
Speech to Intent Mapping System For Low
Resourced Languages

Yohan Karunanayake

188084V

Thesis submitted in partial fulfillment of the requirements for the

Degree of Master of Science (Research) in Computer Science and Engineering

Department of Computer Science & Engineering

University of Moratuwa

Sri Lanka

January 2020



DECLARATION

I declare that this is my own work and this dissertation does not incorporate with-

out acknowledgement any material previously submitted for a Degree or Diploma

in any other University or institute of higher learning and to the best of my knowl-

edge and belief it does not contain any material previously published or written

by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to

reproduce and distribute my dissertation, in whole or in part in print, electronic

or other medium. I retain the right to use this content in whole or part in future

works (such as articles or books).

Signature: Date:

The above candidate has carried out research for the Masters thesis/dissertation

under my supervision.

Name of the Supervisor: Dr. Uthayasanker Thayasivam

Signature of the Supervisor: Date:

Name of the Supervisor: Dr. Surangika Ranathunga

Signature of the Supervisor: Date:

i



ACKNOWLEDGEMENTS

It would never be possible to finish my dissertation without the encouragement,

support, and supervision of various personalities, including my mentors, my

friends, colleagues, and my family. At the end of this thesis, I would like to

thank all those people who made this achievable and memorable experience for

me.

First and foremost, I would like to thank my supervisors Dr. Uthayasanker

Thayasivam and Dr. Surangika Ranthunga for the continuous support and guid-

ance I received in every aspect while completing this research.

I would also like to thank my progress review committee, Dr. Peshala G.

Jayasekara, and Dr. Charith Chitraranjan for their valuable insights and guid-

ance. Their advice helped me to improve the state of my research work.

This work was funded by a Senate Research Committee (SRC) Grant of the

University of Moratuwa. Further, I would like to thank LK Domain Registry for

the support given for conference participation via travel grants.

Finally, I would like to express my sincere gratitude all of my friends. Not just

academic work, I was able to enjoy my time while involving different activities

and outings. It helped me to keep my life balanced. I thank my parents who

have given me a very fortunate life and always believing, trusting and supporting

me.

ii



ABSTRACT

Today we can find many use cases for content-based speech classification. These in-

clude speech topic identification and speech command recognition. Among these, speech

command-based user interfaces are becoming popular since they allow humans to inter-

act with digital devices using natural language. Such interfaces are capable of identifying

the intent of the given query.

Automatic Speech Recognition (ASR) sits underneath all of these applications to

convert speech into textual format. However, creating an ASR system for a language

is a resource-consuming task. Even though there are more than 6000 languages in

the world, all of these speech-related applications are limited to the most well-known

languages such as English, because of the high data requirement of ASR. There is some

past research that looked into classifying speech while addressing the data scarcity.

However, all of these methods have their limitations.

This study presents a direct speech intent identification method for low-resource

languages with the use of a transfer learning mechanism. It makes use of three differ-

ent audio-based feature generation techniques that can represent semantic information

presented in the speech. They are unsupervised acoustic unit features, character and

phoneme features. The proposed method is evaluated using Sinhala and Tamil lan-

guage datasets in the banking domain. Among these, phoneme based features that can

be extracted from Automatic Speech Recognizers (ASRs) yield the best results in intent

identification. The experiment results show that this method can have more than 80%

accuracy for a 0.5-hour limited speech dataset in both languages.

Keywords: Speech Intent Identification, Spoken Language Understanding, Low-Resource

Languages.

iii



LIST OF FIGURES

Figure 1.1 Commonly used processing pipeline for speech intent identification 2

Figure 2.1 MFCC feature extraction process 6

Figure 2.2 Components and processing stages of a HMM-based ASR system 8

Figure 2.3 A 3 Layer Neural Network 9

Figure 2.4 Recurrent layer architecture and it’s unfolded steps 11

Figure 2.5 LSTM neuron and its internal operations 12

Figure 2.6 CNN with 2 convolutional and pooling layers 13

Figure 2.7 1D vs 2D CNN operation 13

Figure 3.1 DeepSpeech Model Architecture; Source: [1] 16

Figure 3.2 DeepSpeech 2 Model Architecture; Source: [2] 17

Figure 3.3 Architecture of DNN based multilingual speech recognizer; Source: [3] 19

Figure 3.4 Feature based Speech Intent Identification Approach 21

Figure 4.1 Methodology Steps 23

Figure 4.2 Visualization of Character Feature 25

Figure 4.3 Character Feature Extraction 26

Figure 4.4 Architecture of the phoneme based ASR; Source: [4] 27

Figure 4.5 Phoneme Feature Extraction 27

Figure 4.6 Visualization of Phoneme Feature 28

Figure 4.7 End-to-end system arrangement with CNN base classifiers 31

Figure 6.1 Overall accuracy change with the samples size 39

iv



LIST OF TABLES

Table 3.1 Existing end-to-end ASR models 15

Table 5.1 Details of the datasets 33

Table 5.2 Selected Inflections 34

Table 6.1 Summary of results 37

Table 6.2 Most probable characters and phonemes for Sinhala utterances 40

Table 6.3 Most probable characters and phonemes for Tamil utterances 41

v



LIST OF ABBREVIATIONS

AM Acoustic Model

AMDTK Acoustic Model Discovery Toolkit

ANN Artificial Neural Network

ASR Automatic Speech Recognition/Recognizer

CNN Convolutional Neural Networks

CTC Connectionist Temporal Classification

DBN Dynamic Bayesian Network

DNN Deep Neural Network

FNN Feed-forward Neural Networks

GMM Gaussian Mixture Models

GPU Graphics Processing Unit

HLT Human Language Technologies

HMM Hidden Markov Model

LM Language Model

LSTM Long Short Term Memory

LVCSR Large Vocabulary Continuous Speech Recognition/Recognizer

MFCC Mel Frequency Cepstral Coefficients

NLU Natural Language Understanding

RNN Recurrent Neural Network

SVM Support Vector Machine

WER Word Error Rate

vi



TABLE OF CONTENTS

Declaration of the Candidate & Supervisor i

Acknowledgement ii

Abstract iii

List of Figures iv

List of Tables v

List of Abbreviations vi

Table of Contents vii

1 Introduction 1

1.1 Speech Intent Identification 1

1.2 Research Problem 3

1.3 Research Objectives 3

1.4 Contributions 3

1.5 Publications 4

1.6 Datasets 4

2 Background 5

2.1 Speech Feature Extraction 5

2.2 Automatic Speech Recognition 6

2.3 Artificial Neural Network In ASR 8

2.4 Different ANN Layers used in ASRs 10

3 Literature Survey 14

3.1 Automatic Speech Recognition 14

3.2 Low-Resource Automatic Speech Recognition 17

3.3 Speech Intent Identification Systems 18

3.4 Low-Resource Speech Intent Identification 20

3.4.1 ASR Based 20

3.4.2 Feature Based 21

3.5 Summary 22

vii



4 Methodology 23

4.1 Feature Generation for Intent Identification 23

4.1.1 Deep Neural Network Based ASR Feature Extraction 24

4.1.2 Unsupervised Feature Extraction 27

4.2 Feature Classification for Intent Identification 29

5 Experimental Setup 32

5.1 Datasets 32

5.2 Experimental Setup 33

6 Results and Discussion 37

6.1 Results 37

6.2 Discussion 39

7 Conclusion 43

8 Future Work 45

References 46

viii



Chapter 1

INTRODUCTION

This thesis presents a methodology for automatic speech to intent mapping for

low resource languages.

1.1 Speech Intent Identification

User interfaces that can understand spoken language such as smart speakers are

becoming popular. This type of interfaces respond to the user’s natural language

and makes it simpler to interact. Amazon Alexa1 and Google Home2 are few such

commercial devices that provide virtual assistants in homes. These devices can

understand the intent of a given free-form speech command or commands. This

is enabled via speech to intent mapping.

Here, speech to intent mapping involves associating the free-form speech com-

mands with one or more predefined commands from a set of predefined com-

mands [5]. Hence, users can express their need in natural language.

For better understanding, consider the following commands that we can ex-

press into a smart speaker in order to play music.

1. Play the “Blank Space” song.

2. Turn on the music player.

3. Put on the “Blank Space” song.

4. I would like to hear some music.

All these commands intend to play some music on the speaker. We can ex-

press this in different ways, and the speech intent identification system must be

capable of figuring out the user’s intent. In the first and third examples, “Blank
1https://developer.amazon.com/alexa
2https://en.wikipedia.org/wiki/Google_Home

1



Space” is a song name user has specified to play. Such entities present in free-form

commands are called “slots”, where the recognition system can incorporate while

executing given commands.

Figure 1.1 illustrates the processing pipeline of a speech intent identification [6]

system. First, it extracts speech features such as Mel Frequency Cepstral Coeffi-

cients (MFCC) from raw audio data. Then these features are fed into a sequence

to sequence learner such as Hidden Markov Models (HMMs), Dynamic Bayesian

Networks (DBNs) or Deep Neural Networks (DNNs) to convert speech feature

sequence into a textual sequence [7]. Out of these, DNN based solutions pro-

vide human-level performance in recent works [1, 2]. These systems are called

Automatic Speech Recognition (ASR) systems. Finally, this generated text is

processed with Natural Language Understanding (NLU) techniques to identify

intentions in the spoken content [8].

Raw Speech
Waveform

Feature
Extraction

Automatic Speech
Recognition

Natural Language
Understanding

Speech
Features Text Intent 

and 
Slots

Figure 1.1: Commonly used processing pipeline for speech intent identification

Since this is a cascaded system, an error from a subsystem can propagate

and affect the final result. Hence, to enable correct speech understanding, ASR

subsystem must work with a very high level of accuracy [6]. Therefore ASR is

one of the critical and essential components in this setup. Modern DNN based

ASRs require large amount of transcribed and annotated speech data (more than

1000 hours) [1, 2] to provide high accuracy. Hence developing an impactful speech

intent identification system for a low resource language is a challenging task. Here,

“low-resourced languages” refers to the languages that have a limited presence

on the internet and that lack electronic resources for speech and/or language

processing [7].
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1.2 Research Problem

Developing an impactful voice intent identification system for a low resourced

language is a challenging task because of limited annotated speech data.

One obvious solution is to collect more speech data. However, creating an

annotated speech corpus is a time and resource consuming task. Thus researchers

have experimented with alternative solutions .

One method is developing a multilingual speech recognizer, which is trained on

multiple languages and is capable of recognizing all of these languages. Usually

this type of recognizer contains a shared model across all languages. Hence it

reduces the amount of data need in each language [7]. Another such approach is

to adapt ASR trained on a similar or different language to a new language using

existing limited data [7].

However, none of these methods has achieved an acceptable accuracy when

converting speech into text. As explained in section 1.1, higher accuracy of ASR

is crucial for the pipeline of speech intent identification. Thus developing a speech

intent identification system for low resource language is a difficult task.

1.3 Research Objectives

The objectives of this research are to

∙ Find and implement an effective and efficient approach to speech to intent

mapping

∙ Explore the possibility of using high resource language data in the context

of speech to intent mapping for low resource languages

1.4 Contributions

∙ Created a new intent annotated speech corpus for Tamil language in the

banking domain
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∙ Developed a novel methodology for direct speech intent identification with

ASR character probability values

∙ Developed a novel methodology for direct speech intent identification with

ASR phoneme probability values

1.5 Publications

∙ "Transfer Learning Based Free-Form Speech Command Classification for

Low-Resource Languages" in Proceedings of the 57th Conference of the

Association for Computational Linguistics: Student Research Workshop

(ACL SRW) 2019 Jul (pp. 288-294).

∙ Sinhala and Tamil Speech Intent Identification From English Phoneme

Based ASR in 2019 International Conference on Asian Language Processing

(IALP) 2019 Nov.

1.6 Datasets

Section 5.1 provides a detailed explanation of the datasets. Further, we made

the datasets accessible over the internet for the experimentation on low-resource

speech3.

3http://rtuthaya.lk/sinhala-tamil-speech-intent-dataset
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Chapter 2

BACKGROUND

This chapter provides background theories and required details on implement-

ing speech intent identification systems. Section 2.1 presents the information

about speech feature extraction which is an important step in speech recogni-

tion. Following this, the next section provides details about ASRs. Section 2.3

presents theories and background information about Artificial Neural Network

(ANN) based ASR technology.

2.1 Speech Feature Extraction

Feature extraction from speech signals is an important factor in the ASR pipeline.

Speech or sound is produced by a continuous change of air pressure that emerges

from a speaker’s mouth, nose, and cheeks. Air pressure varies with time. Hence

it can be called as a function of time. Microphones convert such fluctuating

air presser waves into an electrical wave, fluctuation voltages or currents with

time, in which speech processing dealt with as speech signal. For the storage

and transmission purposes, this continuous signal will be converted into digital

format via analog-to-digital converters.

It is difficult to directly use time-domain speech signal for speech recognition

or related task. Hence speech signal is converted into an information-rich repre-

sentation. This is known as speech feature extraction. The following are some of

the commonly used hand-crafted features extraction methods for speech.

∙ Linear Predictive Cepstral Coefficients (LPCCs)

∙ Perceptual Linear Predictive (PLP) analysis

∙ Mel-Frequency Cepstral Coefficients (MFCCs)

∙ Mel-frequency Filter banks (FBanks)

5



Among these, MFCC is the most commonly used and effective feature for ASR.

The figure 2.1 presents steps of the MFCC feature extraction process. The first

step in MFCC feature extraction is Pre-emphasis. Here, filters are used to increase

the energy in higher frequencies. In windowing process signal is brake into parts

using a sliding window. Usually 25ms window size is used with 10ms sliding. Next

using this windows, the time domain signal is converted into frequency domain

via Discrete Fourier Transform (DFT). Then Mel Filter banks are applied to

convert the signals into human perceiving scale. This is known as Mel Scale and

it measure the pitches as perceived by humans with equal distances. Usually

this has a log scale and in the next process log scale is applied. Finally cepstral

coefficients are extracted by applying Inverse Discrete Fourier Transform (IDFT).

Pre-
emphasis

Raw
Speech

Waveform
Windowing DFT Mel Filter-

bank Log IDFT MFCC
Coefficients

DFT  - Discrete Fourier Transform
IDFT - Inverse Discrete Fourier TransformFigure 2.1: MFCC feature extraction process

Most of neural network based ASR models also use MFCC features as input.

However, in recent studies, there were few attempts to do ASR from the raw

speech wave. In the work of Ravanelli et al. [9], researchers demonstrate this and

Lugosch et al. [4] use this to develop an end-to-end ASR system.

2.2 Automatic Speech Recognition

Automatic speech recognition or in short ASR involves predicting the most prob-

able character (symbols of the target language) or word sequence for a given

acoustic feature sequence. This can be modeled as follows.

𝑊̂ = argmax
𝑊

𝑃 (𝑊/𝑋) (2.1)

Here 𝑊̂ represents the most probable character/word sequence. 𝑊 and 𝑋

represent the possible set of character/word and acoustic features. 𝑃 (𝑊/𝑋) is
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the probability of a character/word sequence for a given acoustic feature sequence.

It is impractical to calculate 𝑃 (𝑊/𝑋) straight away, hence by applying Bayes’

rule Equation 2.1 can be rewritten as follows.

𝑃 (𝑊/𝑋) =
𝑃 (𝑋/𝑊 )𝑃 (𝑊 )

𝑃 (𝑋)
(2.2)

By combining Equation 2.1 and Equation 2.2 following result can be obtained.

𝑃 (𝑋) is ignored since concern is about maximum value.

𝑊̂ = argmax
𝑊

𝑃 (𝑋/𝑊 )𝑃 (𝑊 ) (2.3)

Now, it is possible to calculate variables on the right side using a sample

dataset. 𝑃 (𝑊 ) is referred to as the language model (LM). LM can be created

using a sample text corpus and it outputs the probability for a given sequence of

words. 𝑃 (𝑋/𝑊 ) gives the probability of the sequence of speech features given the

word sequence. This is referred to as an acoustic model (AM). Traditionally, ASR

is enabled by Hidden Markov Models (HMM). In HMM models, the most probable

word or character sequence is calculated through Viterbi decoding. Decoding is

done using a weighted finite-state search graph. It uses the scores obtained from

the AM, LM and a pronunciation lexicon. Figure 2.2 depicts the components

and process of HMM-based speech recognition. However today these HMM-based

ASR systems have been replaced by Artificial Neural Networks.

Word Error Rate - WER is the metric used to measure the accuracy of an ASR.

WER is calculated from the Levenshtein distance at the word level. Following

equation shows the calculation.

𝑊𝐸𝑅 =
𝑆 +𝐷 + 𝐼

𝑁
=

𝑆 +𝐷 + 𝐼

𝑆 +𝐷 + 𝐶
(2.4)

where,
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Training
Speech Data

Speech Signal

Acoustic Model
Segmentation and

Training

MFCC Feature
Extraction

Speech
Decoding

Training 
Text Data

Statistical
Language

Model

Normalization and
Analysis

Lexical Model
(Pronunciation

Vocabulary)

Acoustic
Features Text

Figure 2.2: Components and processing stages of a HMM-based ASR system

S - number of substitutions

D - number of deletions

I - number of insertions

C - number of correct words

N - number of words in the reference

2.3 Artificial Neural Network In ASR

Artificial Neural Networks (ANN) are a set of algorithms that are inspired by

biological neural networks in the animal brains. These algorithms can learn to

perform a given task by considering examples. Hence ANN is an essential concept

in the current Machine Learning paradigm. An artificial neuron is the fundamen-

tal element of ANN. Artificial neurons model the behavior of a biological neuron

as a mathematical function.

ANNs are created by stacking multiple sets of neuron layers. Figure 2.3 illus-

trates a 3 layer fully connected neural network. Here, neurons are donated by the

circles and, connecting lines represent the interconnections in between neurons.

Every ANN has an input layer and an output layer which takes the input values

and output the final results of the neural network. Intermediate layers are called

8



hidden layers and the network in the figure contains only a single hidden layer.

Input Layer Hidden Layer Output Layer

Figure 2.3: A 3 Layer Neural Network

ANNs with more than 3 layers is referred to as Deep Neural Networks (DNNs).

Further, there are different types of neurons which have distinctive features. Of-

ten these are used as layers where single layer contains same type of neurons.

Combining different types of neuron layers results different ANN/DNN architec-

tures which has distinctive performances in different input data types.

In training, output of the ANN is extracted by passing input data through

the network. Then error value is calculated between the ANN output and the

actual output. The function used to calculate error can vary based on the appli-

cation. Finally, an optimization algorithm is used to adjust the model parameters

according to the error values.

When designing an ANN, it in necessary to define a set of parameters. This

contains type of layer, number of neurons in each layer, number of layers, ac-

tivation functions likewise. These are known as hyper-parameters and need to

be selected in careful consideration. These parameters depend on various factors

such as types of training data (images, set of numbers or time series), size of the

data and more.

With the emergence of deep learning, researchers replaced heavily engineered

ASR pipeline with DNN/ANN models. Since DNN had good discriminative

power, in early days DNN models were used to recognize phones but leave the de-

coding part for HMM. These are known as hybrid ASR systems. Later all neural

9



end-to-end models were introduced and produced state-of-the-art results in speech

recognition tasks [10]. DeepSpeech [1], DeepSpeech 2 [2] and Wav2Letter [11]

some of the remarkable end-to-end speech recognition models proposed in resent

studies. This end-to-end all neural models can have different combination of ANN

layer types such as Feed-forward, Convolutional, Recurrent layers.

2.4 Different ANN Layers used in ASRs

As described in above, there are different types of ANN layers used in ASR. Fol-

lowing subsections will present different ANN layer types and their functionality,

that are discussed in this study.

Dense Layers

The dense or fully-connected layer has connections from every neuron in previous

layer to each neuron in the current layer. Each connection is regularized by a

separate weight value which is adjusted in the training process. Equation 2.5

represent the dense layer operation. 𝑥, 𝑦,𝑊, 𝑏, 𝑓 are respectively input vector,

output vector, weight matrix, bias and activation function. Activation function

and the number of node in a layer are the important hyper-parameters in the

dense layer. ANN consist of dense layers usually known as Feed-forward Neural

Networks.

𝑦 = 𝑓(𝑊.𝑥+ 𝑏) (2.5)

Recurrent Layers

In a recurrent layer or a Recurrent Neural Network (RNN), information flows

not only in a feed-forward manner but also in a temporal sequence. Neuron in

an RNN uses its previous output as input for its current calculation which is

known as a recurrent connection. Hence, RNN is capable of modeling temporal

sequences. Equations 2.6 to 2.9 represent the mathematical operations in a RNN.

10



Figure 2.4 illustrate this information in a diagram. Here, the left diagram shows

time unfolded operations.

𝑎(𝑡) = 𝑉 ℎ(𝑡−1) + 𝑈𝑥+ 𝑏 (2.6)

ℎ(𝑡) = tanh (𝑎(𝑡)) (2.7)

𝑜(𝑡) = 𝑊ℎ(𝑡) + 𝑐 (2.8)

𝑦(𝑡) = softmax(𝑜(𝑡)) (2.9)

Figure 2.4: Recurrent layer architecture and it’s unfolded steps

Source: https://en.wikipedia.org/wiki/Recurrent_neural_network

In practice, there are variants of RNNs. Some of them are as follows.

LSTM : Long Short Term Memory networks or LSTMs are introduced to

overcome the issues of long-term dependency modeling in RNN and has been

successful in many applications such as machine translation, text generation, im-

age captioning and may more [12]. Further LSTMs are largely used in speech

recognition models. Figure 2.5 represents an LSTM neuron and its internal op-

erations.

Bi-RNN or Bi-LSTM : All the above discussed recurrent network captures

information only from the past and the present. Often some applications depend

on the whole input sequence. As an example, in speech recognition, the cor-

rect construction of the current phoneme depends on the next set of phonemes.

Bidirectional RNN can address these issues. Bi-RNN combines two RNNs, one

captures information of the forward flow and, another for the backward flow.

11



Figure 2.5: LSTM neuron and its internal operations

Source: https://en.wikipedia.org/wiki/Long_short-term_memory

Convolutional an Pooling Layers

Convolutions layer is designed to operate on 2D structures like images or speech

signals. This layer performs a convolutional operation on this 2D data using

another smaller 2D data matrix which is known as filter or kernel by sliding in

both dimensions. The result of this convolution operation is known as a feature

map. For a given layer user need to define the number of kernels, size of the kernel

and stride or sliding window size. Further, convolutional layers are often used

with subsampling layers which are known as pooling layers. Each feature map

is then subsampled typically with mean or max-pooling over contiguous regions

by sliding. Hyper-parameters for the pooling layers are the size of the pooling

region and the sliding length. Generally ANN with convolutional and pooling

layers are called Convolutional Neural Networks (CNNs) Figure 2.6 illustrates an

information flow of a CNN with two convolutional and pooling layers.

In CNN, there are two variants based on the convolution filter movements

which is known as 1D CNN and 2D CNN. In 1D CNN, convolution filters move

along only on 1 dimension while in 2D filters move along the two dimensions.

Figure 2.7 depicts the operations of these two variants. Usually, 1D CNN is

mostly used to process 1D sequence data like signals and 2D CNN is used to

process data which can vary with both directions such as 2D images.

12



Figure 2.6: CNN with 2 convolutional and pooling layers

Source: https://becominghuman.ai/how-should-i-start-with-cnn-c62a3a89493b

2D
Data

Filter

1D CNN 2D CNN

Figure 2.7: 1D vs 2D CNN operation
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Chapter 3

LITERATURE SURVEY

This chapter present literature related to speech intent identification and critical

analysis of it with respect to low-resource languages. The first section is dedicated

to give brief overview about speech recognition because of the relevance. The

second section will introduce work related to speech intent identification and

the next section will discuss existing approaches for low-resource speech intent

identification.

3.1 Automatic Speech Recognition

Automatic Speech Recognition (ASR) is aimed to convert human speech into a

textual representation and it has been an intense research field for a long time.

ASR is the core technology for various fields including command and control,

transcription of recorded speech, conversational agents and, many more. The ap-

pearance of different elements makes the ASR system further complex. However,

a robust ASR system must be capable of handling different kinds of variabilities

which present in the input speech. Background noises, diverse speakers, speaking

style are the factors that can affect the performance of the ASR system.

Many impotent concepts like Hidden Markov Models (HMMs), Gaussian Mix-

ture Models (GMMs), Mel-Frequency Cepstral Coefficients (MFCCs) features,

discriminative training, and speaker adaptation methods have been developed

with the time. Among these, HMM was a prime technology for building ASRs

in the past. CMU SPHINX [13] and Kaldi [14] are some of the ASR toolkits

still in the use which are based on HMMs. Even though training an HMM-based

ASR system for a new language is straightforward, it requires expert knowledge

in various arias like signal processing, statistics models, the phonology of target

language [7].

The interest became high for the ASR and related technologies in the past

14



few years. This was due to the improved demand for speech-related applications

and the advancement of deep learning methods. The availability of large speech

datasets like Librispeech [15], Mozilla Common Voice1 that contain 1000+ hours

of speech data makes it easy to conduct further research. The availability of GPU

computing expedites the development of ASR on these large datasets.

DeepSpeech [1], Wav2Letter [11] are recently developed Deep Neural Network

(DNN) based model which have achieved human-level recognition accuracy. Fur-

ther, these models are called Large Vocabulary Continuous Speech Recognizer

(LVCSR) since it can recognize almost all the utterances in a trained language.

This is enabled by a scoring algorithm that uses both ASR output and an LM.

LMs are trained on text corpus to predict the likelihood of a given character

sequence. When LM is trained on large text corpus it can correct minor errors

done by the ASR model and expand the possible recognizable vocabulary in the

combined system. Unlike HMM models these DNN based ASR systems can be

trained on a new language as long as having enough data and computation power.

Table 3.1 present some of the recently introduced end-to-end ASR models and

their performances in different datasets. Following two subsection introduce two

of these ASR models which is used in this study.

Model Trained Language Dataset WER
Wav2Letter [11] English LibriSpeech 7.2%
Listen, Attend English Google Voice Clean:10.3%
and Spell [16] Search Task Noisy: 12.0%
DeepSpeech [1] English Switchboard Hub5’00 16.0%

DeepSpeech2 [2] English Eng:5.15%
Mandarin Chinese Man:7.93%

Table 3.1: Existing end-to-end ASR models

DeepSpeech Model

DeepSpeech (DS) [1] was introduced as all neural end-to-end speech recognition

model to replace the traditional speech processing systems which needed carefully

engineered processing pipelines. Further, DS had good performance with noisy
1https://voice.mozilla.org
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speech recognition. As above described, the availability of multiple GPUs and

large datasets made it possible to train this type of large RNN.

Let an utterance 𝑥 and corresponding transcript 𝑦 which is taken from a

training set 𝑋 = (𝑥(1), 𝑦(1)), (𝑥(2), 𝑦(1)), .... Here, each 𝑥(𝑖) is a sequence of audio

feature vectors with the length of time 𝑇 (𝑖). The goal of the ANN model is to

transform the given input sequence 𝑥 into a sequence of character probabilities of

the transcription 𝑦, with 𝑦𝑡 = P(𝑐𝑡|𝑥) where 𝑐𝑡 represents the possible character

set including other special characters - (to represent spaces, silents) in the training

language.

DS has a simpler neural network architecture and consists of 5 layers. The

first 3 layers are simple feed-forward/dense layers. Then, there is the bidirectional

recurrent layer which tries to capture the temporal features of the speech both in

the forward and backward direction. The final layer is another feed-forward/dense

layer which output probability values. Beam search is applied to these probability

values while incorporating LM to produce final text output. Figure 3.1 illustrate

the ANN layer arrangement of the DS model.

h(f), and a set with backward recurrence h(b):

h
(f)
t = g(W (4)h

(3)
t +W (f)

r h
(f)
t−1 + b(4))

h
(b)
t = g(W (4)h
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t +W (b)
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(b)
t+1 + b(4))

Note that h(f) must be computed sequentially from t = 1 to t = T (i) for the i’th utterance, while
the units h(b) must be computed sequentially in reverse from t = T (i) to t = 1.

The fifth (non-recurrent) layer takes both the forward and backward units as inputs h
(5)
t =

g(W (5)h
(4)
t + b(5)) where h(4)t = h

(f)
t + h

(b)
t . The output layer is a standard softmax function

that yields the predicted character probabilities for each time slice t and character k in the alphabet:

h
(6)
t,k = ŷt,k ≡ P(ct = k|x) = exp(W

(6)
k h

(5)
t + b

(6)
k )

∑
j exp(W
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t + b
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j )

.

Here W (6)
k and b(6)k denote the k’th column of the weight matrix and k’th bias, respectively.

Once we have computed a prediction for P(ct|x), we compute the CTC loss [13] L(ŷ, y) to measure
the error in prediction. During training, we can evaluate the gradient ∇ŷL(ŷ, y) with respect to
the network outputs given the ground-truth character sequence y. From this point, computing the
gradient with respect to all of the model parameters may be done via back-propagation through the
rest of the network. We use Nesterov’s Accelerated gradient method for training [41].3

Figure 1: Structure of our RNN model and notation.

The complete RNN model is illustrated in Figure 1. Note that its structure is considerably simpler
than related models from the literature [14]—we have limited ourselves to a single recurrent layer
(which is the hardest to parallelize) and we do not use Long-Short-Term-Memory (LSTM) circuits.
One disadvantage of LSTM cells is that they require computing and storing multiple gating neu-
ron responses at each step. Since the forward and backward recurrences are sequential, this small
additional cost can become a computational bottleneck. By using a homogeneous model we have
made the computation of the recurrent activations as efficient as possible: computing the ReLu out-
puts involves only a few highly optimized BLAS operations on the GPU and a single point-wise
nonlinearity.

3We use momentum of 0.99 and anneal the learning rate by a constant factor, chosen to yield the fastest
convergence, after each epoch through the data.

3

Figure 3.1: DeepSpeech Model Architecture; Source: [1]

To train the DS the requirement is a large speech corpus and computing

power. Here, DS model does not require exact alignment of the speech tran-

scripts. For that, the model uses Connectionist Temporal Classification (CTC)
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loss function [17] to calculate the error in the training phase.

DeepSpeech2 Model

DeepSpeech2 (DS2) was introduced as an improved version of the previous DS

model. It is designed to handle a wide variety of speech including noisy envi-

ronments, accents, and different languages. To facilitate this DS2 has a different

layer arrangement. Figure 3.2 illustrates the architecture of the DS2 model. Fur-

ther this model also outputs character probability values for a given audio feature

sequence as in DS.Deep Speech 2 : End-to-End Speech Recognition in English and Mandarin

2. Related Work
This work is inspired by previous work in both deep learn-
ing and speech recognition. Feed-forward neural net-
work acoustic models were explored more than 20 years
ago (Bourlard & Morgan, 1993; Renals et al., 1994). Re-
current neural networks and networks with convolution
were also used in speech recognition around the same
time (Robinson et al., 1996; Waibel et al., 1989). More
recently DNNs have become a fixture in the ASR pipeline
with almost all state of the art speech work containing some
form of deep neural network (Mohamed et al., 2011; Hin-
ton et al., 2012; Dahl et al., 2011; N. Jaitly & Vanhoucke,
2012; Seide et al., 2011). Convolutional networks have also
been found beneficial for acoustic models (Abdel-Hamid
et al., 2012; Sainath et al., 2013). Recurrent neural net-
works are beginning to be deployed in state-of-the art rec-
ognizers (Graves et al., 2013; H. Sak et al., 2014) and
work well with convolutional layers for the feature extrac-
tion (Sainath et al., 2015).

End-to-end speech recognition is an active area of re-
search, showing compelling results when used to re-
score the outputs of a DNN-HMM (Graves & Jaitly,
2014a) and standalone (Hannun et al., 2014a). The RNN
encoder-decoder with attention performs well in predict-
ing phonemes (Chorowski et al., 2015) or graphemes (Bah-
danau et al., 2015; Chan et al., 2015). The CTC loss
function (Graves et al., 2006) coupled with an RNN to
model temporal information also performs well in end-
to-end speech recognition with character outputs (Graves
& Jaitly, 2014a; Hannun et al., 2014b;a; Maas et al.,
2015). The CTC-RNN model also works well in predicting
phonemes (Miao et al., 2015; Sak et al., 2015), though a
lexicon is still needed in this case.

Exploiting scale in deep learning has been central to the
success of the field thus far (Krizhevsky et al., 2012; Le
et al., 2012). Training on a single GPU resulted in substan-
tial performance gains (Raina et al., 2009), which were sub-
sequently scaled linearly to two (Krizhevsky et al., 2012)
or more GPUs (Coates et al., 2013). We take advantage of
work in increasing individual GPU efficiency for low-level
deep learning primitives (Chetlur et al.). We built on the
past work in using model-parallelism (Coates et al., 2013),
data-parallelism (Dean et al., 2012) or a combination of the
two (Szegedy et al., 2014; Hannun et al., 2014a) to create a
fast and highly scalable system for training deep RNNs in
speech recognition.

Data has also been central to the success of end-to-end
speech recognition, with over 7000 hours of labeled speech
used in (Hannun et al., 2014a). Data augmentation has
been highly effective in improving the performance of deep
learning in computer vision (LeCun et al., 2004; Sapp et al.,
2008; Coates et al., 2011) and speech recognition (Gales

CTC
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Figure 1: Architecture of the deep RNN used in both En-
glish and Mandarin speech.

et al., 2009; Hannun et al., 2014a). Existing speech systems
can also be used to bootstrap new data collection. For ex-
ample, an existing speech engine can be used to align and
filter thousands of hours of audiobooks (Panayotov et al.,
2015). We draw inspiration from these past approaches in
bootstrapping larger datasets and data augmentation to in-
crease the effective amount of labeled data for our system.

3. Model Architecture
Figure 1 shows the wireframe of our architecture, and lays
out the swappable components which we explore in de-
tail in this paper. Our system (similar at its core to the
one in (Hannun et al., 2014a)), is a recurrent neural net-
work (RNN) with one or more convolutional input layers,
followed by multiple recurrent (uni or bidirectional) lay-
ers and one fully connected layer before a softmax layer.
The network is trained end-to-end using the CTC loss func-
tion (Graves et al., 2006), which allows us to directly pre-
dict the sequences of characters from input audio. 2

The inputs to the network are a sequence of log-
spectrograms of power normalized audio clips, calculated
on 20ms windows. The outputs are the alphabet of each
language. At each output time-step t, the RNN makes a
prediction, p(`t|x), where `t is either a character in the
alphabet or the blank symbol. In English we have `t ∈
{a, b, c, . . . , z, space, apostrophe, blank}, where we have
added the space symbol to denote word boundaries. For
the Mandarin system the network outputs simplified Chi-

2Most of our experiments use bidirectional recurrent lay-
ers with clipped rectified-linear units (ReLU) σ(x) =
min{max{x, 0}, 20} as the activation function.

Figure 3.2: DeepSpeech 2 Model Architecture; Source: [2]

3.2 Low-Resource Automatic Speech Recognition

While ASR technology growing, one major issue was the need for annotated

speech corpus. In the past audio clips need to have the exact alignment of the

phonemes or characters for training. Creating a speech transcript with this infor-

mation requires highly skilled people and this is a time-consuming task. However,

with the introduction of the Connectionist Temporal Classification (CTC) [17]

need of exact alignment of the transcript was eliminated. But this increased the

amount of training data [18, 1, 2]. Because of these reasons, researchers have
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given some focus to the low-resource ASR development.

Even it is difficult to obtain transcribed speech data, speech recordings can

be obtained by news broadcasts, recording of the speech or conference talks,

television programs and many more. When there is such untranscribed data,

unsupervised or lightly-supervised approaches have been used to develop ASR

systems [19, 20, 21]. In a situation where some previous knowledge or data

of the targeted language is accessible, such as audio recordings, pronunciation

dictionaries and LMs, the unsupervised methods are very beneficial to preserve

time and costs by developing an ASR system for a new language [21].

However, with the shift from the HMM-based model to DNN based model,

researchers have improved the accuracy of low-resource languages. They have

used data of high resource languages to achieve this [7, 22]. In this method first,

they train an ASR model using high resource language data. Then this trained

model is retrained on another language. This reduces the amount of needed data

to achieve higher accuracy since the initial model is trained on a similar task.

However, this method still requires at least 300 hours of speech data to get a

reasonable accuracy value [22].

Moreover, researchers have proposed multilingual speech recognizers to over-

come the limited data issue [3, 23]. Figure 3.3 demonstrate an architecture of

such DNN based multilingual ASR model. In these models, part of the model

is shared across all languages as in figure 3.3. In training, this shared part is

trained to generate language-independent feature representation. since there are

multiple language datasets, amount of data need from each language is low.

3.3 Speech Intent Identification Systems

Speech intent identification systems became popular with the rice of speech-

enabled user interfaces and conversational agents. These technologies enable

natural language based human-machine interactions. Snips Voice Platform [24],

Google Home, Amazon Alexa are such commercial level systems which provide

control over speech commands.
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softmax layers, however, are not shared. Instead, each language 

has its own softmax layer to estimate the posterior probabilities of 

the senones (tied triphone states) specific to that language. 
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... ... ... ...
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Many Hidden Layers

Figure 1: Architecture of the shared-hidden-layer multilingual 

DNN 

 

As usual, the input layer covers a long contextual window of 

the acoustic feature (e.g., MFCC or log filter bank) frames. Since 

the shared hidden layers are to be used by many languages, 

language specific transformations such as HLDA cannot be applied. 

This requirement will not limit the performance of the CD-DNN-

HMM, though, because any linear transformation can be subsumed 

by the DNN as indicated in [4]. 

The key to the successful learning of the SHL-MDNN is to 

train the model for all the languages simultaneously. When batch 

training algorithms, such as L-BFGS or the Hessian free algorithm 

[8], are used, this is trivial since all the data will be used in each 

update of the model. However, if mini-batch training algorithms, 

such as the mini-batch stochastic gradient ascent (SGA), are used, 

it means each mini-batch should be drawn from all the training 

data available. This can be efficiently accomplished by 

randomizing the training utterance list across the languages before 

feeding it into our DNN training tool. 

The SHL-MDNN can be pretrained in either supervised or 

unsupervised way. In this study we have adopted the unsupervised 

pre-training procedure used in our previous study [1]. This is 

because the unsupervised pretraining does not involve the 

language-specific softmax layer and so can be carried out easily 

without any modification of our existing tool. 

The fine-tuning of the SHL-MDNN can be carried out using 

the conventional backpropagation (BP) algorithm. However, since 

a different softmax layer is used for each different language, the 

algorithm needs to be adjusted slightly. When a training sample is 

presented to the SHL-MDNN trainer, only the shared hidden layers 

and the language-specific softmax layer are updated. Other 

softmax layers are kept intact. The SHLs serve as a structural 

regularization to the model and the entire SHL-MDNN and its 

training procedure can be considered as an example of multi-task 

learning. 

After being trained, the SHL-MDNN can be used to recognize 

speech of any language used in the training process. By sharing the 

hidden layers in the SHL-MDNN and by using the joint training 

strategy, we can improve the recognition accuracy of all the 

languages decodable by the SHL-MDNN over the monolingual 

DNNs trained using data from individual languages only. 

We evaluated the SHL-MDNN on a Microsoft internal speech 

recognition task. The training set contains 138-hour (hr) French 

(FRA), 195-hr German (DEU), 63-hr Spanish (ESP), and 63-hr 

Italian (ITA) speech data. The SHL-MDNN used in the experiment 

has 5 hidden layers, each with 2048 nodes. The input to the DNN 

is 11 (5-1-5) frames of the 13-dim MFCC feature with its 

derivatives and accelerations. For each language, the output layer 

has 1.8k senones determined by the GMM-HMM system trained 

with the maximum likelihood estimation (MLE) on the same 

training set. The SHL-MDNN was initialized using the 

unsupervised DBN-pretraining procedure, and then refined with 

BP using senone labels derived from the MLE model alignment. 

The trained DNNs are plugged in the CD-DNN-HMM framework 

designed for LVSR [1]. 

Table 1: Compare Monolingual DNN and Shared-Hidden-Layer 

Multilingual DNN in WER (%) 

 FRA DEU ESP ITA 

Test Set Size (Words) 40k 37k 18k 31k 

Monolingual DNN (%) 28.1 24.0 30.6 24.3 

SHL-MDNN (%) 27.1 22.7 29.4 23.5 

Relative WER Reduction (%) 3.6 5.4 3.9 3.3 

 

Table 1 compares the word error rate (WER) obtained on the 

language specific test sets using the monolingual DNN (trained 

using only the data from that language) and the SHL-MDNN 

(whose hidden layers are trained using data from all four 

languages). From the table we can observe that the SHL-MDNN 

outperforms the monolingual DNN with a 3-5% relative WER 

reduction across all the languages. Note that when training 

monolingual DNNs, we shuffled the training utterances as well and 

adopted the same epoch numbers per language as in SHL-MDNN. 

Therefore, we ascribe the gain of SHL-MDNN to cross-language 

knowledge. It is encouraging that even for FRA and DEU, which 

have more than 100 hours of training data, SHL-MDNN can still 

provide improvement. This is not the only advantage of the SHL-

MDNN. For example,  since multiple languages are simultaneously 

decodable with its unified DNN structure, the SHL-MDNN makes 

multilingual LVSR easy and efficient. 

 

3. CROSS-LINGUAL MODEL TRANSFER 
 

The shared hidden layers (SHLs) extracted from the multilingual 

DNN can be considered as an intelligent feature extraction module 

jointly trained with data from multiple source languages. As such 

they carry rich information to distinguish phonetic classes in 

multiple languages and can be carried over to distinguish phones in 

new languages.  

The procedure of cross-lingual model transfer is simple. We 

extract the SHLs from the SHL-MDNN and add a new softmax 

layer on top of it. The softmax layer’s output nodes correspond to 

the senones in the target language. We then fix the hidden layers 

and only train the softmax layer using training data from the target 

language. If enough training data is available, additional gains may 

be achieved by further tuning the entire network. 

To evaluate the effectiveness of cross-lingual model transfer, 

we used American English (ENU) (phonetically close to the 

7305

Figure 3.3: Architecture of DNN based multilingual speech recognizer; Source: [3]

These systems use separately trained ASR and NLU subsystems to identify

intent in the speech. In this way, text transcripts obtained from the ASR model,

are used as input for a separate text classifier (See Figure 1.1). In these cascaded

systems, ASR needs to generate accurate transcripts for a given speech query.

An erroneous transcript can divert the final results of this system [25, 26].

In this conventional method, ASR is trained on with the objective function

fo reducing the incorrectly predicted words (Word Error Rate - WER). Hence

we can not assume that the 1-best hypothesis from the ASR is always correct.

Further, sometimes ASR tends to produce misspelled words. As a solution for

this researchers have used n-best outputs from the ASR. Further NLU subsystem

is separately trained to predict the intent from text data. Yaman et al. [25]

presented a joint optimization technique for this issue. Then, He and Deng [27]

advanced this effort by producing a generalized framework.

Today with the use of the neural network, researches try to develop end-

to-end models. These models are trained in an end-to-end manner and try to

infer the semantic meaning directly from audio features. Serdyuk et al. [28]

and Haghani et al. [29] introduced such end-to-end models. These models are

capable of identifying the domain, intent and the slot presented in the given

speech query. Further, Chen et al. [30] present a similar system for call center

speech data classification. These end-to-end models are large and contain more
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than 50 millions of parameters [29]. To train modes with such a large number of

parameters, it is essential to have large datasets. Further to optimize the model

convergence researches have utilized pre-training strategies [29, 30].

In speech intent identification, the aim is to identify the intent in a given

spoken utterance. Snips Voice, Google Home, Amazon Alexa like systems try to

identify the intent of an issued command. In addition to that, identifying the

intent of call center calls can also be categorized into the speech intent identifi-

cation. It is possible to find another related task that tries to identify the topics

of the speech [31, 32, 33]. Here, the topics are similar to intents, but they vary

in a broad range and try to represent the whole subject presented in the spoken

content.

3.4 Low-Resource Speech Intent Identification

In the literature, there are two categories of approaches which can be identified

for low-resource speech intent identification. Here, the major barrier is developing

an ASR system with limited data. Hence some researchers have given focus to

develop ASR systems while others focusing on finding alternative ways. Following

subsections present these details.

3.4.1 ASR Based

As discussed in section 3.2, researchers have focused on developing ASR systems

optimized for languages with smaller speech corpus. One method is to adapt or

retrain of an ASR trained in high resource language. Another way is multitask-

learning with multiple smaller speech datasets.

Wiesner et al. [33] propose a speech topic classification methodology that

provides promising results when there is very limited training data. They use a

multilingual speech corpus and universal phones [34] to develop a low-resource

ASR system. The text output of the ASR is fed into a text classifier to identify

the corresponding topic. Here, the topics can be described as intents and there

are 11 different types. Some of them are “Evacuation”, “Food Supply”, “Urgent
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Rescue”, “Medical Assistance” and, “Shelter”. However, obtaining or creating a

phoneme annotated speech corpus is a difficult task. Further, having a good

understanding of the phonology of the targeted low-resource language is essential

in this approach.

3.4.2 Feature Based

This approach uses features generated from the respective speech queries and

does not rely on the text output of the ASRs. Using these features a classifier

model is trained to detect the intent. The figure 3.4 illustrates this process. Few

prominent feature generation techniques can be identified in the literature.

Raw Speech
Waveform

Feature
Extraction

Classifier 
Moodel

Generated
Features

Intent 

Figure 3.4: Feature based Speech Intent Identification Approach

Liu et al. and Wiesner et al. [31, 33], use features such as phone-like units

discovered via acoustic unit discovery (AUD) [35, 36] or word-like units discov-

ered via unsupervised term discovery (UTD) [37] in their work. Here, AUD and

UTD are unsupervised feature generation techniques and does not require any

transcript of the speech. But it is essential to have more and more data to get a

better feature representation for the audio. Additionally, more data means it is

essential to have more computation power to process all these data.

Buddhika et al. [38] presented an MFCC feature-based speech intent classifier

suitable for low-resource languages. On top of these features, researchers have

used different feature classification methods such as Support Vector Machines

(SVM), and CNN to identify intents. Their approach achieves 74% classification

accuracy for a 10 hour Sinhala dataset.

In another work, Chen et al. [30] propose an intent identification method for

the English language queries using intermediate features of a pre-trained English

ASR model. Here researchers use character probability values generated by the
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ASR as features on a CNN based classification model to identify the intent and

show good results. Utilizing this pre-training strategy Lugosch et al. [4] also

present such similar work. In their work, they try to identify not only the intent

but also slot values such as action, object, and location mentioned in the speech

query and achieve better results using a 14.7-hour dataset. However, in both of

these works, an ASR trained on large English corpus is used to identify intent on

the same language.

3.5 Summary

This chapter provided the details about the past efforts on speech intent clas-

sification. Further, it presented some background information on the evolution

of ASR and low-resource ASR. In general approach, speech intents are identified

combining robust ASR and NLU subsystems. Moreover, there were some other

proposed techniques to do the same task, which uses different features instead of

ASR generated text. The secondly generated methods show better results and

still need a reasonable amount of speech data.
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Chapter 4

METHODOLOGY

As discussed in the previous chapter, there are different research attempts to

identify low-resource speech intent. Among these, methods that use different fea-

tures other than the ASR generated text showed comparably better performances

in speech classification tasks. Further, this approach eliminates the issue of us-

ing the 1-best ASR output and also the need for robust ASR. Hence, this study

focuses on feature-based intent classification approaches.

Methodology in this research can be divided into two steps. One is identifying

a better feature generation technique for low resource speech that can represent

semantics presented in a given spoken utterance. The next step is to identify a

better feature classifier for the generated features. Figure 4.1 depicts the steps in

presenting method.

Raw Speech
Waveform

Feature
Generation

Classifier 
Moodel

Features
Intent 

Step 1 Step 2

Figure 4.1: Methodology Steps
‘

In this chapter, Section 4.1 introduces two different feature generation ap-

proaches. Section 4.2 describes the classifier models used to identify intent from

the features.

4.1 Feature Generation for Intent Identification

As described, feature generation is one of the important steps in the proposing

methodology for speech intent identification. We experimented with two different

feature generation methods.
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4.1.1 Deep Neural Network Based ASR Feature Extraction

Chen et al. [30] use features generated via an ANN-based ASR to classify the

intent of the speech. Few other research identifies not just intent but also domain,

intent, and slots presented in the speech query [29, 4]. In all these works, features

generated by the ASR models are used for the label prediction model. However, all

the this was experimented on the English language using large datasets. Further,

much attention is not given to the use of cross-language feature generation.

There are publicly available large datasets for high-resource languages like

English. As described in Section 3.2, such large datasets can be used to develop

ASR models for the resource-poor languages. For a very limited speech data,

it is effective to use such pre-trained ASR as a feature generates rather than

fine-tuning it to generate text (See Section 3.2).

In the machine learning paradigm, this technique is known as transfer learning,

where we try to reuse a model trained on one task in another similar or related

task [39]. Here, an ASR model trained to convert high resource speech into text

is used on low resource speech intent identification. In some literature, authors

referred to this as ASR model pre-training.

The following two subsections describe two different new feature extraction

methods that are introducing in this study. These feature extraction methods

use high-resource ANN-based ASRs.

Character Probability Features

Table 3.1 present some of the existing best performing ASRs. Among these,

DeepSpeech, DeepSpeech2 models were selected to extract features in this study.

These models have a good performance and have an open-source implementa-

tions 1 2.

As described in Section 2.2, ASRs like DeepSpeech, DeepSpeech2 are trained

to convert a given speech feature sequence into a most probable character se-
1DeepSpeech - https://github.com/mozilla/DeepSpeech
2DeepSpeech2 - https://github.com/SeanNaren/deepspeech.pytorch
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quence. To facilitate this, these model provide sequence probabilities 𝑦(𝑖), with

𝑦𝑡 = P(𝑐𝑡|𝑥) for a given acoustic feature sequence 𝑥. Here, 𝑐𝑡 represents the pos-

sible character set in the training language. These values can be used to identify

features. These character probability features are two dimensional. One dimen-

sion represents the different characters and the other represents the time steps

of the sequence. Figure 4.2 provides a visualization of the extracted character

probability feature.
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Figure 4.2: Visualization of Character Feature

To extract features, first, the ASR model is trained in high resource language.

There are freely available speech datasets like LibriSpeech for high-resource lan-

guages. Such datasets can be used to train ASR models initially. In the training

process, models learn to map high resource language audio features into the cor-

responding language characters. Then, features for the low-resource language is

generated by feeding them as input for the trained model. After extracting the

features, a feature classifier model is trained to identify the intents. Figure 4.3

illustrates the whole intent identification process based on this character feature

extraction process.

Here, the ASR model in Figure 4.3 can be replaced by any ASR model that

output character probability values (models like DeepSpeech and DeepSpeech2).

Further, it is possible to extract features from any hidden layer. But, the character

probability values generated from the final layer are used as features. These ANN-

based ASR models use a stack of CNN and RNN layers (See Section 3.1 and 3.1).
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Figure 4.3: Character Feature Extraction

As described in Section 2.4 RNN are important to capture temporal information

present in the audio feature sequences.

Phoneme Probability Feature

Phonemes represent a perceptually distinct unit of sound in a language, and it is

used to present the articulation of the words in a language. Therefore phonemes

can represent different sounds accurately compared to characters. Hence, the use

of phoneme probability values features instead of characters have the likelihood

of increasing the accuracy of intent classification. This scenario is exploited in

this proposing method.

In order to have this, there should be a model that outputs a sequence of

phoneme probabilities 𝑝(𝑖), 𝑝𝑡 = P(𝑝𝑡|𝑥) when given a sequence of acoustic features

𝑥(𝑖) where 𝑝𝑡 represents the possible phoneme set.

All of the ASR models are trained to predict characters, and it is not so

common to have ASRs that predict phonemes. However, Lugosch et al. [4] present

an ASR model development method that uses phonemes as intermediate targets.

In this method, authors use phoneme and word-level alignment rather than raw

transcripts and CTC loss. Here, Montreal Forced Aligner [40] is used to generate

these alignments. Hence, the ASR model proposed by Lugosch et al. is used to

generate phoneme probability features.

Figure 4.4 represent the architecture of our phoneme feature generation ASR
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model, and Figure 4.5 depicts the phoneme feature extraction process. Phoneme

probability features can be generated following this process instead of character

probabilities. Figure 4.6 presents a visualization of phoneme probability features.

{
 action: “activate”,
 object: “lights”, 
 location: “kitchen”
}

SLU

Speech Intent

{
 action: “activate”,
 object: “lights”, 
 location: “kitchen”
}

TURN THE 
KITCHEN 
LIGHTS ON

ASR

Speech

NLU

Text Intent

Conventional SLU

End-to-end SLU

{
 action : “activate”,
 object : “lights”, 
 location : “kitchen”
}

“It was the best of times, it 
was the worst of times...” “Turn the kitchen lights on”

IH T W AA Z  
DH AH B EH S 
T AH V T AY 
M Z IH T W 
AA Z DH AH W 
ER S T AH V 
T AY M Z 

IT WAS THE 
BEST OF 
TIMES IT WAS 
THE WORST OF 
TIMES

Phoneme 
classifier

Word 
classifier

Figure 2: The lower layers of the model are pre-trained using
ASR targets (words and phonemes). The word and phoneme
classifiers are discarded, and the features from the pre-trained
part of the model (blue) are used as the input to the subsequent
module (white), which is trained using SLU targets.

4. Model and Pre-training Strategy
The model proposed in this paper, shown in Fig. 2, is a deep
neural network consisting of a stack of modules, where the
first modules are pre-trained to predict phonemes and words.
The word and phoneme classifiers are discarded, and the entire
model is then trained end-to-end on the supervised SLU task. In
what follows, we justify these design decisions and give more
details about the model hyperparameters.

4.1. Which ASR targets to use?

ASR models are trained using a variety of targets, including
phonemes, graphemes, wordpieces, or more recently whole
words [28–30]. We choose whole words as the pre-training tar-
gets, since this is what a typical NLU module would expect as
input. A typical ASR dataset contains too many unique words
(LibriSpeech [31] has more than 200,000) to assign an output
to each one; we only assign a label to the 10,000 most common
words. This leaves much of the pre-training data without any
labels, which wastes data. By using phonemes as intermedi-
ate pre-training targets [20, 32, 33], we are able to pre-train on
speech segments with no word label. Additionally, we find that
using phonemes as intermediate targets speeds up word-level
pre-training [34, 35].

We use the Montreal Forced Aligner [36] to obtain word-
and phoneme-level alignments for LibriSpeech, and we pre-
train the model on the entire 960 hours of training data using
these alignments 5,6. Using force-aligned labels has the addi-
tional benefit of enabling pre-training using short, random crops
rather than entire utterances, which reduces the computation
and memory required to pre-train the model.

4.2. Phoneme module

The first module takes as input the audio signal x and out-
puts hphoneme, a sequence of hidden representations that are pre-
trained to predict phonemes. The phoneme-level logits are com-

5Our alignments can be downloaded from
https://zenodo.org/record/2619474#.XKDP2VNKg1g

6We use textgrid.py to process the alignments.
https://github.com/kylebgorman/textgrid

puted using a linear classifier:

lphoneme = W phonemehphoneme + bphoneme. (1)

The phoneme module is implemented using a SincNet layer
[37, 38], which processes the raw input waveform, followed by
multiple convolutional layers and recurrent layers with pooling
and dropout. More detailed hyperparameters can be found in
our code.

4.3. Word module

The second module takes as input hphoneme and outputs hword.
Similar to the phoneme-level module, it uses recurrent layers
with dropout and pooling, and is pre-trained to predict words
using another linear classifier:

lword = Wwordhword + bword. (2)

Notice that the input to this module is hphoneme, not lphoneme,
and likewise the output to the next stage is hword, not lword. There
are two good reasons for forwarding h instead of l. The first
is that we don’t want to remove a degree of freedom from the
model: the size of l is fixed by the number of targets, and this
would in turn fix the size of the next layer of the model. The
second reason is that computing lword requires multiplying and
storing a large (≈ 2.5 million parameters) weight matrix, and
by discarding this matrix after pre-training, we save on memory
and computation.

4.4. Intent module

The third module, which is not pre-trained, maps hword to the
predicted intent. Depending on the structure of the intent repre-
sentation, the intent module might take on various forms. Since
in this work we use a fixed three-slot intent representation, we
implement this module using a recurrent layer, followed by
max-pooling to squash the sequence of outputs from the recur-
rent layer into a single vector of logits corresponding to the dif-
ferent slot values, similar to [6].

4.5. Unfreezing schedule

Although the pre-trained model works well as a frozen feature
extractor, it may be preferable to “unfreeze” its weights and
finetune them for the SLU task with backpropagation. Simi-
lar to ULMFiT [18], we find that gradually unfreezing the pre-
trained layers works better than unfreezing them all at once.
We unfreeze one layer each epoch, and stop at a pre-determined
layer, which is a hyperparameter.

5. Experiments
Here we report results for three experiments on Fluent Speech
Commands: using the full dataset, using a subset of the dataset,
and using a subset of wordings.

5.1. Full dataset

We first trained models given the entire SLU training set. The
models used one of: 1) no pre-training (randomly initialized),
2) pre-training with no unfreezing, 3) gradually unfreezing only
the word layers, or 4) gradually unfreezing both the word layers
and phoneme layers. What we report here as “accuracy” refers
to the accuracy of all slots for an utterance taken together—that
is, if the predicted intent differs from the true intent in even one
slot, the prediction is deemed incorrect.

Figure 4.4: Architecture of the phoneme based ASR; Source: [4]
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Figure 4.5: Phoneme Feature Extraction

4.1.2 Unsupervised Feature Extraction

Ondel et al. [35] presented an unsupervised method to automatically separate

unlabeled audio data into distinctive sound units. These units are like phonemes,

and segmentation accuracy increases with the available data amount. Kesiraju et

al. [32] successfully used this method as a feature generation technique for topic
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Figure 4.6: Visualization of Phoneme Feature

identification of spoken documents. The effectiveness of this methodology has

experimented in this study for intent identification in limited data scenarios.

This method uses a Bayesian phone-loop model as in HMM [41] and tries

to segment and cluster untranscribed speech data into the phoneme like units.

However, there is no guarantee that the model is learning the exact phoneme

like units. Each of these units is represented by left-to-right HMM and is em-

bedded into a loop structure. This model combines a prior distribution over the

parameters of the HMMs and has a prior distribution over the units modeled

by a Dirichlet process. Here, the prior distribution or simply prior represents

the beliefs about an uncertain parameter that is combined with the probability

distribution before some evidence is taken into account.

The model assumes that 𝑁 speech data samples are generated with only 𝑀

sound components (𝑀 ≤ 𝑁) and M is not a fixed number. Hence the model

learns its complexity according to the data. The implementation of the model

is available as a framework3. This is used to generate unsupervised features to

identify intent. After training with a speech corpus, the model produces a number

sequence for a given speech query. These numbers represent the 𝑀 number of

sound components model able to learn in the training process.

Notations : Let 𝑄 be the set of queries containing a vocabulary 𝑉 , and

consider each query belong to one intent from a set of intents 𝐼. Let 𝑞, 𝑤, 𝑖

3AMDTK - https://github.com/iondel/amdtk
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be denoting speech queries, tokens in the vocabulary, and intents respectively.

Vocabulary is determined by considering the 3-grams of the discovered phone-

like units.

The following are the steps to generate features for the intent classifier.

1. Generate acoustic units using the AMDTK tool for speech queries

2. Select top 𝑁𝑖 3 grams per each intent with highest conditional probability

of intent 𝑖 given a 3-gram 𝑤 using following equations. Here, 𝑓𝑤𝑖 is the

number of 3-gram 𝑤 that appeared in the query related to intent 𝑖, 𝑓𝑤 is

the total number of appearance 3-gram 𝑤 in all the training queries. 𝑃 (𝑖)

is estimated using the training data.

𝑃 (𝑖|𝑤) = 𝑓𝑤𝑖 + |𝐼|𝑃 (𝑖)

𝑓𝑤 + |𝐼| (4.1)

3. Convert queries into vectors using smoothed TF-IDF (term frequency -

inverse document frequency) representation (𝑣𝑤𝑞) as follows. Here, 𝑓𝑤𝑞 is

the frequency of token 𝑤 in the query 𝑞, and 𝑁𝑞𝑤 represents the number

of documents in which the term 𝑤 appears. This resulting vectors are

normalized, such that the sum of the squares of elements equals to 1.

𝑣𝑤𝑞 = 𝑓𝑤𝑞. log(
|𝑄|

1 +𝑁𝑞𝑤

) + 1 (4.2)

4. Classify vectors to identify intent

4.2 Feature Classification for Intent Identification

Feature classification is the next important step in the presenting speech intent

identification process. It is essential to identify a classifier. In the literature, past

research has used simple classifier models such as SVM and some ANN-based

classifiers such as FNN and CNN models [38, 31, 32]. In addition to that, some

advance ANN-based models that use RNN or LSTM are also good at feature
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classification [42, 43]. However, these RNN or LSTM layer-based classifiers re-

quire more data. Hence, the following classifier models were tested for feature

classification.

∙ Support Vector Machines (SVMs)

∙ Feedforward Neural Networks (FNNs)

∙ Convolutional Neural Networks (CNNs)

An SVM model takes different hyperparameters. Among these, the kernel is

a special parameter, and it represents the type of the boundary function suck

as linear or polynomial. All of the parameters were considered to obtain the

best SVM classifier. In the CNN models as described in Section 2.4, there are

two variations 1D vs 2D. Both of these models were evaluated with different

combinations of CNN layers. In addition to that, model hyper-parameters are

optimized to obtain the best results.

Figure 4.7 depicts the overall system arrangement with a pre-trained ASR

model and CNN based feature classifier model. The model contains two CNN

layers and two sub-sampling layers. After these layers, there are one Dense layer

and one Softmax layer. The Softmax layer is responsible for converting Dense

layer output into normalized probability values that represent the probability of

belonging intent category.
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Chapter 5

EXPERIMENTAL SETUP

This chapter explains the experimental setup and the evaluation process of the

methods presented in the Section 4.

This chapter is divided into two sections. First section introduces the datasets

used in this study. Second section introduces the experiment details and param-

eters of the models.

5.1 Datasets

Intent annotated publicly available speech datasets are not so common even for

English. It is even more difficult to find such datasets for other languages. Almost

all the languages allow to express something in different ways. Hence, there can

be several ways to express a particular intent. Buddhika et al. [38] used a Sinhala

dataset collected by them. This dataset includes Sinhala speech data related to six

different intents in the banking domain. Researchers have accounted this and each

intent has some inflections. Data collection has been done by a crowdsourcing web

platform [44]. Contributors can access this website via mobile phones to record

audio. When accessed, they are asked to read a sentences form the dataset for

recording. Since mobile phones are. used all the audios were recorded in the open

environment and contain usual random background noises. Original dataset by

Buddhika et al. [38], contained 10 hours of speech data from 152 males and 63

females students. All the contributors are in the age between 20 to 25 years. In

this study, this dataset was re-evaluated since there were some miss-classified, too

lengthy and erroneous speech queries. The final data set contained 7624 samples

totaling 7.5 hours.

In addition to the Sinhala dataset, another Tamil dataset was collected for this

research. It also contains similar intents presented in the banking domain simi-

lar to Sinhala speech data. Additionally, the Tamil dataset contains codemixed
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speech queries, which contain some English terms. This dataset was collected

using voice-web 1 web-based speech data collecting platform. This is also devel-

oped to crowdsource speech data. The Tamil dataset contains 400 data samples

totaling 0.5 hours of speech. There were 40 contributors including both male and

female.

Table 5.1 provides the statistics of the Sinhala and Tamil datasets. In the

table 5.1, “I” column represent the number of inflections and “S” column represent

the number of samples in the dataset. Table 5.2 provides different inflections for

Sinhala and Tamil language.

Table 5.1: Details of the datasets

(I-Inflections, S-Number of samples)

Intent
Sinhala Tamil
I S I S

1. Request Acc. balance 8 1712 7 101
2. Money deposit 7 1306 7 75
3. Money withdraw 8 1548 5 62
4. Bill payments 5 1004 4 46
5. Money transfer 7 1271 4 49
6. Credit card payments 4 795 4 67

Total 39 7624 31 400

Unique words 32 46

Size in hours 7.5 0.5

Dataset is publicly available2.

5.2 Experimental Setup

As described in Section 3.3, Buddhika et al. [38] have presented some preliminary

approach to speech intent classification, which uses MFCC as the features. This

method is used as a benchmark in this study and performance is evaluated for

both datasets.
1https://github.com/mozilla/voice-web
2http://rtuthaya.lk/sinhala-tamil-speech-intent-dataset/

33



Table 5.2: Selected Inflections

Intent No. Language Inflections

1 Sinhala

මෙ� ��ෙ� ෙ�ෂය �යද?
(magē giṇumē śēṣaya kīyada)

��ෙ� ෙ�ෂය �යද?
(giṇumē śēṣaya kīyada)

ෙ�ෂය �යද?
(śēṣaya kīyada)

මෙ� ��ෙ� ඉ��ය �යද? 
(magē giṇumē itiriya kīyada)

��ෙ� ඉ��ය �යද?
(giṇumē itiriya kīyada)

ඉ��ය �යද? 
(itiriya kīyada)

මට මෙ� ��ෙ� ෙ�ෂය දැනග�න පු�ව�ද?
(maṭa magē giṇumē śēṣaya dænaganna puluvanda)

මට මෙ� ��ෙ� ඉ��ය දැනග�න පු�ව�ද?
(maṭa magē giṇumē itiriya dænaganna puluvanda)

2 Tamil

கா� deposit ப�ண ேவ��� 
(kācu deposit paṇṇa vēṇṭum)

கா� ேபாட ேவ��

(kācu pōṭa vēṇum)

கா� ேபாேடா��

(kācu pōṭōṇum)

Cash ேபாேடா��

(cash pōṭōṇum)

Deposit ேபாேடா��

(deposit pōṭōṇum)

கா� ைவ�� ெச�ய ேவ���

(kācu vaippu ceyya vēṇṭum)

Deposit கா� ேபாேடா��

(deposit kācu pōṭōṇum)

AMDTK framework3 implemented by Ondel et al. [35] is used to discover

unsupervised acoustic units. The generated unit sequence is converted to vectors

according to the process described under Section 4.1.2. The best performance is

obtained when 𝑀 is 67 and 43 in the acoustic unit discovery process respectively

for Sinhala and Tamil languages. Using these units vocabulary size of 61 and 49
3AMDTK - https://github.com/iondel/amdtk
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are selected for Sinhala and Tamil, respectively. SVM with a linear kernel is used

to classify generated feature vectors. The performance is evaluated using 5-fold

cross-validation.

The next method is feature transfer learning with ASR models. However,

training an ASR model on a large dataset requires high computational power.

Hence already trained openly available ASR models are used for the experiments.

To get the character probability features, DeepSpeech (DS)4 and DeepSpeech25

models. The DS model has been trained on the Common Voice American English

corpus, and reports a 11% WER on the LibriSpeech clean test corpus. The DS2

model is trained on LibriSpeech data and report 12% WER. To get phoneme

based probability values, the pre-trained ASR model of Lugosch el at. [4]6 is

adapted. This model is trained on the LibriSpeech English corpus [4].

Then the probability features are extracted using the ASR models, which are

used on the classifier models for training. For character probability features, a

character set of {𝑎, 𝑏, 𝑐, .., 𝑧, 𝑠𝑝𝑎𝑐𝑒, 𝑎𝑝𝑜𝑠𝑡𝑟𝑜𝑝ℎ𝑒, 𝑏𝑙𝑎𝑛𝑘} is used, since it is trained

on English speech. The phoneme set had a set of 42 symbols that includes the

ARPAbet English phoneme set (39 phonemes), and 3 non-speech annotations [4].

Since there is a limited amount of data, 5-fold cross-validation is employed to

measure the overall classification accuracy. Models are trained up to the maxi-

mum accuracy without getting over-fitted into the training data set. Additionally,

a Bayesian optimization-based algorithm is employed for hyper-parameter tun-

ing [45]. The optimization algorithm is employed with 500 iterations to select the

suitable hyper-parameters, which improves the overall accuracy. This was very

significant for the CNN model parameters such as the number of filters and kernel

sizes. For the SVM models, a linear kernel is used after experimenting with sev-

eral different kernels types (Polynomial, Radial Basis Function (RBF)). Table 6.1

shows the final overall classification accuracy of different classifier models and a

comparison between baseline method.
4https://github.com/mozilla/DeepSpeech
5https://github.com/SeanNaren/deepspeech.pytorch
6https://github.com/lorenlugosch/pretrain_speech_model
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Further, the overall accuracy change with respect to the number of available

training samples is evaluated. For that, a random sample with a particular size is

drawn from the dataset and intent classification accuracy is evaluated via 5-fold

cross-validation. This process is carried out 20 times to get the average accuracy

for the given sample size and the task was performed on the Sinhala dataset since

it contained more than 5000 samples. Chapter 6 summarizes these results.
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Chapter 6

RESULTS AND DISCUSSION

This chapter presents the results and a discussion of the experiments presented

in the Chapter 5. The first section provides the experiment results. The second

section provides a detailed discussion based on the obtained outcomes.

6.1 Results

Table 6.1 presents the overall results for different methods presented in the Chap-

ter 4. In the table “Features” column provides information about the different

feature generation approaches. The “Classifier” column provides details about

different classifier models used to identify intent from respective features.

Table 6.1: Summary of results

Features Classifier Accuracy Sinhala % Accuracy Tamil %

P
re

vi
ou

s

MFCC [38]
SVM 48.79 29.25

6L FFN 63.23 26.98
Unsupervised AUD SVM 32.46 21.73

P
ro

po
se

d

DS Character Prob
SVM 70.04 23.77

1D CNN 93.16 37.57
2D CNN 92.09 76.30

DS2 Character Prob
SVM 56.73 24.81

1D CNN 88.49 38.02
2D CNN 84.35 62.48

Phoneme Prob
SVM 78.21 49.83

1D CNN 97.31 81.70

2D CNN 94.16 76.28

In the experiments, methods proposed by Buddhika et al. [38] and Unsuper-

vised AUD approaches are used as a benchmark to measure the performance

of new methods. When observing results presented in the Table 6.1, proposed
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methods give better intent detection accuracy compared to previously proposed

methods.

For the character probability feature, two different ASR models were used

to obtain features, DeepSpeech, and DeepSpeech 2 ASR models. Even though

DeepSpeech 2 is the improved version of the DeepSpeech model, it produces

lower accuracy for the low-resource speech intent detection. However, the best

performing feature, the phoneme probability values outperform all other methods.

Additionally, when we consider different classifier models, phoneme based feature

produces the best results.

When it comes to feature classifier models and different proposed features, for

the Sinhala dataset, 1D CNN gives the best intent identification accuracy with

the character probability feature. In contrast to this, for Tamil speech data, 2D

CNN gives the best results. However, with the Phoneme probability feature, it

is difficult to observe such variance by observing results in the Table 6.1 and 1D

CNN classifier models always produce the best results.

Figure 6.1 represents the overall accuracy change with the number of available

data. Here, connected lines represent the overall accuracy change in the Sinhala

data. Disconnected dots on the dashed-line represent the Tamil dataset experi-

ment results for a 400 data sample. DeepSpeech model based character features

and phoneme probability values have been used to generate these results.

For character-based features, it is possible to observe that when there is a

limited number of training data, the 2C CNN classifier provides better intent

identification accuracy. However, the difference between 1D and 2d CNN classi-

fiers goes to zero when there are around 3000 samples and after that, 1D CNN

can give better results for datasets with large samples. With phoneme probability

features, it is not possible to observe this type of a classifier performance variance

with number of available training data. However, 1D CNN classifier model always

outperform the 2D CNN model.

38



1000 2000 3000 4000 5000
Number of Data Samples

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy Cha 1D CNN

Cha 2D CNN
Pho 1D CNN
Pho 2D CNN

Figure 6.1: Overall accuracy change with the samples size

Connected dots - Sinhala, Dots on the dashed-line - Tamil

6.2 Discussion

Overall results presented in Table 6.1, and the graph in Figure 6.1 emphasize that

phoneme probability features are more effective for speech intent identification

compared to the rest of the features. For Sinhala and Tamil datasets, the proposed

method achieves an overall accuracy of 97.38% and 81.70%, respectively. Further,

these values indicate the usefulness of phoneme probability features despite the

targeted low-resource language. According to the Figure 6.1, having 500 is enough

to reach up to more than 80% accuracy. It needs more than 1000 data samples

to achieve similar results using character probability features.

Unsupervised acoustic unit discovery feature performance is low, and accuracy

values are behind the baseline method. This must be due to limited speech data.

Character probability features from both ASR models perform better compared

to baseline. However, the DS feature results are superior compared to DS2. Here,

the obtained pre-trained ASR models are trained on different datasets and the

dataset used on DS is larger than the DS2 training dataset. Generally, character

probability features are better than both baseline and unsupervised features.
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In the Figure 6.1 it can be seen that the accuracy for the Tamil dataset also

lies close to the Sinhala dataset trend line. However, when examined closely,

we can find one exception, 2D CNN shows a similar accuracy for both character

and phoneme features in Tamil data. In the Tamil dataset, 61% of the sentences

contain code-mixed speech queries with at least 1 English word. This can be a

reason for such a higher result since feature generating ASRs are trained in En-

glish. In contrast to this, we cannot identify such anomaly results with phoneme

features or 1D CNN character feature results. Further, this can happen because

of having proper hyper-parameters for the 2D CNN character model. Because of

the limited data, it is difficult to identify the effect of code-mixing. However, in

general, phoneme probability features give better results compared to character

probability features regardless of the language.

Table 6.2 and 6.3 present the most probable character/phoneme sequences for

few selected sentences in Sinhala and Tamil languages, respectively. For better

understanding, we present 39 phonemes with their IPA (International Phonetic

Alphabet) notation.

Table 6.2: Most probable characters and phonemes for Sinhala utterances

Spoken Utterance Character Sequence Phoneme Sequence

ෙ�ෂය �යද
(śēṣaya kīyada)

she is hegeal
she he khe o
shhe shegil
shhe as shhakin ane
she  che a kidedd

ʃʃʃʃiiiɪʃʃiiʌʌkkiiiiiilllɝɹɹɝ
ʃʃʃʃʃeɪeɪeɪʃʃʃiʌʌkkiiiiiɪððʌʌ
ʃʃʃʃʃeɪeɪeɪʃʃʃeɪeɪikkkjiiuuunlʌn
ʃʃʃʃʃieɪeɪeɪʃʃʃiiiɪkkkiiiiiʌnðʌʌllllɹ
aɪ  kkkʃʃʃʃʃiiiɪʃʃɪihæækkkhhhhɪɪɪdɪɪɪtθfff

��ෙ� ඉ��ය �යද
(giṇumē itiriya kīyada)

give te matyy aga f
giv the madiae tit
go know may did he acey athe
gien_me didd oge in
did me mak ti takeo tit

dn  ɪɪɪinʌʌmmeɪeɪeɪeɪdddɪdiiieɪɡɡiiiiɪʌððʌtʌʌ   huuuu
ɡɡɡɪɪnnʌnnneɪeɪeɪeɪdddiiiiiikkiiiiiiððʌʌʌθ
nɡɡɡɪɪnnoʊmmmeɪeɪeɪeɪeɪeɪddɪɪttiiɪɪkkkiiiiɪɪɪɹððɛɛɛɹt nnn
nniɪɪnʌnnnieɪeɪeɪkkkɪdiiiiɡhiiiiiinnnn
ððɪɪnnnnnnnneɪeɪeɪeɪnndtttɪttiiiitttkuuuuuuuuvvɪɪɪtt

ම�ද� තැ�ප� කර�න ඕෙ�
(mudal tænpat karanna ōnē)

what a tempartan nnowi
wo a thember corono
wilthose tem but coulo knnow onna
would a dem but grannoi
who adempat carannonin

wwl bwʌddoʊoʊætæææmnɑɑʌkkʌʌnnnoʊoʊɔɔnnii
wwwwwððoʊoʊoʊððææmmblʌʌkkkʊɝʌnnnoʊɔɔɔnnnn
wwwwððɝɝɝɝððɛɛmmbʌʌttkkkʌtɑʌnnnaʊaʊɑɑɑɑɑnʌʌɝp
wwwððaʊaʊaʊtðɛɛmmbʌʌtttʌtʌʌnnnoʊoʊoʊnniii
hhwwɹdʌoʊlddʌnmpʌʌpkɡɡtɝʌnnnɔɔɔɹniiŋ

�� ෙග�ම� 
(bil gevīmak)

bettte gave ye uckk
belli give emac
benn geni muck
be give emma
begive uckk

bbihʌɪɪɪɪɪmiiimɑɑʌkkkkkk ɪs
bbiiieɪvɡjɪɪŋŋiiiimmɑʌkkkkkk
bbɪɪnnnɡɪɪðiiimmʌʌkkkkkkk
bwbiiiiɡɡɪɪɪðiiiimmɑʌʌkkkkkkk
bbbbbiitʌʌʌdɡɡɪɪɪdiiiiimmɑɑɑkkkkkk

When examined closely, it is possible to identify some common patterns in the
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Table 6.3: Most probable characters and phonemes for Tamil utterances

Spoken Utterance Character Sequence Phoneme Sequence

Account balance எ�ன?
(Account balance eṉṉa?)

a gont belancint
a  goiinman  in  an
a con bbalin sen mat
a gonball intin now
a gont milonss in e

ææætkɡɔɔnnntmmmɛnʌʌnsssɪɪnnnnɪɛʌtt
t  ʌʌʌdɡɡɡoʊoʊoʊoʊnnnnʌʌʌʌʌnndzz_ɛɛnnnɹɝɝɝɝɝ
æædkɡɔɑɑnnbʌʌtʌnnzzɪɪnnnmmæææn
ʌʌʌʌɡɡɡɑɑʌnmʌʌʌʌnnttɪɪnnnæætɝɝt ɹɹ ɔɔɔllll
ɪɪɪtɡɡɔnnnttɹɹllʌnnssssɪɪɪŋnnðʌʌ  aɪaɪ

கா� ேபாட ேவ��

(Kācu pōṭa vēṇum)
canssiporewo
as case olover o
caausiborover
carreolewar non
cassof ordonum

æ kɡɑɑɑɑɑssʌbbɔɔɔɹnnoʊoʊoʊoʊʌunnnnn ææææ hææ
æʌʌsssʌn kkɑɑɑɑæssʌʌd ɔɔɔɔɹɹɛʌllɝɝʌʌnnʌʌvʌ
kkɑɑɑsʌvvɔɔɹdoʊwɝɝɝɝɝ  hlul
kkɑɑɑɑsssʌʌɝtɹɔɔɔɹɹdɛɝɝɹɹɛeɪeɪeɪeɪnnoʊoʊoʊoʊnnn
ææææææsssʌʌvpbɔɔɔɹɹddoʊɔɔntɝɝmmm

காச �ெள��க ேவ��

(Kāca mīḷeṭukka vēṇum)
casim mo a acoonno
casston wane y covern
cass and miler the covene
cason moded gorl
casaler coer

aɪaɪaɪaɪaɪzzzʌoʊʌmmllʌnaɪaɪdʌʌɡɡoʊoʊoʊoʊnnoʊoʊnnn
kkɑɑɔɹssʌnwwlhɹɝddʌkkkoʊoʊoʊoʊɝnnnnn
ɡææɑɑɑsssʌnmwʌlllloʊoʊoʊddʌkkkʌɝɝɝɝoʊaɪnʌʌnv
kkɑɑɑɔɑsssʌnnwwllidɪɝðʌdɡɡɡʊʊllɝɝɝnʌʌnv
ɪ kkææææsssʌmmwʌlllloʊoʊnʌʌkɡɡʌlllʌnnnaɪ

Bill கா� க�டேவ��

(Bill kācu kaṭṭavēṇum)
belka e go teo
dilcos i arton
biass with at teronnar
biis castsi cut teverm
belicasiva torn

bbbiiiiiɡɡææææssʌɡɡɑʌdddeɪeɪeɪeɪeɪeɪnʌoʊoʊ  baɪaɪi
bbbɪɪdʌʌkkɑɑɑssðikɑɹttbɛɹɹɝɝnnnnn
bbðɪɪʌɹkkkæææssʌʌððætttðɛʌɹɝɝɝnnʌʌnn
bbbiiiɪɪɪnkkkɑɑɑɑssʌʌnkkʌntnɛɛɛvvɝɝɝɝnnʌnmm
bbbbɪilliiɡɡɑɑɑsssʌðʌaɪʌddoʊoʊoʊɑʌnʌnn

sequences presented in the Tables 6.2 and 6.3. Most of the time these patterns do

not occur sequentially, there are some other symbols in between them. The intent

identification model trained on probability features tries to identify those hidden

patterns. These sequential patterns can be affected by the language model of the

high resource training language. Here, the ASR models used to generate features

are based on the Recurrent Neural Networks (RNNs) and they are capable of

language modeling [46, 47]. Therefore the ASR models try to predict character

or phoneme sequences as observed in the training language (English in this case).

This effect is more visible in character probability outputs in the Table 6.2

and 6.3. Here, the first few characters with corresponding sounds have been

detected. Sometimes it has predicted the English words with a similar sound.

However, when it comes to the middle and end of a sequence, it is difficult to

find any patterns and all look random. This is quite different for the phoneme

sequence. If we inspect the generated symbol sequence, even in the middle we can

find some patterns. Hence, phoneme-based features give a better representation

compared to character-based features for a given audio query. Further, there is

higher classification accuracy for phoneme features. It is possible to assume that
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these patterns affect this.

The next visible effect on results is the performance difference of the 1D and

2D CNN models. When there is limited data, 2D CNN outperforms 1D CNN

in character probability features. This is changed when the training data size

increases. With phoneme features, 1D CNN always outperforms 2D CNN. When

the feature visualization for intensity points (most probable symbol) is examined,

it is visible that these values change quite rapidly in the character feature map

compared to phonemes. Additionally, it is possible to identify visible patterns

inside the generated phoneme sequences (in Table 6.2 and 6.2). Hence 1D CNN

can perform better with phoneme features. There are more rapid distortions in

character features. Hence, 2D CNN may be more useful for character probability

features.
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Chapter 7

CONCLUSION

This study investigated the possibility of direct speech intent identification for

low-resource languages. The existing processing pipeline depends on ASR to

transform speech into text. However, creating a robust ASR requires a large

speech dataset, which makes it difficult to train for low-resource languages.

This thesis provided a solution for direct speech intent identification for low-

resource languages by incorporating transfer learning. The recommended solution

consists of two-steps. The first step involves the generation of features that can

represent semantic information in a given speech query. The second step involves

the classification of the obtained features. Feature generation form pre-trained

ASR showed better representation ability and two such different features, char-

acter and phoneme probability features are obtained. Phoneme feature combined

with the 1D CNN classifier model showed the best results in intent detection and

showed more than 80% accuracy using only 500 data samples for both Sinhala

and Tamil languages.

Compared to the character and phoneme features, intent classification from

the unsupervised feature (AUD), is not effective for the chosen limited datasets.

Additionally, proposed approaches showed more than 30% increment of intent

identification accuracy compared to benchmark methods. Even though the phoneme-

based feature is the best, the character-based feature also shows competitive re-

sults for a slightly larger data amount.

It is possible to observe that intent classification performance is varying with

different CNN models. The character-based feature shows better results with the

2D CNN models for limited data. However, when the size of the training data

increases 1D CNN classifier model produces better results. For the phoneme fea-

ture, the 1D CNN classifier is the optimal one. It is possible to assume continuous

patterns appearing in phoneme features make it more effective to use 1D CNN as
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the classifier. Further, these patterns in phoneme-based features, help to achieve

better overall intent identification results.

In conclusion, the phoneme feature generated from pre-trained DNN-based

ASR models combined with the 1D CNN model is much more effective for low-

resource speech intent identification.
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Chapter 8

FUTURE WORK

This study can be extended in two different directions in the future. One path

is to experiment performance variance with the used high-resource languages. In

the experiments, only English is used. English, Sinhala, and Tamil belong to

three different language families. However, languages in the same family share

similar phenoms and sounds largely. Hence there is a possibility of improving the

final outcome.

Another path is the use of untranscribed speech data in the automatic acoustic

unit discovery process. With the availability of the internet and digital media,

it is easy to collect unannotated speech data. Having a larger amount of data

can improve the learning of better sound representations in used unsupervised

algorithm.
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