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ABSTRACT

Multi-cloud applications are becoming popular, as they can run across multiple public
and private cloud platforms while overcoming vendor lock-in, reducing cost, and
enhancing flexibility and reliability. Applications hosted on multiple cloud platforms
use either libraries or service-based abstraction layers. Application orchestration
platforms further simplify the deployment and management of multi-cloud
applications by providing auto-scaling, service metering, health monitoring, and a rich
set of operational tools. Containerization is particularly useful in multi-cloud
applications, as it provides a consistent environment for an application regardless of
where it is deployed. However, container orchestration platforms such as Docker
Swarm lack support and operational tools to enable seamless application orchestration

across multi-cloud resources.

In this research, we developed a container-based platform for application orchestration
in a multi-cloud setup as a set of microservices and required operational tools
addressing the above limitations. Docker was chosen to demonstrate the proof of
concept solution, as it already provides features to orchestrate microservices.
Containerized multi-cloud applications can use the proposed application orchestration
platform to achieve resource elasticity across multiple cloud platforms. To trigger scale
in and out decisions, we used a rule-based approach where we compared the container
runtime metrics provided by Docker with preconfigured threshold values. We
evaluated the utility of the proposed platform using three web applications that were
compute-intensive, memory-intensive, and utilized a RESTful application
programming interface integrated with an external cloud service. The proposed
container-based application orchestration platform improved the throughput of the
three web applications by 180%, 73%, and 46%, respectively, compared to the same
web applications deployed in a private cloud. Whereas the response time was reduced
by 36%,-232%, and 7%, respectively. Even for cases where latency is increased error

rate was reduced.
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