"A supporting conceptual plugin for manage bugs and change requirements in agile software development"

P U K Perera 179474P

Supervisor: Mr. Charmen Wijesiriwardhana

Dissertation submitted to the Faculty of Information Technology, University of Moratuwa, Sri Lanka for the fulfillment of the requirements of Degree of Master of Science in Information Technology.

June 2020

Declaration

I declare that this thesis is my work and has not been submitted in any form for another degree or diploma at any university or other institution of tertiary education. Information derived from the published or unpublished work of others has been acknowledged in the text and a list of references is given.

Student ID - 179474P

Signature of Student:
Date:
Supervised by
Name of Supervisor: Mr. Charmen Wijesiriwardana
Signature of Supervisor:
Date:

Name of Student: Miss P U K Perera

Acknowledgments

First of all, I would like to thank my supervisor Mr. Charmen Wijesiriwardhana for his valuable contribution to this thesis through insightful discussions, guidance, and support throughout the process. And his expert advice and feedback on my thesis.

In addition to all of the other lectures that give their guidance and advice to improve the quality of this thesis.

I must acknowledge the contributions of the large supporting cast from the organizations involved in this research; the people who were interviewed, allowed access to their work artifacts, speculated about the challenges they were facing as well as share their views regarding the role of collaborative technologies. Without their support and cooperation, there would have been nothing to report. This thesis would not have been possible without the support of my parents. Your continuous encouragement, support

Finally hope this thesis has benefited from the help and support from several people who deserve my respect and acknowledgment. I am grateful to everyone who has been directly or indirectly involved in this process.

Table of Contents

Declarat	tion	i
Acknow	rledgements	. iii
Table of	f Contents	. vi
List of T	Tables	vii
List of F	Figures	. ix
Abstract	t	. 1
Chapter	1. Introduction	3
1.1	Research Background	6
1.2	Research Aims & Objectives	8
1.3	Thesis Structure	9
1.4	Chapter summery	10
Chapter	2. Background & Literature Review	11
2.1	Literature Review	11
2.2	Limitations of earlier studies	
2.3	Chapter Summary	19
Chapter	3. Research Design and Methodology	20
3.1	Research Question Selection	20
3.2	Deriving Solutions	22
3.3	Chapter summary	33
Chapter	4. Analysis and findings	34
4.1	Logical Design of the Solution	34
4.2	Logical Functionalities	28
4.3	The method of the solution logic	29
4.4	Analyzing the sample data for test the system	35
4.5	Prototype the solution	45
4.6	Chapter Summary	48

Chapter 5.	Implementation	. 49
5.1 Imp	lementation Design Architecture	49
5.2 Tecl	hnologies used for the implementation of	51
5.3 Imp	plementation of presentation layer	54
5.4 Imp	plementation of the Service/ Logical layer	54
5.5 Imp	lementation of the database layer	58
5.6 Lim	itations and the issues related to the implementation of	59
5.6 Cha	pter Summary	60
Chapter 6.	Conclusions	61
6.1 Motiva	tion Revisited	61
6.2 Resear	ch limitations	65
6.3Analysi	s of the System advantage	68
6.4 Future	work of the project	69
6.5 Chapte	r Summary	70
References:		71
Appendices		73
Appendix A	Existing UI in the current JIRA tool	76
Appendix B l	Existing UI in the current CONFLUENCE tool	78
Appendix C	Actual UI screens	92
Appendix D	Detail code on main logics	83
Appendix E S	SQL queries	112
Annendix 7 (Tass diagram for Database	115

List of Tables

Table 2 -1 : Benefits of using an RCM model	14
Table 2-2: An evaluation of the Proposed RCM_GSD framework	16
Table 2- 3: limitations of earlier studies	18
Table 4-1: Sample set of test data	43

List of Figures

Figure 2-1: Typical RCM process)
Figure 2-2 : Feature tree model	7
Figure 3-1: User-based functionality	7
Figure 3-2 : functionality Context)
Figure 3-3: Modules of the Solution)
Figure 3-4: Core Component hierarchical structure)
Figure 4-1 : Logical design of the solution	1
Figure 4-2: How to derived requirement into components	í
Figure 4-3 : Derived issue 01 for component levels	7
Figure 4-4 : Derived issue 02 for component levels	;
Figure 4-5 : Solution logic diagram	5
Figure 4-6: How to define Bug and CR	8
Figure 4-7: Prototyping development model	5
Figure 5-1: Three-layered architecture	9
Figure 5-2: Presentation tier	l
Figure 5-3: service tier	Ļ
Figure 5 -4: Data-tier	4
Figure 7 -1 :Jira Create project UI 01	6
Figure 7-2 :Jira Create project UI 02	,
Figure 7 -3 Jira Create project UI 03	,
Figure 7 -4: Jira Create project UI 04	
Figure 7- 5:Jira Create tasks, test, bugs UI	
Figure 7- 5:Jira Manage permission UI	

Figure 7- 6 : Jira Create roles	79
Figure 7 -7 :Confluence Manage permissions	79
Figure 7- 8 :Confluence Web page UI of requirement details	80
Figure 7-9 :Confluence UI for uploaded documents	80
Figure 7-10: Client login page	81
Figure 7-12 :Select interface	82
Figure 7-13: Select Component type	82
Figure 7 -14 :Select the main component	83
Figure 7 -15 :Select the subcomponent	83
Figure 7- 16: Select the mini component	83
Figure 7- 17: Add Project	64
Figure 7- 18 :Create Module	84
Figure 7 -19 :Create Interface	85
Figure 7- 20 :Select Component type	56
Figure 7 -21 :Create the Sub component	86
Figure 7-22 :Create the Mini component	86
Figure 7- 23 :Summary report UI	87
Figure 7 -24 :BA login page	88
Figure 7 -25 :Select Project	89
Figure 7- 26 :Select Module	90
Figure 7 -27 :Select Interface	90
Figure 7 -29 :Select Main Component	91
Figure 7- 38 :Add Requirement	91
Figure 7 -39 :Issue allocation	.91
Figure 7 - 40 :Issue detail view	92
Figure 7- 42 :Assign task	94

Abstract

This thesis reports a comprehensive investigation of the modern software industry, it is widely considered the concept of software as a service. In this concept, they always use the agile methodologies, and they get involved with customer representatives and valued their ideas for the final product. Even after completing their projects, the companies are agreed to do the changes according to user personas and the dependencies of the system environments by getting some agreements. At this point requirements of the system start evolving to address new business needs, usability study results, changing assumptions. As a result, the project scope may extend for quite several reasons. The modern world is changing very fast, and today fixed project requirements are a thing of the past. So this identified the challenges encountered in managing requirements change and investigates supports of the project management tools to simplify the identification of **Bugs and Change Requirements**