("Internal"))
 soutAns();
 }else{
 classifyNumerator();
 System.out.println("Numerator is Classified; cnc = "+numCategory+"\n");
 if((!currentOp.equalsIgnoreCase(""))&¤tOp.equalsIgnoreCase(op)){
 category="Same Op";
 ++countSmOp;
 if((countSmOp>6)||(!moduleFile.isEmpty())){
 if(!prevExp.equalsIgnoreCase(currentExp)||prevExp.equalsIgnoreCase("")){
 try {
 executeCalcMain();
 if(wStr.equalsIgnoreCase("External"))
 printAns();
 else if(wStr.equalsIgnoreCase("Internal"))

196

 soutAns();
 }
.
.
.

 else{
 category="Same Exp";
 if(wStr.equalsIgnoreCase("External"))
 printAns();
 else if(wStr.equalsIgnoreCase("Internal"))
 soutAns();
 }
 }else{
 if(!prevExp.equalsIgnoreCase(currentExp)||prevExp.equalsIgnoreCase("")){
 try {
 executeSubMain();
 if(wStr.equalsIgnoreCase("External"))
 printAns();
 else if(wStr.equalsIgnoreCase("Internal"))
 soutAns();
 }
.
.
.
 }
 else{
 category="Same Exp";
 if(wStr.equalsIgnoreCase("External"))
 printAns();
 else if(wStr.equalsIgnoreCase("Internal"))
 soutAns();
 }
 }
 }else{
 try {
 getModule1(op);
 }
.
.
.
 }
 if(existOp==false){
 s="Create new module for the new operator \""+op+"\"\n Click below OK button\n";
 category="New Op";
 resultRaw="not calculated";
 simpResult="not calculated";
 module="no module";
 currentMethod="no method";
 btnOk.show(true);
 btnClearS.hide();
 btnSubmit.hide();
 btnLoadFile.hide();
 btnCreateModule.hide();
 txtAreaAns.setText(s);
 }else{
 countSmOp=1;
 category="Different Op";
 if(moduleFile.isEmpty()||(!op.equalsIgnoreCase(recordedOp))){
 try {
 System.out.println("Get Module\n");
 setSubMain();
 try {
 executeSubMain();

197

.

.

.
 }else{
 try {
 currentMethod=moduleFile.substring(0, 7)+algorithmNo+"()";
 module=moduleFile.substring(0, 13);
 recordedOp=op;
 executeCalcMain();
.
.
.
 }
 if(wStr.equalsIgnoreCase("External"))
 printAns();
 else if(wStr.equalsIgnoreCase("Internal"))
 soutAns();
 }
 }
 txtAreaAns.setEditable(false);
 Color c = new Color(215, 215, 215);
 txtAreaAns.setBackground(c);
 estimatedTime = System.nanoTime() - startTime;
 dateFormat = new SimpleDateFormat("yyyy/MM/dd HH:mm:ss");
 date = new Date();
 prevExp=a[0]+"/"+b[0]+op+a[1]+"/"+b[1];
 countFrequent.calcCount();
 if(!recordedOp.equalsIgnoreCase(op))
 moduleFile="";
 int x=0;
 while(x<noOperators){
 if((opArray[x].opCount==8)&&(opArray[x].modFile.isEmpty())&&(moduleFile.isEmpty())
 &&(redundantNF==0)){
 try {
 wait=wait+", "+"frequent-not-subsequent";
 redundantF++;
 setCalcClasses(opArray[x].opModule);
.
.
.
 }
 x++;
 }
 if((countSmOp==6)&&(moduleFile.isEmpty())&&(redundantF==0)){
 try {
 wait=wait+", "+"frequent";
 redundantNF++;
 setCalcClasses(module);
.
.
.

 }
 if(op.equalsIgnoreCase("*")){
 updateDuration();
 if((countR!=1)){
 countAlgoNo++;
 if(countAlgoNo>5){
 delInefficientAlgo();
 }
 }
 }
 createLogFile();
 System.out.println("Log file created!\n");

198

 }
 }

(b)

.

.
1 if(workCurList.containsAll(z)&&(z.size()==workCurList.size())){
2 System.out.println("final :"+z);
 }
.
.
4 z.retainAll(workCurList);
5 workCurList.removeAll(z);
.
.

Figure. A.2: (a) Operation Organizer in SSPM-FC with respect to “Same Op”,

“Same Exp”, “Different Op”, and “New Op” (b) Part of the Operation Organizer in

SSPM-Sorting

In the Figure. A.2 (b), the z is the sorted previous list, whereas the workCurList is the

current input (list). Further, the line 1 in Figure. A.2 (b) checks whether the two lists are

equal using the containsAll() method, checking the sizes of the lists. In addition to that

the line 4, finds the common elements in both the lists and removes the additional

elements in the sorted list z. Then, with the line 5, the rest of the elements in the current

list that are not common are found. Then, those elements were inserted into the filtered

previously sorted list.

199

A.3 Input-Content Analyser of SSPM-FC

This works as similar to the lexical analyser of a compiler. It identifies the input, and

break the input into respective components (this also similar to the concept of breaking

up into lexemes). For example, in SSPM-FC, it identifies operators and operands. The

source code of the Input-Content Analyser for the SSPM-FC is illustrated in the Figure.

A.1. During this analysis of SSPM-FC, it had to identify, brackets, locations, numerators,

denominators, and whole parts, apart from the operators and operands. Therefore, it is

evident that the Input-Content Analyser is domain dependent.

public static void getComplexFrac(String wStr) throws IOException{
 if(openBracArr.length!=0||closeBracArr.length!=0){
 if(openBracArr.length==closeBracArr.length){
 subStr=null;
 int d=0, x=0;
 int j=0;
 for(k=openBracArr.length-1;k>=0;k--) {
 for(j=0;j<closeBracArr.length;j++){
 if(openBracArr[k]<closeBracArr[j]){
 d=closeBracArr[j];
 x=j;
 break;
 }
 }
 subStr=s.substring(openBracArr[k]+1,d);
 openBracArr =Arrays.copyOf(openBracArr, openBracArr.length-1);
 for(int l=x;l<closeBracArr.length-1;l++){
 closeBracArr[l]=closeBracArr[l+1];
 }
 closeBracArr =Arrays.copyOf(closeBracArr, closeBracArr.length-1);
 subStr=parseForFAndS(subStr);
 findWholePart();
 if(sinArr.length!=0){
 handleWholePart(); //add the whole part to denominator
 }
 findResult(wStr);
 replaceString();
 noBrac=findBracPos();
 getComplexFrac(wStr);
 }
 }else{
 InsertEquation.txtAreaAns.setText("Invalid Brackets Handling\n");
 }
 }else{
 subStr=s;
 subStr=parseForFAndS(subStr);
 findWholePart();
 if(sinArr.length!=0){
 handleWholePart(); //add the whole part to denominator
 }
 findResult(wStr);
 }
 }

200

 public static int findBracPos(){
 int p=0, q=0;
 for(i=0;i<s.length();i++){
 if(Character.isDefined(s.charAt(i))&&(s.charAt(i)=='(')) {
 p++;
 }else if(Character.isDefined(s.charAt(i))&&(s.charAt(i)==')')) {
 q++;
 }
 }
 openBracArr=new int[p];
 closeBracArr=new int[q];
 openBracIn=0;
 closeBracIn=0;
 for(i=0;i<s.length();i++){
 if(Character.isDefined(s.charAt(i))&&(s.charAt(i)=='(')) {
 openBracArr[openBracIn]=i;
 openBracIn++;
 }else if(Character.isDefined(s.charAt(i))&&(s.charAt(i)==')')){
 closeBracArr[closeBracIn]=i;
 closeBracIn++;
 }
 }
 return openBracArr.length;
 }

 public static void findWholePart(){
 if(finArr!=null){
 wp = new WholeParts[finArr.length];
 for (int i = 0; i < finArr.length; i += 1) { // initialize the array with the length similar to the length of the finArr
 wp[i] = new WholeParts();
 }
 subOp=-1;
 nextJ=0;
 neg=0;
 for(int p=0;p<finArr.length;p++){ // Read the fractions: '/', whole part, numerator, denominator
 wp[p].fIndex=finArr[p]; // read '/'
 if(nextJ<sinArr.length){
 for(int q=nextJ;q<sinArr.length;q++){
 if(sinArr[q]<finArr[p]){ // Read the fractions: denominator & whole part, considering the spaces
 wp[p].sIndex=sinArr[q];
 if((p==0)&&(subStr.charAt(0)=='-')){
 wp[p].wNumber=(-Integer.parseInt(subStr.substring(subOp+2,sinArr[q])));
 wp[p].neg=1;
 }else if((p!=0)&&(subStr.charAt(opArr[p-1].index+1)=='-')){
 wp[p].wNumber=(-Integer.parseInt(subStr.substring(opArr[p-1].index+2,sinArr[q])));
 wp[p].neg=1;
 }else
 wp[p].wNumber=Integer.parseInt(subStr.substring(subOp+1,sinArr[q]));
 wp[p].denom=Integer.parseInt(subStr.substring(sinArr[q]+1,finArr[p]));
 nextJ=q+1;
 break;
 }else{
 wp[p].denom=Integer.parseInt(subStr.substring(subOp+1,finArr[p]));
 }
 }
 }else{
 if(subStr.charAt(0)=='-'){
 if(subOp==-1)
 wp[p].denom=(-Integer.parseInt(subStr.substring(subOp+2,finArr[p])));
 // Read the denominator, if no whole part
 else
 wp[p].denom=Integer.parseInt(subStr.substring(subOp+1,finArr[p]));
 }else
 wp[p].denom=Integer.parseInt(subStr.substring(subOp+1,finArr[p]));

201

 }
 if(p==(finArr.length-1)) // find the limit considering the operator or the end of the array
 subOp=subStr.length();
 else
 subOp=opArr[p].index;
 wp[p].num=Integer.parseInt(subStr.substring(finArr[p]+1,subOp)); // read the numeraor
 fin=p-1; // find the number of fractions in the considered string/substring
 }
 nextJ=0;
 }
 }

 public static void handleWholePart(){
 for(int i=0;i<finArr.length;i++){
 if(wp[i].neg==1&&wp[i].wNumber!=0)
 wp[i].denom=(wp[i].wNumber*wp[i].num)-wp[i].denom;
 // eg: 3 2/5 = (3*5+2)/5 => denominator=17, numerator=5
 else
 wp[i].denom=(wp[i].wNumber*wp[i].num)+wp[i].denom;
 }
 }

 public static String parseForFAndS(String subStr){
 int fIndex=0, sIndex=0;
 int p=0,q=0,r=0, t=0;
 for(i=1;i<subStr.length();i++)
 {
 if((!Character.isDigit(subStr.charAt(i)))&&(!(subStr.charAt(i)==''))&&(!(subStr.charAt(i)=='/'))&&
 (!(subStr.charAt(i)=='('))&&(!(s.charAt(i)==')'))){
 // this will find the positions of the operators
 if(t!=i-1){ //pass without reading negative sign
 r++;
 }
 t=i;
 }else if(subStr.charAt(i)=='/') { // find the positions of the fractions sign ('/')
 p++;
 }else if(subStr.charAt(i)==' ') { // find the positions of the spaces assuming that the space is used only to separate
the whole part from the denominator
 q++;
 }
 }
 opArr=new opSetArray[r]; finArr=new int[p]; sinArr=new int[q];
 for (int i = 0; i < r; i += 1) {
 opArr[i] = new opSetArray();
 }
 opIn=0; fin=0; spaceIn=0;
 t=0;
 for(i=1;i<subStr.length();i++)
 {
 if((!Character.isDigit(subStr.charAt(i)))&&(!(subStr.charAt(i)==' '))&&(!(subStr.charAt(i)=='/'))&&
 (!(subStr.charAt(i)=='('))&&(!(s.charAt(i)==')')))
 { // this will find the positions of the operators
 if(t!=i-1){ //pass without reading negative sign
 opArr[opIn].index=i;
 opArr[opIn].op=""+subStr.charAt(i);
 opIn++;
 }
 t=i;
 }else if(subStr.charAt(i)=='/') { // find the positions of the fractions sign ('/')
 finArr[fin]=i;
 fin++;
 }else if(subStr.charAt(i)==' ') { // find the positions of the spaces assuming that the space is used only to separate
 the whole part from the denominator
 sinArr[spaceIn]=i;

202

 spaceIn++;
 }
// findWholePart();
 }
 return subStr;
 }

Figure. A.3: Input-Content Analyser of SSPM-FC

203

A.4 Small Compiler

The smaller compiler compiles the dynamically changed source codes and allow their

activation and execution. The source codes related to the compiling, loading, and

execution are included in the Figure. A.4. Further, this small compiler is not domain

dependent.

public static synchronized void compileExecuteCalcMain() throws MalformedURLException, ClassNotFoundException,
InstantiationException, IllegalAccessException, IOException{
 DiagnosticCollector<JavaFileObject> identifiedD = new DiagnosticCollector<JavaFileObject>();
 //Start Compiling
 JavaCompiler javaCompiler = ToolProvider.getSystemJavaCompiler();
 StandardJavaFileManager manageFile = javaCompiler.getStandardFileManager(identifiedD, null, null);
 //Set the Class Path
 List<String> listOp = new ArrayList<String>();
 listOp.add("-classpath");
 listOp.add(System.getProperty("java.class.path") + ";dist/methodsSubMain.jar");
 Iterable<? extends JavaFileObject> compilationUnit
 = manageFile.getJavaFileObjectsFromFiles(Arrays.asList(SubMain));
 JavaCompiler.CompilationTask job = javaCompiler.getTask(null, manageFile, identifiedD, listOp,
 null,compilationUnit);
 if (job.call()) {
 //Start Loading and Executing
 URLClassLoader cl = new URLClassLoader(new URL[]{new
 File("./").toURI().toURL()});
 Class<?> loadedClass = cl.loadClass("compilerSubMain.SubMain");
 Object insOb = loadedClass.newInstance();
 if (insOb instanceof dynamicMain) {
 dynamicMain exeMod = (dynamicMain)insOb;
 exeMod.subMainMethod();
 }

 } else {
 for (Diagnostic<? extends JavaFileObject> diagnostic : identifiedD.getDiagnostics()) {
 System.out.format("Error on line %d in %s%n",
 diagnostic.getLineNumber(),
 diagnostic.getSource().toUri());
 }
 }
 manageFile.close();

Figure. A.4: Smaller Compiler – The execution of dynamically created java module –

SubMain.java

204

A.5 Write Engine

The Figure. A.5 shows the construction of dynamically changing calculation class, before

the particular operation become frequent, and it is a part of the Write Engine. In addition

to the part displayed in this figure, the Write Engine includes Update Tactic Memory,

Create Log File, Create/Delete Module, and Update Program Codes. From these, the

Update Tactics Memory, Create/ Delete Modules and Update Program Codes are domain

dependent.

public static synchronized void setCalcClasses(String m) throws IOException{
 wait=wait+", "+"set Calc-Classes";
 StringBuilder bStr = new StringBuilder(64);
 bStr.append("package compilerSubMain;\n");
 bStr.append("import static FracLibrary."+m+".*;\n");
 bStr.append("public class "+m+"Main implements FracLibrary.methodsSubMain.dynamicMain {\n");
 bStr.append(" public void subMainMethod() {\n");
 bStr.append(" "+m.substring(0, 7)+algorithmNo+"();\n");
 bStr.append(" }\n");
 bStr.append("}\n");
 recordedOp=op;

 subMain = new File("compilerSubMain/"+m+"Main.java");
 subMain.createNewFile();
 if (subMain.exists()) {
 Writer writer = null;
 try {
 try {
 writer = new FileWriter(subMain);
 writer.write(bStr.toString());
 writer.flush();
.
.
.
 writer.close();
 } catch (Exception e) {
 }
 }
 }
 System.out.println("is subMain executable? : "+ subMain.canExecute());
 subMain.setExecutable(true);
 Reader r = new FileReader(subMain);
 r.close();
 String fileName = "F:" + File.separator + "TestingProgs" + File.separator +"v10"+ File.separator
 +"FracLib1"+File.separator + "OpFile.txt";
 File f = new File(fileName);
 FileReader reader = new FileReader(f);
 BufferedReader buffReader = new BufferedReader(reader);
 String s;
 StringBuilder ns = new StringBuilder();
 while((s = buffReader.readLine()) != null) {
 System.out.println(s);
 String[] tokenModules = s.split(",");
 if(op.equalsIgnoreCase(tokenModules[0])){
 if(tokenModules.length<5){
 ns.append(s+","+tokenModules[3]+"Main()\n");

205

 }
 currentMethod=tokenModules[3].substring(0, 7)+algorithmNo+"()";
 if(tokenModules.length>4){
 moduleFile=tokenModules[4];
 System.out.println(moduleFile);
 }
 continue;
 }
 ns.append(s+"\n");
 }
 if (subMain.exists()) {
 Writer writer = null;
 try {
 try {
 writer = new FileWriter(f);
 writer.write("");
 writer.write(ns.toString());
 writer.flush();
.
.
.
 try {
 writer.close();
 } catch (Exception e) {
 }
 }
 }
 System.out.println("class : "+subMain.getClass());
 }

Figure. A.5: Write Engine

206

A.6 Terminating Point

The terminating point is determined once the noimprovements string variable is set

‘Yes’. The respective code segment is showed in the Figure. A.6.

.

.
 do{
 ProcessSwitcher.processSwitch();
 }while(noImprovements.equalsIgnoreCase("No"));
}

Figure. A.6: Terminating Point

207

A.7 Two Methods for Multiplication

These were used to show the ability in removing the inefficient algorithm. The

respective two multiplication methods are displayed in the Figure. A.7.

public class MulCalcModule {
 static int g1=1,g2=1;
 static String option="";

 public static void MulCalc1(){
 if(a[0]==b[1]){
 sum=a[1];
 lcm=b[0];
 option="option1";
 }else if(a[1]==b[0]){
 sum=a[0];
 lcm=b[1];
 option="option2";
 }else if(((g1=GCDCalc.gcdCalc(a[0], b[1]))>1)&&((g2=(GCDCalc.gcdCalc(a[1], b[0])))>1)){
 sum=(a[0]/g1)*(a[1]/g2);
 lcm=(b[0]/g2)*(b[1]/g1);
 option="option3";
 }else if((!((GCDCalc.gcdCalc(a[1], b[0]))>1))&&((GCDCalc.gcdCalc(a[0], b[1]))>1)){
 sum=(a[0]/gcd)*a[1];
 lcm=b[0]*(b[1]/gcd);
 option="option4";
 }else if((!((GCDCalc.gcdCalc(a[0], b[1]))>1))&&((GCDCalc.gcdCalc(a[1], b[0]))>1)){
 sum=(a[1]/gcd)*a[0];
 lcm=b[1]*(b[0]/gcd);
 option="option5";
 }else{
 sum=a[0]*a[1];
 lcm=b[0]*b[1];
 option="option6";
 }
 System.out.println(option);
 sysOut.sysPrintOut();
 }

 public static void MulCalc2(){
 sum=a[0]*a[1];
 lcm=b[0]*b[1];
 sysOut.sysPrintOut();
 }
}

Figure. A.7: Two Multiplication Methods; MulCalc1(), and MulCalc2()

208

APPENDIX B

DATA SETS

B.1 SSPM-FC: Plus Operator

Expression After Before

1/4+3/5 31398871 46305152

1/5+2/6 28055953 46220762

1/5+3/6 26188344 48219138

1/5+4/6 24858247 43752537

1/5+5/6 26436953 44270663

1/6+3/7 22876977 39920004

1/6+4/7 33091237 40752502

1/6+5/7 25441757 45468092

1/6+6/7 26909842 50043032

1/7+1/8 19439405 41918760

1/7+2/8 22294609 40913680

1/7+3/8 26359786 40584102

1/7+4/8 21690573 42808279

1/7+5/8 19103365 42386708

1/7+6/8 19606665 44867477

1/8+1/9 33416634 42814741

1/8+2/9 21614165 41114772

1/8+6/9 18809140 40928505

1/8+7/9 24965446 43725168

1/8+8/9 18906074 44116708

2/3+1/4 31284450 43188415

2/4+1/5 35251551 49724477

2/4+2/5 29936487 42190558

2/4+3/5 27687221 45784746

2/5+3/6 27863604 39530745

2/5+4/6 25397280 42957673

2/5+5/6 26113457 43140138

2/6+2/7 21655600 40525562

2/6+3/7 24364450 41137200

2/7+1/8 19221587 41077519

2/7+3/8 22277123 45008887

2/7+6/8 19449669 40893153

2/7+7/8 19783429 43819442

2/8+3/9 22085533 39519341

2/8+4/9 18449150 44195776

2/8+5/9 18842592 45277644

2/8+8/9 18915958 40433568

3/4+2/5 30800917 40435849

3/4+3/5 27169476 42150643

3/4+4/5 31109587 46524110

3/5+5/6 23869133 41768227

3/6+1/7 24605076 45751294

3/6+2/7 23441099 45925776

3/6+3/7 20367698 45904869

3/6+5/7 22050941 51226395

3/6+6/7 22534095 41949551

3/7+1/8 28399596 43461353

3/7+4/8 22353150 40963098

3/7+5/8 19237933 40974502

3/8+1/9 23275360 43783328

3/8+2/9 27342057 43080837

3/8+5/9 18453713 40774550

3/8+7/9 19478560 46939220

4/5+4/6 30219688 41509734

4/5+5/6 27565958 43327925

4/6+1/7 22458448 40312685

4/6+2/7 26942534 46162221

4/6+5/7 22266479 40547609

4/6+6/7 19459172 43671949

4/7+1/8 21896986 50231199

4/7+3/8 18942567 43375442

4/7+4/8 19834367 43434363

4/8+4/9 18822825 48070504

4/8+7/9 18982862 40773030

4/8+8/9 18442308 40578020

5/6+1/7 22044859 45284867

5/6+4/7 25862187 40189901

5/6+5/7 19466776 41334491

5/6+6/7 19442066 44910432

5/7+1/8 21029896 42889628

5/7+2/8 18942568 45276884

5/7+5/8 19306738 41709685

5/7+6/8 21888623 43739233

5/7+7/8 19701319 41711206

5/8+1/9 22530293 47934036

5/8+4/9 28453575 40125658

5/8+5/9 18741855 40523660

5/8+6/9 18183435 42726930

5/9+4/9 18181155 39104993

5/9+5/9 18379206 41797877

5/9+6/9 18585620 45532716

6/7+2/8 25045274 49050875

6/7+3/8 19169129 42026719

6/7+4/8 20264682 40821307

6/7+5/8 18631616 43219587

6/8+1/9 22527632 40690541

6/8+2/9 28435329 41198022

6/8+3/9 18948270 46130290

6/8+6/9 18421781 39891114

6/8+7/9 24604317 43453371

6/8+8/9 18208525 42975919

7/8+3/9 18256802 49801265

7/8+4/9 18577256 41933586

7/8+5/9 25263092 43497086

7/8+8/9 21105543 43063730

7/9+1/9 22671323 44643576

7/9+2/9 18129456 43181573

7/9+5/9 18062172 40931167

7/9+6/9 18697760 43731250

7/9+7/9 18566613 42941706

B.2 SSPM-FC: Minus Operator

Row Labels After Before

1/4-4/5 29116924 50861864

1/5-2/6 26226368 53276491

1/5-3/6 26639956 50250605

1/5-4/6 24902352 43668544

1/5-5/6 25880063 43862413

1/6-1/7 22686538 42909032

1/6-2/7 22908917 55700240

1/6-3/7 23271948 48092191

1/6-5/7 25319742 46775399

1/7-2/8 19281277 43272822

1/7-3/8 18299003 48284540

1/7-4/8 19331454 50916984

1/7-5/8 18250346 46844203

1/7-6/8 19309027 43453007

1/7-7/8 19574741 50390495

1/8-1/9 25088239 46287304

1/8-2/9 18766191 53242658

1/8-3/9 19490351 46789843

1/8-4/9 18613377 43052343

1/8-5/9 24982181 42777124

1/8-7/9 20026344 39478681

2/3-1/4 31788903 54892450

2/3-3/4 31206154 47348264

2/4-2/5 29265177 56758159

2/4-3/5 27110945 47510962

2/5-1/6 27582314 53479863

2/5-5/6 23040064 53507614

2/6-1/7 28418994 47732202

2/6-2/7 27044041 43478475

2/6-3/7 21345416 41934742

2/6-5/7 20652808 47654653

2/6-6/7 20641404 44502563

2/7-1/8 23264725 58094338

2/7-2/8 28076491 47776677

2/7-3/8 19666355 40939165

2/7-4/8 19347800 46143992

2/8-1/9 27113226 43248113

2/8-2/9 21535865 50733758

2/8-3/9 17948138 43798930

2/8-4/9 18466644 41829064

2/8-5/9 18431291 44322379

2/8-6/9 26254498 56106606

2/8-7/9 18054956 45204675

2/8-8/9 18169378 38161128

3/4-2/5 26880962 54073636

3/4-3/5 27152000 47130065

3/5-1/6 23298937 46763994

3/5-2/6 23392451 43860893

3/5-3/6 25556567 42484420

3/5-4/6 22789935 51319168

3/5-5/6 23460875 45100898

3/6-1/7 23195160 43356832

3/6-3/7 20335394 46833179

3/6-5/7 24336329 44628768

3/6-6/7 23048808 59534675

3/7-3/8 22627237 46939997

3/7-4/8 20360483 40481861

3/7-5/8 19084366 52101869

3/8-1/9 18306986 48663156

3/8-3/9 18218795 47672140

3/8-4/9 24259542 40498966

3/8-5/9 18254908 42356313

3/8-6/9 18617178 45071627

3/8-7/9 18998075 47557339

3/8-8/9 18251487 40640758

4/5-1/6 24801236 42924237

4/5-3/6 30792565 56432383

4/5-4/6 33301846 51464760

4/6-1/7 20363905 48064060

4/6-2/7 26475356 42938302

4/6-5/7 20053334 42905990

4/6-6/7 23957714 55692257

4/7-1/8 23558190 48392119

4/7-2/8 18802304 42809436

4/7-3/8 18872629 47688486

4/7-4/8 19516961 46480793

4/7-5/8 19076383 49475506

4/7-6/8 27434821 59831942

4/7-7/8 18700428 47585469

4/8-1/9 18194086 40978699

4/8-2/9 30650775 54082380

4/8-3/9 18335878 49363367

4/8-5/9 18420268 39269226

4/8-7/9 18655571 48857785

4/8-8/9 25002708 41174469

5/6-2/7 19451958 42765340

5/6-5/7 19341337 44517388

5/6-6/7 24361418 57025775

5/7-1/8 22313623 40437385

5/7-2/8 18515301 42300813

5/7-4/8 19418506 47806328

5/7-5/8 25493085 42909412

5/7-6/8 19751885 47420110

5/8-1/9 18409624 46494097

5/8-3/9 17633385 40490984

6/7-1/8 23173873 46529450

6/7-2/8 19374030 40644939

6/7-3/8 22603288 51231357

6/7-6/8 18617178 46941518

6/7-7/8 22070337 50587785

209

B.3 SSPM-FC: Multiplication Operator

Expression After Before

1/4*2/5 30884558 48295183

1/4*3/5 25430742 41692215

1/5*1/6 27516930 43978355

1/5*2/6 24353816 48870710

1/5*3/6 22243298 41697917

1/5*4/6 21915621 49531387

1/6*1/7 20803723 37905677

1/6*2/7 23280691 43676907

1/6*3/7 20585524 49471705

1/6*4/7 21736957 42714781

1/7*2/8 20509116 38650364

1/7*4/8 19317389 43389524

1/7*5/8 19122760 49671277

1/7*6/8 19542049 41599081

1/7*7/8 19553073 49697886

1/8*3/9 22065775 51617956

1/8*4/9 23156386 42799552

1/8*5/9 20667634 51169774

1/8*6/9 27041000 47801387

1/8*7/9 18268973 39674832

1/8*8/9 20377589 49710811

2/5*1/6 28587774 49245144

2/5*2/6 24275128 48498937

2/5*3/6 25796053 45122946

2/5*5/6 20943993 42287509

2/6*1/7 26700017 46004862

2/6*2/7 21400156 37806842

2/6*5/7 20126320 48185324

2/6*6/7 20508736 41119350

2/7*1/8 20049531 42063609

2/7*2/8 23125976 51313846

2/7*3/8 18710312 44425015

2/7*5/8 18958920 41696017

2/8*1/9 18465123 42938302

2/8*2/9 29408869 49989831

2/8*3/9 18704229 37194822

2/8*4/9 23630037 51551812

2/8*5/9 23091763 43705417

2/8*7/9 18193325 45487497

3/4*2/5 23357478 40052687

3/4*3/5 23891950 43086936

3/4*4/5 24682633 48528207

3/5*1/6 21893953 49926349

3/5*2/6 21202865 40530899

3/5*4/6 21325649 42467313

3/5*5/6 21242400 48289861

3/6*1/7 19902039 49680021

3/6*3/7 24270946 50999094

3/6*4/7 19953738 40753658

3/6*5/7 19938912 49705109

3/6*6/7 20345658 42046502

3/7*1/8 18338538 48003619

3/7*2/8 19353502 42032817

3/7*3/8 24933524 50799521

3/7*4/8 26818620 43240511

3/7*6/8 21304742 43692113

3/7*7/8 22838972 43181589

3/8*1/9 18175460 42185632

3/8*4/9 25054027 42058666

3/8*5/9 18239702 42514450

3/8*6/9 19748463 50101971

4/5*1/6 21927405 40337029

4/5*2/6 30426874 48468526

4/5*3/6 21002914 42436522

4/5*4/6 21188800 46796686

4/5*5/6 25960272 46308211

4/6*1/7 20465401 49531387

4/6*2/7 24812260 43255716

4/6*3/7 19768991 48379954

4/6*4/7 22011035 42454768

4/6*6/7 19218553 43573130

4/7*1/8 22399915 41922198

4/7*2/8 22803620 48217635

4/7*3/8 19806244 44140673

4/7*4/8 19343619 44877378

4/7*5/8 19753026 42475676

4/7*6/8 19416985 45937198

4/7*7/8 18758969 43199836

4/8*1/9 18067881 44305652

4/8*2/9 18502757 48832316

4/8*3/9 18175840 36020961

4/8*4/9 21838453 47978910

4/8*5/9 19421547 43215042

4/8*8/9 24417299 49997434

5/6*2/7 19334875 38457635

5/6*3/7 26484100 47609038

5/6*4/7 19308646 42888504

5/6*5/7 19253526 49562558

5/6*6/7 19076763 39521256

5/7*3/8 30015186 53766866

5/7*4/8 18984009 41505948

5/7*5/8 18842979 48559758

5/7*6/8 18770373 47611318

5/7*7/8 26317220 51986688

6/7*1/8 18443075 43519151

6/7*2/8 18531268 48437735

6/7*3/8 19089307 42168526

6/7*4/8 22547408 47555818

6/7*5/8 18505798 43840366

6/7*7/8 18712592 43529794

210

B.4 SSPM-QES – Positive Discriminant

Equation Before After

1.0x²0.0x-1.0=0 36948479 60854485

1.0x²-1.0x-2.0=0 16363724 54086920

1.0x²-10.0x-11.0=0 15614855 45151819

1.0x²10.0x-11.0=0 21716422 41022020

1.0x²-11.0x-12.0=0 16174035 50909742

1.0x²11.0x-12.0=0 26516782 44694515

1.0x²-12.0x-13.0=0 17626156 26168956

1.0x²-13.0x-14.0=0 20103124 27660991

1.0x²13.0x-14.0=0 22494180 29958155

1.0x²-14.0x-15.0=0 15469644 24424892

1.0x²-15.0x-16.0=0 15983208 47542876

1.0x²15.0x-16.0=0 25737123 38905421

1.0x²-16.0x-17.0=0 15714451 46933517

1.0x²16.0x-17.0=0 20231230 50548993

1.0x²-17.0x-18.0=0 15749043 28690021

1.0x²-18.0x-19.0=0 19897469 25934033

1.0x²18.0x-19.0=0 20958431 28019079

1.0x²-19.0x-20.0=0 16294159 26815948

1.0x²19.0x-20.0=0 20897607 24647271

1.0x²-2.0x-3.0=0 19934723 25773616

1.0x²2.0x-3.0=0 23526631 25875492

1.0x²-20.0x-21.0=0 15792379 40632000

1.0x²20.0x-21.0=0 24059200 39478286

1.0x²-21.0x-22.0=0 16274391 44434122

1.0x²21.0x-22.0=0 19098423 44753816

1.0x²-22.0x-23.0=0 20175729 28914680

1.0x²22.0x-23.0=0 18821684 27037187

1.0x²-23.0x-24.0=0 15497774 28027063

1.0x²-24.0x-25.0=0 19754158 26043132

1.0x²24.0x-25.0=0 20888865 21884441

1.0x²-25.0x-26.0=0 15733078 40590565

1.0x²25.0x-26.0=0 20761899 39505276

1.0x²-26.0x-27.0=0 24853305 44967453

1.0x²26.0x-27.0=0 18019976 46110522

1.0x²-27.0x-28.0=0 15465461 27196845

1.0x²27.0x-28.0=0 18850195 29136680

1.0x²-28.0x-29.0=0 14696827 29744518

1.0x²28.0x-29.0=0 17970179 27537447

1.0x²-3.0x-4.0=0 18544185 25397660

1.0x²3.0x-4.0=0 25611677 31433463

1.0x²-30.0x-31.0=0 18365901 38906181

1.0x²30.0x-31.0=0 20159384 57058065

1.0x²-31.0x-32.0=0 16309744 47726861

1.0x²31.0x-32.0=0 17458516 52243260

1.0x²32.0x-33.0=0 17562293 24000659

1.0x²-33.0x-34.0=0 16112834 30305599

1.0x²33.0x-34.0=0 18102087 27722193

1.0x²-34.0x-35.0=0 19323844 24505101

1.0x²34.0x-35.0=0 21271662 27006017

1.0x²-35.0x-36.0=0 15846737 39596888

1.0x²35.0x-36.0=0 29032142 40364383

1.0x²-36.0x-37.0=0 15757026 41254282

1.0x²36.0x-37.0=0 17533022 49586488

1.0x²-37.0x-38.0=0 15013860 26261709

1.0x²37.0x-38.0=0 17185198 26700387

1.0x²-38.0x-39.0=0 21272042 28445973

1.0x²38.0x-39.0=0 17690778 28661129

1.0x²-39.0x-40.0=0 17766425 23927294

1.0x²39.0x-40.0=0 22068808 24047797

1.0x²-4.0x-5.0=0 17160108 27349279

1.0x²4.0x-5.0=0 22190072 24522207

1.0x²-40.0x-41.0=0 15271212 51488309

1.0x²40.0x-41.0=0 17077619 67442245

1.0x²-41.0x-42.0=0 15464701 41215508

1.0x²41.0x-42.0=0 28581681 43710342

1.0x²-42.0x-43.0=0 15118776 26828494

1.0x²42.0x-43.0=0 19891007 26578363

1.0x²-43.0x-44.0=0 15145767 27008678

1.0x²43.0x-44.0=0 21573870 27409342

1.0x²-44.0x-45.0=0 24602415 25498396

1.0x²44.0x-45.0=0 16601690 25915026

1.0x²-45.0x-46.0=0 15289079 40784054

1.0x²-46.0x-47.0=0 15112695 41102228

1.0x²46.0x-47.0=0 16367145 42119092

1.0x²-47.0x-48.0=0 15240422 28721951

1.0x²47.0x-48.0=0 27760208 29265927

1.0x²-48.0x-49.0=0 16879188 28070397

1.0x²48.0x-49.0=0 20780906 27602830

1.0x²-49.0x-50.0=0 19485022 23799948

1.0x²49.0x-50.0=0 16419984 24036012

1.0x²-5.0x-6.0=0 20467674 37043132

1.0x²5.0x-6.0=0 23019908 51851720

1.0x²-50.0x-51.0=0 20352873 60901242

1.0x²50.0x-51.0=0 17861459 40744139

1.0x²-51.0x-52.0=0 14861044 41934726

1.0x²-52.0x-53.0=0 14886894 26309987

1.0x²-53.0x-54.0=0 14734079 27834334

1.0x²-54.0x-55.0=0 18733113 27003355

1.0x²-55.0x-56.0=0 15084565 39745522

1.0x²-56.0x-57.0=0 19356156 43831606

1.0x²-57.0x-58.0=0 14741302 26663515

1.0x²-58.0x-59.0=0 14925668 25541733

1.0x²-59.0x-60.0=0 19431424 24837721

1.0x²-6.0x-7.0=0 16188101 47326958

1.0x²6.0x-7.0=0 39150228 44588457

1.0x²-60.0x-61.0=0 15341157 46761316

1.0x²-61.0x-62.0=0 15146527 42536102

1.0x²-62.0x-63.0=0 19014033 26869929

1.0x²-63.0x-64.0=0 14944675 27767430

1.0x²-64.0x-65.0=0 14865607 28664171

211

B.5 SSPM-Sorting

As it has been worked with the lists with larger number of elements such as two million

elements, here a part of a sample lists (unsorted and sorted input) are mentioned below.

Unsorted Input: [91, 52, 74, -143, 112, -97, -120, 9, 30, 146, 136, ……..

Sorted list : [-391, -366, -343, -338, -337, -336, -334, -320, ……..

212

APPENDIX C

PUBLICATION

1. Weerakoon, C., Karunananda, A. & Dias, N. Human-mind-inspired processing

model for computing. Mind Soc (2020). https://doi.org/10.1007/s11299-020-

00236-2, Springer Verlang GmbH Germany (Scopus Indexed).

2. C Weerakoon, A Karunananda, N Dias. "Formal Verification of Conditionally

Evolving Memory." International Journal of Computer Engineering and

Information Technology 11, no. 11 (2019): 243-257, Dubai - United Arab

Emirates.

3. Weerakoon C., Karunananda A., Dias N. (2019) Six-State Continuous Processing

Model for a New Theory of Computing. In: Hemanth J., Silva T., Karunananda

A. (eds) Artificial Intelligence. SLAAI-ICAI 2018. Communications in Computer

and Information Science, vol 890. Springer, Singapore (Scopus Indexed).

Book: Artificial Intelligence

Print ISBN: 978-981-13-9128-6, Electronic ISBN: 978-981-13-9129-3

Copyright Year: 2019

DOI:https://doi.org/10.1007/978-981-13-9129-3_3

Chapter: 3

4. W.A.C. Weerakoon, A.S. Karunananda and N.G.J. Dias, (2016) New Processing

Model for Operating Systems, Proceedings of International Postgraduate

Research Conference 2016, University of Kelaniya, December, 2016, p153.

5. W.A.C. Weerakoon, A.S. Karunananda and N.G.J. Dias, (2015), Enhancing the

Functionality of Rule-Based Expert Systems, 4th Int'l Conference on Advances in

213

Engineering Sciences & Applied Mathematics (ICAESAM'2015) Kuala Lumpur

(Malaysia), Dec. 8-9, 2015, p95. (Received Best Session Paper Award)

6. W.A.C. Weerakoon, A.S. Karunananda and N.G.J. Dias, (2015), Conditionally

Evolving Memory for Computers, Proceedings of the 15th International

Conference on Advances in ICT for Emerging Regions, DOI:

10.1109/ICTER.2015.7377704, ISBN: 9781467394413, IEEE (Scopus

Indexed).

7. Weerakoon W. A. C., Karunanda A. S. and Dias N. G. J. (2013), A Tactics

Memory for a New Theory of Computing, The 8th International Conference on

Computer Science & Education (ICCSE 2013), April 26-28, 2013, Colombo, Sri

Lanka, DOI: 10.1109/ICCSE.2013.6553901, ISBN: 9781467344623, IEEE

(Scopus Indexed).

Submitted to SCOPUS indexed journal:

1. Weerakoon W. A. C., Karunanda A. S. and Dias N. G. J., On Computing

Memory as a Result of Processing

214

