A CONTAINER-BASED PLATFORM FOR MULTI-
CLOUD APPLICATION ORCHESTRATION

A.M.A.S. Adikari

(179301K)

Degree of MSc in Computer Science specialising in Cloud Computing

Department of Computer Science and Engineering

University of Moratuwa
Sri Lanka

May 2020

A CONTAINER-BASED PLATFORM FOR MULTI-
CLOUD APPLICATION ORCHESTRATION

Adikari Mudiyanselage Akila Srinath Adikari

(179301K)

Thesis submitted in partial fulfillment of the requirements for the
degree Master of Science in Computer Science specialising in Cloud Computing

Department of Computer Science and Engineering

University of Moratuwa
Sri Lanka

May 2020

DECLARATION

| declare that this is my own work and this dissertation does not incorporate without
acknowledgment any material previously submitted for a Degree or Diploma in any
other University or institute of higher learning and to the best of my knowledge and
belief, it does not contain any material previously published or written by another

person except where the acknowledgment is made in the text.

Also, | hereby grant to University of Moratuwa the non-exclusive right to reproduce
and distribute my dissertation, in whole or in part in print, electronic or other medium.
| retain the right to use this content in whole or part in future works (such as articles

or books).

_— k/
Signature: ‘R/V/;é/ Date: 21/04/2020
(A.M. A.S. Adﬂ(arl)

The above candidate has carried out research for the Master's dissertation under my

supervision.

Name of the supervisor: Dr. H. M. N. Dilum Bandara

Signature of the Supervisor: = Date: 17/03/2020

ABSTRACT

Multi-cloud applications are becoming popular, as they can run across multiple public
and private cloud platforms while overcoming vendor lock-in, reducing cost, and
enhancing flexibility and reliability. Applications hosted on multiple cloud platforms
use either libraries or service-based abstraction layers. Application orchestration
platforms further simplify the deployment and management of multi-cloud
applications by providing auto-scaling, service metering, health monitoring, and a rich
set of operational tools. Containerization is particularly useful in multi-cloud
applications, as it provides a consistent environment for an application regardless of
where it is deployed. However, container orchestration platforms such as Docker
Swarm lack support and operational tools to enable seamless application orchestration

across multi-cloud resources.

In this research, we developed a container-based platform for application orchestration
in a multi-cloud setup as a set of microservices and required operational tools
addressing the above limitations. Docker was chosen to demonstrate the proof of
concept solution, as it already provides features to orchestrate microservices.
Containerized multi-cloud applications can use the proposed application orchestration
platform to achieve resource elasticity across multiple cloud platforms. To trigger scale
in and out decisions, we used a rule-based approach where we compared the container
runtime metrics provided by Docker with preconfigured threshold values. We
evaluated the utility of the proposed platform using three web applications that were
compute-intensive, memory-intensive, and utilized a RESTful application
programming interface integrated with an external cloud service. The proposed
container-based application orchestration platform improved the throughput of the
three web applications by 180%, 73%, and 46%, respectively, compared to the same
web applications deployed in a private cloud. Whereas the response time was reduced
by 36%,-232%, and 7%, respectively. Even for cases where latency is increased error

rate was reduced.

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my research supervisor Dr. Dilum
Bandara for providing supervision and resources to enhance my research idea. His
expertise in the related field was an immense support for me to initiate this research

work in this passion and identify possible technologies to complete this research.

I would also like to thank Dr. Malaka Walpola, Dr. Indika Perera and Dr. Charith
Chtraranjan for helping and encouraging us to initiate and continuing this research
until the end. Further, 1 would like to thank all my colleagues for joining together to
share knowledge, research material, technology guidance, and experience to make this
research success. Specially appreciate their encouragement till the end.

This would not have been a reality without the support and love from my parents
throughout my life. | am deeply grateful for them for being ever strong support in every
step of my life and heartful of blessings. Special thank goes to my beloved wife,
including my family for being with me and sharing time to encourage to complete this

research.

I would like to greatly thank Dr. Sankalpa Gamwarige, General Manager, Zone24x7
supporting me by providing necessary guidance to select this degree program and all
my colleagues at Zone24x7 for their continuous support to manage my work and MSc

research work.

TABLE

OF CONTENTS

D] L0 N N I8 1 TR i
AB ST RACT .. a e e e ar e e nre e i
ACKNOWLEDGMENTS ...ttt i
TABLE OF CONTENTS ...ttt iv
LIST OF FIGURES ..ottt ettt Vi
LIST OF TABLES ...t bbb viii
LIST OF ABBREVIATIONS ...ttt iX
1 INTRODUCTION ..ottt e e eaaeeaaee e 1
1.1 BACKOIOUNGocvieeiiiieesiesee et 1
1.2 IMOTIVAIION ...ttt ettt ere e teeneeaneenreas 2
1.3 Problem StateMENTccoiiiiiiiiieie e 3
1.4 ODJECHIVES...c.veeeiceie sttt et ste et e ta e e nreas 4
15 OULIINE. .ottt sttt 4
2 LITERATURE REVIEWccoiiiiiiiiee et 6
2.1 Cloud COMPULING ...ouviiiiiitiitisieieeeee ettt 6
2.1.1 Cloud Deployment MOdEIScccooiiiiiiiiiiieceee e 6
2.1.2 Virtualization Based 0N VIMS........cccooviriiriiee e 7
2.1.3 Container-based Virtualizationcccccevivevriieniienie e 9
2.2 MUII-CIOUG. ..o et 13
2.2.1 Multi-Cloud Software SOIULIONSccoovviiiniiieieiese e 14
2.2.2 Multi-Cloud Microservice ArchiteCture..........ccocvvereieiesiesenierieriennns 15
2.2.3 PaaS Solutions for Private CloudScccovierrieneneneseseseeeeieen 15
3 METHODOLOGY ..ottt sttt sre e eneens 19
3.1 SOIUtION APPIOACH ..ccviiiiie e 19
3.2 High-Level ArChiteCtUIecoiiiiieieee e, 21
3.3 Detalled DESION ...c.ceeiieieiteiie sttt 26
3.3.1 AppDock Cluster AAMINcccoeeriiiiiiiieeee e 27
3.3.2 Command Line INterface.........cooueviiiiiieiiie e 31
3.3.3 AppDock Scaling SErVICEccvcvieiiiiiiie it 33
3.3.4 AppDock Monitoring Agentccccveiieiii e 36

3.3.5 ApPPDOCK LOGDB ..ottt 38

3.3.6 AppDock HTTP Proxy Interfacecccocvvriiieiencicnineceeeeeeee 41
3.3.7 Docker HTTP Proxy Interfacecccoouvvveveiieii e 41
3.4 Cluster DeplOoyMENtccvciiiiie e 41
3.5 SUMMAIY ..ottt bbbttt e e nneeeanes 42
4 PERFORMANCE EVALUATIONocotiiieice e 44
A1 WOTKIOAU.ceiiiiiciieece e 44
4.2 EXPerimental SEIUDcooiiiiieieeiee e 47
4.3 Performance Evaluation of CPU Intensive Workloadcccccevviennnenn 49
4.3.1 Throughput ANAIYSIS........cccoviiiiiieieee e 49
4.3.2 Response Time ANAIYSIScccvveiiiiieiieie e 50
4.3.3 Resource Utilization ANalySiS........ccoceeieveiieiieiiciccee e 51
4.4 Performance Evaluation of Memory Intensive Workload 52
4.4.1 Throughput ANAIYSIS.......cccciiiiieiieiecicie e 53
442 Response Time ANAlYSIS.......ccooiiiiiiiiiirieeeeee e 54
4.4.3 Resource Utilization ANalysiS..........ccocvviiiiiiiniiiiiin e 54
4.5 Performance Evaluation of RESTful API Workload...........c..ccoevvvviviennenn 56
451 Throughput ANAIYSIS........cccoiiiiiiieieiie e 57
452 Response Time ANAlYSIS.......cccoiiiiiiiieiieeeee e 58
4.5.3 Resource Utilization Comparisonccceeveiieveeieeiieseese e 58
4.6 SUMIMAIY ..uiieeiiieeiiieesiieeesieee e stee e tee e s e e e st e e st e e ssb e e snbeeessbeeessbeeasseeanseeeanes 60
5 CONCLUSIONS ..ottt ettt 61
5.1 SUMMAIY ..oviieiiiie ittt et e e et e et e e b e e anneeeanes 61
5.2 ResSearch LIMItatioNS.........cccvooueiierieieieese e seese e see e 63
5.3 FULUIE WOTK ...t 65
RETEIENCES ...ttt e e et e e e s reenreeneeareenne e 67
APPENDIX A — Available Methods in Proxy Interfacesccccovvveiiniinicinnnn, 71
APPENDIX B — Commands in AppDOCck CLI.......ccccccveiiiiiii e 73

LIST OF FIGURES

Figure 2-1 Virtualization via containers and VIMS...........cooveieieiinenc s, 9
Figure 2-2 Docker architeCture. SOUICE:.cccooiiiiiiiiieeee s 10
Figure 3-1 Conceptual view of a service that integrates containers across multiple
ClOUT PIOVIAEIS. ...ttt 20
Figure 3-2 High-level deployment diagram of the platform deployed in private-
PUDBIIC 188S INTTASTIUCTUIE.oviiiieieieeee s 22
Figure 3-3 Detailed view of the orchestration layer............cccceoeiiiiniiiniiiiie 23
Figure 3-4 Service view of the AppDock platform..........cccccooeieiiieniiniiiicee 25
Figure 3-5 Component view of the application..............cocevveiiiiieniiecee 27
Figure 3-6 Configurations required by cloud providers..........ccccooveiiniinieiiinienen 29
Figure 3-7 File storage built using Docker volumes and NFS...............ccooiiiiine 30
Figure 3-8 Properties maintained by local storage...........cccooevveiiiieiiciicic e, 33
Figure 3-9 Properties of INodeStatAnalysisStatus object...........ccccccevvveiiiiieieenenn, 34
Figure 3-10 Properties of I1ScalingServiceConfig objectccccoovvvvevieviciiciieen, 34
Figure 3-11 Algorithm for adding and removing NOAES.cccccvevvevverieeieeseennn, 35
Figure 3-12 Properties of IRuntimeStat 0bJectcccccevveveiiciicce e, 37
Figure 3-13 Calculation for CPU utilization.ccccccveviiieiieie e, 38
Figure 3-14 Calculation for memory utilization.c.cccceeviieiiiie i, 38
Figure 3-15 Class diagram for the repository.cccccvvveveeieiiese e, 39
Figure 3-16 Configurations required when deploying an AppDock cluster............ 42
Figure 4-1 Deployment diagram for the experimental setup.ccccceevveiveieennenn. 48
Figure 4-2 Throughput comparison — CPU intensive application.c.ccccveeene. 50
Figure 4-3 Response time comparison - CPU intensive application...............c........ 50
Figure 4-4 CPU utilization under CPU intensive workload — private cloud mode.. 51
Figure 4-5 CPU utilization under CPU intensive workload — multi-cloud mode. ... 51
Figure 4-6 Memory utilization under CPU intensive workload — private cloud

1100 SR SR 52
Figure 4-7 Memory utilization under CPU intensive workload — multi-cloud mode.
.. 52
Figure 4-8 Throughput comparison — memory-intensive workload. 53
Figure 4-9 Response time comparison - memory intensive workload..................... 54
Figure 4-10 Memory utilization under memory-intensive workload — private cloud
100 SRR R TR 55
Figure 4-11 Memory utilization under memory-intensive workload — multi-cloud
100 USSP R TSP 55
Figure 4-12 CPU utilization under memory-intensive workload — private cloud
100 USSP R TSP 56
Figure 4-13 CPU utilization under memory-intensive workload — multi-cloud mode.
.. 56
Figure 4-14 Overall throughput comparison — REST APl workload. 57

Vi

Figure 4-15
Figure 4-16
Figure 4-17
Figure 4-18

Figure 4-19

Overall response time comparison - REST APl workload................... 58
CPU utilization under REST API workload - private cloud mode 58
CPU utilization under REST API workload- multi-cloud mode.......... 59
Memory utilization under REST API workload — private cloud mode.

Memory utilization under REST API workload — multi-cloud mode. . 60

vii

LIST OF TABLES

Table 2-1 Container technologies used by different PaaS vendors...........ccc.cccoueuee. 13
Table 4-1 Testing parameters for the CPU-intensive workload................cccceveenen. 45
Table 4-2 Testing parameters for the memory-intensive workload......................... 45
Table 4-3 Testing parameters for the RESTful API application...........c.ccocoevennnee. 46
Table A-1 Auvailable methods in the AppDock HTTP proxy interface 71
Table A-2 Auvailable methods in the Docker HTTP proxy interfacec.c........ 72

viii

LIST OF ABBREVIATIONS

API Application Programming Interface
ARaaS Application Runtime as a Service
AWS Amazon Web Services

CD Continuous Deployment

CLI Command Line Interface

CN Container

CPU Central Processing Unit

CRUD Create, Read, Update and Delete
DB Database

DoS Denial of Service

EC2 Elastic Compute Cloud

HW Hardware

laaS Infrastructure as a Service

IT Information Technology

LXC Linux Containers

NFS Network File System

ODM Object Document Mapper

0OS Operating System

PaaS Platform as a Service

QoS Quality of Service

REST Representational State Transfer
SaaS Software as a Service

SDK Software Development Kit

SLA Service Level Agreements

SOA Service-Oriented Architecture
SW Software

vCPU Virtual Central Processing Unit
VM Virtual Machine

