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ABSTRACT 

 

The study “Deterministic behavioral Stock Market Model to Examine the Volatility in 

Colombo Stock Indices” is done using daily stock market price indices of Colombo 

Stock Exchange (CSE) from 2000 to 2016. The main objective of the study is to build 

an appropriate model to estimate market volatility based on All Share Price Index 

(ASPI) and price indices of the selected sectors.  

 Stationarity and variance patterns of the ASPI are inspected by using descriptive time 

series plots of the original series, log transformed series and returns series. Box-pierce 

LM Test and ARCH Effect Test are used to check the existing of volatility clusters in 

returns series. Further Statistical Tests are applied to identify the asymmetric volatility 

clusters. Two distinct EGARCH models are built to examine the volatility in ASPI 

before and after the ending of war which was occurred till May 2009, Sri Lanka. The 

Diagnostic Checking of the fitted models is done by using Heteroskedasticity Test, 

Correlogram of the squared residuals. Assumptions of the Error distribution are 

validated by Q-Q plot.  

Further, existence of volatility clusters and asymmetric patterns of price indices of Bank 

Finance & Insurance (BFI), Construction & Engineering (CE) and Manufacturing 

(MFU) sectors are tested using proper statistical tests. Diverse GARCH family models 

are used to inspect the variance of sector price indices. Diagnostic checking is 

performed for each built model and volatility of the sector indices are estimated by 

appropriate models. 

Key Words: ASPI,Volatility, GARCH, Heteroskedasticity 
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CHAPTER 1: INTRODUCTION 

This chapter is based on providing a general introduction to the study of performing 

“Deterministic behavioral Stock Market Model to Examine the Volatility in Colombo 

Stock Indices”. It contains essentially, Background of the study, Significance of the 

study, Objectives and Outline of the thesis. 

1.1 Background of the Study 

The Colombo Stock Exchange (CSE) is the only licensed stock exchange in Sri Lanka. 

It is one of the exchanges in South Asia, providing a fully automated trading platform. 

There are several indices to reflect the stock market behavior of CSE such as All Share 

Price Index (ASPI), S & P SL 20 Index, Total Return Index (TRI) and sector indices.  

For investors, indices give the direction of the entire market. They use indices to track 

the performance of the stock market. Ideally, a change in the price of an index 

represents an exactly proportional change in the stocks included in the index. The ASPI 

is one of the principal stocks Index of the CSE and it measures the movement of share 

prices of all listed companies based on market capitalization. 

The most basic purpose of the stock market indices is to provide a measure to 

understand the direction or the movements of the market as a whole. An increase in the 

index indicates a rising market and decrease indicates a falling market. Market indices 

enable us to calculate market return.  Share market investment is considered as high 

return, but high risk investment. Thus predictability of share returns in a secondary 

market is greatly helpful to the investors.  

The objective of this study is to develop a deterministic behavioral model for the CSE 

to examine the volatility in the areas of clustering, leverage effects and sudden shocks 

in CSE.  

1.1.1 Financial Market Volatility 

The study of  (Morawakage & Nimal, July-December 2015) explained that financial 

markets are getting dynamic day by day. New instruments and trading methodologies 

such as derivative are introduced. Investor preferences are continuously changing over 

different markets. This situation always encourages the academicians and practitioners 
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in financial markets to innovate new models as well as validate, compare and contrast 

the existing models for the purpose of explaining different market phenomena. 

Volatility, as measured by the standard deviation or variance of returns, is often used 

as a basic measure of the total risk of financial assets.  The volatility is derived as the 

results of unequal variances of the error terms of the return series. Volatility clustering 

occurs when large stock price changes are followed by large price change, of either 

sign, and small price changes are followed by periods of small price changes. 

As mentioned in the study of (Jegajeevan) Volatility in stock return is often perceived 

as a measure of risk, thus increasingly used in asset pricing, hedging, risk management 

and portfolio selection. Accurate modeling and forecasting of the variance receive a lot 

of attention in the investment community. Therefore, studying the stock market for 

identifying the persistence in volatility and its dynamics to the impact of news is 

valuable. Studies on this area usually focus on diverse properties of the return series 

such as volatility clustering, leptokurtosis and asymmetric effect. 

1.1.2 Types of Stock Market Indices 

There are three types of stock market indices. They are price-weighted, value-weighted 

and equally weighted indices. They differ according to the weighting scheme used in 

their construction. 

A price –weighted index is an index where the price of each stock receives the same 

weight. It is constructed as an arithmetic mean of current prices of the stock that 

constitute the index. The best example of a price weighted index is the Dow Jones 

Industrial Average (DJIA), which is a price-weighted average of 30 well-known 

industrial stocks in the U.S. There is no weighted market index in Sri Lanka. 

A value-weighted index is an index where each stock is given a weight equal to its 

value. The value of a stock is the market capitalization of the common stocks, as 

measured by the number of listed shares times the market prices per share. This is the 

most widely used index construction method. In the Sri Lankan market the ASPI, MPI, 

and the MBSL Mid Cap index are all value weighted indices. The most popular value 

weighted index in the U.S. is the S&P 500 Index. 
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An equally –weighted index is an index in which the change of each stock is given the 

same weight. Sometimes this is referred to as an un-weighted index. In the construction 

of an equally weighted index, all stocks carry equal weight regardless of price or market 

value. 

1.1.3 All Share Price Index (ASPI) 

It is a value-weighted price index, which incorporates all the voting ordinary shares 

listed on the CSE. The base year is 1985, and the base value of the index is 100. ASPI 

showed 7,811.82 points as its highest value on 14th February 2011. Current ASPI value 

is the broadest and the longest measure of the level of the Sri Lankan stock market. 

As explained above the ASPI is a value weighted index based on market capitalization 

where the weight of any company is taken as the number of ordinary shares listed in 

the market. This weighting system allows the price movements of larger companies to 

have a greater impact on the index. Such a weighting system was adopted on the 

assumption that the general economic situation has a greater influence on larger 

companies than on smaller ones. 

The ASPI indicates the price fluctuations of shares of all the listed companies and 

covers all the traded shares of companies during a market day. The ASPI is calculated 

using the following formula. 

All Share Price Index =
Market Capitalization of All Listed Companies

Base Market Capitalization
× 100 

 

Where, 

Market Capitalization

= ∑ Current Number of Listed Shares of Companyi

n

i=1

× Market Pricei 

Base Market Capitalization = ∑ Number of Listed Shares of Companyi

n

i=1

× MarketPricei 

 

Base values are established with average market value on year 1985. Hence the base 

year becomes 1985. 

Opening Base Market Capitalization =
Total Market Capitalization in 1985

Number of Trading Days in 1985
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1.1.4  S&P Sri Lanka 20 (S&P SL20) 

The S&P SL20, or the Standard & Poor's Sri Lanka 20, is a stock market index, based 

on market capitalization, that follows the performance of 20 leading publicly traded 

companies listed in the Colombo Stock Exchange. The 20 companies that make up the 

index is determined by Standard & Poor's global index methodology, according to 

which the index's listing is reviewed each year. All S&P SL20 listed stocks are 

classified according to S&P and MSCI's Global Industry Classification Standard, 

thereby enabling better comparison of performance of Sri Lanka's largest and most 

liquid stocks with other global indices. 

 

The S&P Sri Lanka 20 aims to provide investors with an easily replicable, yet 

representative benchmark of the Sri Lankan equity market.  The index is designed to 

measure the performance of 20 leading Sri Lankan companies and was developed in 

partnership with the Colombo Stock Exchange (CSE). 

1.1.5 Sector Indices 

The listed companies of CSE are divided into 20 sectors and a price index for each 

sector is calculated on a daily basis using the same formula used to construct the ASPI. 

Each index indicates the direction of the price movement of the sector. By referring to 

these indices investors can get an idea of the stock price levels of particular business 

sectors. The 20 Business sectors are as follows; 

1. Bank Finance and Insurance – (BFI) 

2. Beverage Food and Tobacco – (BFT) 

3. Chemicals and Pharmaceuticals – (C&P) 

4. Construction and Engineering – (C&E) 

5. Diversified Holdings –( DIV) 

6. Footwear and Textile – (F&T) 

7. Health Care – (HLT) 

8. Hotels and Travels – (H&T) 

9. Information Technology – (IT) 

10. Investment Trusts – (INV) 

11. Land and Property – (L&P) 

12. Manufacturing – (MFG) 

https://en.wikipedia.org/wiki/Stock_market_index
https://en.wikipedia.org/wiki/Market_capitalization
https://en.wikipedia.org/wiki/Publicly_traded
https://en.wikipedia.org/wiki/Colombo_Stock_Exchange
https://en.wikipedia.org/wiki/Standard_%26_Poor%27s
https://en.wikipedia.org/wiki/MSCI
https://en.wikipedia.org/wiki/Global_Industry_Classification_Standard
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13. Motors – (MTR) 

14. Oil Palms – (OIL) 

15. Plantations – (PLT) 

16. Power & Energy –( P&E) 

17. Services – (SRV) 

18. Stores Supplies – (S&S) 

19. Telecommunications – (TLE) 

20. Trading –( TRD) 

These price indices reflect the price movements of companies in the twenty respective 

sectors.  The base dates and base values of these indices are the same as of ASPI (i.e. 

base date is January 02, 1985 and base value is equal to 100). Additions, deletions and 

adjustments for corporate actions for these indices follow the same rules of ASPI. 

1.2 Significance of the Study 

Literature for the past decade has been acknowledged on modeling stock market indices 

in Sri Lanka.  According to the ASPI   during 2000-2016, it can be seen a significant 

fall in price indices corresponding to the 2008 and 2009 years. This decreasing pattern 

due to the critical time period of the war had occurred in Sri Lanka. There is no study 

available for investigate the market price variations of ASPI before and after the war.  

The purpose of this study therefore, is to investigate the existence of the volatility 

patterns in the CSE by using distinct models for before and after the ending of the war 

which occurred till 18th May 2009. This study also attempts to realize the suitability of 

diverse models in explaining the volatility and return behavior of sector-wise price 

indices. The results of this study should present vital insights on the investing 

environment and also serve as valuable information for devising investment strategies 

for stock market participants. 

 

1.3 Objectives 

The main objective of the study is to build an appropriate model to estimate market 

volatility based on ASPI and price indices of the selected sectors. So the following sub 

objectives can be structured to achieve the main objective of the study. 
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 To investigate the volatility pattern of ASPI of the CSE using symmetric and 

asymmetric models before and after the war. 

 To analyze the appropriateness of Generalized Autoregressive Conditional 

Heteroscedastic (GARCH) family models that capture the important facts about 

the index returns and fits more appropriate models. 

 To estimate the volatility of the ASPI and sector-wise price indices through 

appropriate Generalized Autoregressive Conditional Heteroscedastic (GARCH) 

family models. 

1.4 Outline of the Thesis 

There are six chapters including in this thesis and organization of those chapters is as 

follows. 

Chapter 1 provides an elementary move towards the study. It consists Background of 

the Study, Significance of the Study and Objectives of the Study. This gives a general 

idea about this research. The Chapter 2 reviewed literature related to this study.  It 

provides basic idea about the related researches of Stock Market Data. Theories and 

Techniques which are applied in this study explained through chapter 3.  Chapter 4 

consists descriptive analysis of the monthly and daily ASPI and sector-wise stock 

market data. Modeling of the daily ASPI and sector-wise indices by applying various 

techniques will be discussed through chapter 5. Finally chapter 6 briefly summarized 

the findings of the whole study and discussed the overview of the study, significant 

areas of model fitting, problems encountered in the study, improvements and 

conclusions. 

 

 

CHAPTER 2: LITERATURE REVIEW 

This chapter provides reviews of literature related to modeling Stock market data of 

Colombo Stock Exchange (CSE). Previous researches which were carried out based on 

stock market data has been discussed through this chapter. Some researches related to 

this study have been compared respective to techniques which were used. 
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2.1 Review on previous studies 

The study on “Equity Market Volatility Behavior in Sri Lankan Context” (Morawakage 

& Nimal, July-December 2015)  have been examined the volatility behavior of 

Colombo Stock Exchange with advanced econometric models. GARCH, EGARCH and 

TGARCH models have been used to capture the complex volatility features. It is 

observed that volatility clustering and leverage effect exists in Colombo Stock 

Exchange.  Further, negative shocks were created more volatility compared to a positive 

shocks generated in the market. TGARCH model assuming student-t probability 

distribution function was more suitable to explain the volatility in Colombo Stock 

Exchange among the models described above according to the Akaike and Schwarz 

information criteria. 

(Konarasinghe, Abeynayake, & Gunaratne, 2015) have stated in their research paper on 

use of the ARIMA models on forecasting Sri Lankan share market returns. Stationary 

of the series were tested by Auto Correlation Functions and Partial Auto correlation 

Functions. ARIMA models were tested on total market returns, sector returns and 

individual company returns of CSE. Mean Square Error, Mean Absolute Deviation, 

residual plots and Anderson Darling test were used in model validation. Based on the 

results of this study, it was concluded that ARIMA models are suitable in forecasting 

Sri Lankan stock market returns. 

 The  study on “Volatility Models for World Stock Indices and Behavior of All Share 

Price Index´” (Samayawardena, Dharmarathne, & Tilakaratne, 2015) Generalized 

Autoregressive Conditional Heteroscedasticity (GARCH) models have been used to 

capture the characteristics of volatility in the stock price series. Many GARCH family 

models were considered in this study. All Share Price Index of Colombo stock 

exchanges (ASPI), S & P 500 index of New York stock exchange, FTSE 100 of the 

London stock exchange and BSE SENSEX index of Bombe stock exchange have been 

considered in this study and the study period is from 1st January 2004 to 1st January 

2014. All four stock price indices had contained the volatility clusters and ASPI of 

Colombo Stock Exchange illustrates the symmetric volatility clusters and other three 

series have asymmetric volatility clusters. GARCH (1,1) model had been fitted for 
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ASPI , EGARCH(1,1) model had been developed for BSE SENSEX and FTSE 100 

series, and EGARCH (2,1) had been fitted for S & P 500 series.  

(Konarasinghe & Chandrapala, July - December, 2013) have been conducted a study 

on “Modeling Stock Returns and Trading Volume of Colombo Stock Exchange” to test 

causal relationship between returns and trading volumes in the Sri Lankan share market 

and to model the relationship. Further, it was intended to identify patterns of trading 

volume. Results of multivariate tests reveal that there is no causal relationship between 

market returns and trading volumes. Therefore, time series techniques were used on 

returns and trading volume. Ljung-Box Q (LBQ) statistic reveals that stock returns are 

auto-correlated and stationary while trading volumes are auto-correlated but not 

stationary. Finally concluded that ARIMA (0, 0, 1) is the best model for forecasting 

stock returns and Quadratic Trend model is the best for forecasting trading volume. 

The study “Empirical Investigation of Stock Market” used to apply multivariate 

statistical methods and economic data forecasting techniques to identify the directions 

and movements of market prices and trade volume rates in CSE during 2006 to 2012. 

Stocks from the banking, finance & insurance, manufacturing, hotel & travels, 

beverage, food & tobacco, plantation, IT and telecommunications were important in 

explaining the variations in the CSE. Moreover, Principal component results suggest 

that GDP rates, inflation and consumer spending rates directly involve changing stock 

market prices and trade volume rates in the Colombo Stock Exchange (Rathnayaka, 

Seneviratna, & Nagahawatta, 2014)  . 

2.2 Financial Time Series Modeling 

A time series is defined as a set of data values of a certain variable generates 

sequentially in time. The time series models assume that, in the absence of major 

disruptions to critical factors of a recurring event, the data of this event in the future 

will be related to that of the past events and can be expressed via models developed 

from the past events (Rani & Kaur, 2011). 

Financial time series analysis is concerned with theory and practice of asset valuation 

over time. It is a highly empirical discipline, but like other scientific fields theory forms 

the foundation for making inference. There is, however, a key feature that distinguishes 
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financial time series analysis from other time series analysis. Both financial theory and 

its empirical time series contain an element of uncertainty. For example, there are 

various definitions of asset volatility, and for a stock return series, the volatility is not 

directly observable. As a result of the added uncertainty, statistical theory and methods 

play an important role in financial time series analysis (TSAY, 2002). 

Returns from financial market variables measured over short time intervals (i.e. intra-

daily, daily, or weekly) are uncorrelated, but not independent. In particular, it has been 

observed that although the signs of successive price movements seem to be 

independent, their magnitude, as represented by the absolute value or square of the price 

increments, is correlated in time. This phenomena is denoted volatility clustering, and 

indicates that the volatility of the series is time varying (Aas & Dimakos, 2004). 

2.3 GARCH Family Models 

Financial economists are concerned with modeling volatility in asset returns. Volatility 

measures the size of the errors made in modeling returns and other financial variables. 

It has been discovered that, for vast classes of models, the average size of volatility is 

not constant but changes with time and is predictable. 

Autoregressive conditional heteroscedasticity (ARCH)/generalized autoregressive 

conditional heteroscedasticity (GARCH) models and stochastic volatility models are 

the main tools used to model and forecast volatility. ARCH model proposed by Engle 

and its extension; GARCH model by Bollerslv and Taylor were found to be the first 

models introduced into the literature and have become very popular in that they enable 

the analysts to estimate the variance of a series at a particular point in time (Enders, 

2004). 

(Zakaria, 2012) has described volatility means “the conditional variance of the 

underlying asset return”. A special feature of this volatility is that it is not directly 

observable, so that financial analysts are especially keen to obtain a precise estimate of 

this conditional variance process, and consequently, a number of models have been 

developed that are especially suited to estimate the conditional volatility of financial 

instruments, of which the most well-known and frequently applied model for this 

volatility are the conditional heteroscedastic models.  
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Furthermore a GARCH model has been fitted to electricity demand series to obtain 

more accurate forecast for the variance of the return series if the series consist volatility 

clusters. The study on “Daily Load Forecasting and Maximum Demand Estimation 

using ARIMA and GARCH” discussed the model incorporates the concept of  GARCH 

to model the residual in the student-t distribution and to estimate the maximum load 

demand that would be likely to occur within a finite time series with each estimated 

demand level corresponding to accepted levels of risk. The model has been fitted to an 

in-sample training data from 1970 - 1998 and the out of sample results were then 

verified with actual electricity data from 1999 - 2003. The mean absolute percentage 

error (MAPE) for each month generally lies within 1-3% (Hor, Watson, & Majithia, 

2006). 

2.4 Sector-wise Stock market Indices 

The study on “Sector-Wise Stock Return Analysis: An Evidence from Dhaka Stock 

Exchange in Bangladesh (DSE)”  is used to identify the  sector-wise return 

characteristics of selected stocks of Dhaka Stock Exchange. In this study, 48 months 

return data of 126 stocks listed in the DSE have been used. The stocks had been divided 

in 10 different sectors and found individual sector’s return and risk. Considering 

monthly return and risk analysis, stocks in the Garments Sector generated the highest 

return during this period. Stocks in the Banking and Insurance sectors also achieved 

higher return. Stocks of these two industries also have lower degree of risk compared 

to those of garments sector. Considering the risk – return trade off, has found that 

Banking Sector is the best place to invest. Negative return in the food & allied and 

service sectors was found. Macroeconomic factors impact on those selected industry 

return, following multi factor stock return analysis proposed in the Arbitrage Pricing 

Theory had also been tested. Out of the 10 sectors, used in this study, only return of the 

banking sector was significantly influenced by the macroeconomic condition (Hasan, 

2011). 

OLS regression techniques have been used to determine the relationship between 

changes in the federal funds rate and sector stock indexes. The study has been aimed to 

determine why particular sectors are more sensitive to interest rate changes than others. 

Weekly returns of the Dow Jones ICB classified financial, energy, utilities, materials, 
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industrials, consumer goods, consumer services, information technology , healthcare 

and telecommunications sectors were analyzed using separate OLS regression models 

for each sector. The results had shown that the utilities, financials, telecom and basic 

materials sectors are the most interest rate sensitive in that order and that the 

relationship exhibited between the stock price and the federal funds rate is positive 

(Garg, 2008) . 
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CHAPTER 3: METHODOLOGY 

The data set mainly consists daily market price data of three main indices from 2000 to 

2016 and daily sector-wise stock market price indices data from 2000 to 2016. When 

creating different models, several time series techniques are used with different 

software.  This chapter describes techniques, terms and theories which are used in all 

the analysis of this study and the procedure which has used in the analysis. 

3.1 Arithmetic and Geometric returns 

Direct statistical analysis of financial prices is difficult, because consecutive prices are 

highly correlated, and the variances of prices often increase with time. This makes it 

usually more convenient to analyze changes in prices. Results for changes can easily 

be used to give appropriate results for prices. Two main types of price changes are used: 

arithmetic and geometric returns. There seems to be some confusion about the two 

terms, in the literature as well as among practitioners.  

Daily arithmetic returns are defined by 

𝑟𝑡 = 𝑦𝑡 − 𝑦𝑡−1, where  𝑦𝑡  is the price of the asset at day t.  

Daily geometric returns are defined by 

𝑑𝑡 = log(𝑦𝑡) − log (𝑦𝑡−1) , where 𝑦𝑡 is the price of the asset at day t. 

3.2 Auto Regressive Conditional Heterosedasticity (ARCH ) 

Autoregressive Conditional Heteroskedasticity (ARCH) models are specifically 

designed to model and forecast conditional variances. The variance of the dependent 

variable is modeled as a function of past values of the dependent variable and 

independent or exogenous variables. 

ARCH models were introduced by Engle (1982) and generalized as GARCH 

(Generalized ARCH) by Bollerslev (1986) and Taylor (1986). These models are widely 

used in various branches of econometrics, especially in financial time series analysis.  

 

3.2.1 GARCH(1,1) Model 
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The fundamental idea of the GARCH(1,1)-model (Bollerslev,1986) is to describe the 

evolution of the variance 𝜎𝑡
2 as 

 
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      (3.1) 

The parameters satisfy 0 ≪ α ≪1, 0 ≪ 𝛽 ≪ 1, and α +β ≪1. The variance process is 

stationary if α +β <1, and the stationary variance is given by ω/(1- α-β). 

The parameter ղ = α+ β is known as persistence and defines how slowly a shock in the 

market is forgotten.  

3.2.2GARCH (p,q) Model 

Engle (1982) proposed a stationary non-linear model for 𝑦𝑡 , which termed ARCH 

(Auto-Regressive Conditionally Heteroscedastic; it means that the conditional variance 

of 𝑦𝑡 evolves according to an autoregressive-type process. Bollerslev (1986) and Taylor 

(1986) independently generalized Engle's model to make it more realistic; the 

generalization was called GARCH". GARCH is probably the most commonly used 

financial time series model and has inspired dozens of more sophisticated models. 

The GARCH (p, q) model is defined by       
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Where 𝜔> 0, 𝛼 ≥𝑖 0,𝛽𝑗 ≥ 0 , and the innovation sequence {𝜀𝑖} is independent and 

identically distributed with   0
0
E and   1
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3.2.3 The Exponential GARCH (EGARCH) Model 

The EGARCH or Exponential GARCH model was proposed by Nelson (1991). The 

specification for the conditional variance is: 
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Note that the left-hand side is the log of the conditional variance. This implies that the 

leverage effect is exponential, rather than quadratic, and that forecasts of the conditional 

variance are guaranteed to be nonnegative. The presence of leverage effects can be 

tested by the hypothesis that   𝛾𝑖 < 0. The impact is asymmetric if  𝛾𝑖 ≠ 0. 
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3.2.4 The Integrated GARCH (IGARCH) Model 

If one restricts the parameters of the GARCH model to sum to one and drop the constant 

term, 
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such that 
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Then the model is identified as an integrated GARCH. This model was originally 

described in Engle and Bollerslev (1986).  

 

3.2.5 The Threshold GARCH (TARCH) Model 

TARCH or Threshold ARCH and Threshold GARCH were introduced independently 

by Zakoïan (1994) and Glosten, Jaganathan, and Runkle (1993). The generalized 

specification for the conditional variance is given by: 
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Where Г𝑡 = 1  if 𝜀𝑡 < 0 and 0 otherwise. 

In this model, good news, 𝜀𝑡−𝑖 > 0, and bad news, 𝜀𝑡−𝑖 < 0, have differential effects 

on the conditional variance; good news has an impact of 𝛼𝑖 + 𝛾𝑖. If  𝛾𝑖 > 0, bad news 

increases volatility, and say that there is a leverage effect for the ith order. If 𝛾𝑖 ≠ 0, the 

news impact is asymmetric. 

3.3 Test for existing of Volatility 

3.3.1 Box-pierce LM test: 

Volatility clustering implies a strong autocorrelation in squared returns. Therefore a 

simple method for detecting volatility clustering is to calculate 1st order autocorrelation 

in squared returns. A basic test for the significance of is the Box-Pierce LM test. 
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This test statistics is asymptotically distributed as chi squared. However, this test is not 

very robust.  

3.3.2 Test for an ARCH effect 

The test for an ARCH effect was devised originally by Engle (1982) and is similar to 

the Lagrange Multiplier (LM) test for autocorrelation. 

1) Run the regression of the model using Ordinary Least Squares (OLS) and collect 

the residuals. Square the residuals. 

2) Run the following secondary regression: 

tptttt vuuuu  
2
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2

22
2

110
2 .....    (3.8)

  

 
 

Where u is the residual from the initial regression and p lags are included in this 

secondary regression. The appropriate number of lags can either be determined by the 

span of the data (i.e. 4 for quarterly data) or by an information criteria. Collect the 
2R  

statistic from this regression. 

3) Compute the statistic T*
2R , where T is the number of observations. It follows a 

chi-squared distribution with p degrees of freedom. The null hypothesis is that 

there is no ARCH effect present. 

 

3.4 Testing for asymmetric volatilities 

If volatilities is higher following a negative return than it is following a positive return 

then the autocorrelation between yesterday’s return & today’s squared return will be 

large & positive. This fact can be used to test the asymmetry in volatility. 
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Value of the equation 3.16 is calculated. If this is negative and the corresponding Box-

Pierce test is significantly different from zero, then there is an asymmetry in volatility 

clustering. 

3.5 Model Selection Methods 

3.5.1 Akaike Information Criterion (AIC) 

The Akaike information criterion is a measure of the relative goodness of fit of 

a statistical model. It was developed by Hirotsugu Akaike, under the name of "an 

information criterion" (AIC), and was first published by Akaike in 1974. It is grounded 

in the concept of information entropy, in effect offering a relative measure of 

the information lost when a given model is used to describe reality. It can be said to 

describe the tradeoff between bias and variance in model construction, or loosely 

speaking between accuracy and complexity of the model. 

AIC values provide a means for model selection. AIC does not provide a test of a model 

in the sense of testing a null hypothesis; i.e. AIC can tell nothing about how well a 

model fits the data in an absolute sense. In the general case, the AIC is 

kLAIC 2)ln(2        (3.10)                                                                                                         

Where k is the number of parameters in the statistical model , and L is the maximized 

value of the likelihood function for the estimated model. 

Given a set of candidate models for the data, the preferred model is the one with the 

minimum AIC value. Hence AIC not only rewards goodness of fit, but also includes a 

penalty that is an increasing function of the number of estimated parameters. This 

penalty discourages over fitting. (Increasing the number of free parameters in the model 

improves the goodness of the fit, regardless of the number of free parameters in the 

data-generating process). 

http://en.wikipedia.org/wiki/Goodness_of_fit
http://en.wikipedia.org/wiki/Statistical_model
http://en.wikipedia.org/wiki/Hirotsugu_Akaike
http://en.wikipedia.org/wiki/Information_entropy
http://en.wikipedia.org/wiki/Kullback-Leibler_divergence
http://en.wikipedia.org/wiki/Bias
http://en.wikipedia.org/wiki/Variance
http://en.wikipedia.org/wiki/Model_selection
http://en.wikipedia.org/wiki/Null_hypothesis
http://en.wikipedia.org/wiki/Parameter
http://en.wikipedia.org/wiki/Statistical_model
http://en.wikipedia.org/wiki/Likelihood_function
http://en.wikipedia.org/wiki/Overfitting
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3.5.2 The Schwarz’s BC Criterion 

Bayesian information criterion (BIC) or Schwarz criterion (also SBC) is a criterion for 

model selection among a finite set of models. It is based, in part, on the likelihood 

function, and it is closely related to Akaike information criterion (AIC). 

𝑆𝐵𝐶(𝐾) = 𝑛𝑙𝑛(𝜎𝑒
2) + 𝑘𝑙𝑛(𝑛)    (3.11) 

k = the number of free parameters to be estimated. 

n=the number of observations, or equivalently, the sample size. 

3.5.3 Durbin Watson statistic 

The Durbin Watson Test is a measure of autocorrelation (also called serial correlation) 

in residuals from regression analysis. Autocorrelation is the similarity of a time series 

over successive time intervals. It can lead to underestimates of the standard error and 

can cause you to think predictors are significant when they are not. The Durbin Watson 

test looks for a specific type of serial correlation, the AR (1) process. 

The Hypotheses for the Durbin Watson test are:  

H0 = No first order autocorrelation.  (𝜌 = 0) 

H1 = First order correlation exists.  (𝜌 > 0) 

(For a first order correlation, the lag is one time unit). 

Assumptions are: 

 That the errors are normally distributed with a mean of 0. 

 The errors are stationary. 

The test statistic is calculated with the following formula: 
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where  𝑒𝑖 = 𝑦𝑖 − 𝑦̂𝑖 and  𝑦𝑖 and  𝑦̂𝑖 are, respectively, the observed and predicted values 

of the response variable for individual 𝑖. DW value becomes smaller as the serial 

correlations increase. Upper and lower critical values, 𝑑𝑈 and  𝑑𝐿  have been tabulated 

for different values of k (the number of explanatory variables) and t. 

If DW < 𝑑𝐿 reject H0 : ρ = 0 

http://www.statisticshowto.com/serial-correlation-autocorrelation/
http://www.statisticshowto.com/serial-correlation-autocorrelation/
http://www.statisticshowto.com/residual/
http://www.statisticshowto.com/probability-and-statistics/regression-analysis/
http://www.statisticshowto.com/timeplot/
http://www.statisticshowto.com/find-standard-error-regression-slope/
http://www.statisticshowto.com/what-is-statistical-significance/
http://www.statisticshowto.com/autoregressive-model/
http://www.statisticshowto.com/probability-and-statistics/normal-distributions/
http://www.statisticshowto.com/mean/
http://www.statisticshowto.com/stationarity/
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If DW > 𝑑𝑈 do not reject H0 : ρ = 0 

If 𝑑𝐿 < d  < 𝑑𝑈 test is inconclusive 

3.6 Residual Diagnostics 

3.6.1 Ljung-Box Test 

The Box-Ljung test (1978) is a diagnostic tool used to test the lack of fit of a time series 

model. The test is applied to the residuals of a time series after fitting an ARMA(p,q) 

model to the data. The test examines m autocorrelations of the residuals. If the 

autocorrelations are very small, we conclude that the model does not exhibit significant 

lack of fit.  

In general, the Box-Ljung test is defined as:  

Ho : The model does not exhibit lack of fit. 

H1 : The model exhibits lack of fit. 

Test Statistic   

Given a time series Y of length n, the test statistic is defined as: 
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Where r kˆ  is the estimated autocorrelation of the series at lag k, and m is the number of 

lags being tested. 

The test is applied to residuals, the degrees of freedom must account for the estimated 

model parameters so that h = m-p-q, where p and q indicate the number of parameters 

from the ARMA(p,q) model fit to the data. 

Critical Region 

The Box-Ljung test rejects the null hypothesis (indicating that the model has significant 

lack of fit) if 𝑄 > 𝑥1−𝛼,ℎ
2  

where  𝑥1−𝛼,ℎ
2  is the chi-square distribution Table value with h degrees of freedom and 

significance level α. 

http://www.itl.nist.gov/div898/handbook/pmc/section7/pmc7.htm#Ljung,
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3.6.2 Autocorrelation Test 

For large sample T, the Box-Pierce test statistics 
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If there is no autocorrelation in the squared standardized returns the GARCH model is 

well specified. 

3.6.3 Jarque-Bera Test 

The Jarque-Bera Test, a type of Lagrange multiplier test, is a test for normality. 

Normality is one of the assumptions for many statistical tests, like the t test or F test; 

the Jarque-Bera test is usually run before one of these tests to confirm normality. It is 

usually used for large data sets, because other normality tests are not reliable when n is 

large. 

Specifically, the test matches the skewness and kurtosis of data to see if it matches a 

normal distribution. The data could take many forms, including: 

 Time Series Data. 

 Errors in a regression model. 

 Data in a Vector. 

A normal distribution has a Skewess of zero (i.e. it’s perfectly symmetrical around the 

mean) and a kurtosis of three; kurtosis tells you how much data is in the tails and gives 

you an idea about how “peaked” the distribution is. It’s not necessary to know the mean 

or the standard deviation for the data in order to run the test. 

The formula for the Jarque-Bera test statistic (usually shortened to just JB test statistic) 

is: 
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http://www.statisticshowto.com/assumption-of-normality-test/
http://www.statisticshowto.com/skewness/
http://www.statisticshowto.com/probability-and-statistics/statistics-definitions/kurtosis-leptokurtic-platykurtic/
http://www.statisticshowto.com/probability-and-statistics/normal-distributions/
http://www.statisticshowto.com/mean/
http://www.statisticshowto.com/mean/
http://www.statisticshowto.com/probability-and-statistics/standard-deviation/
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Where: 

N is the sample size, 

S is the sample Skewness Coefficient, 

K is the kurtosis coefficient. 

The null hypothesis for the test is that the data is normally distributed; the alternate 

hypothesis is that the data does not come from a normal distribution. In general, a large 

JB value indicates that errors are not normally distributed. 

3.6.4 Histogram 

In statistics, a histogram is a graphical representation showing a visual impression of 

the distribution of data. It is an estimate of the probability distribution of a continuous 

variable and was first introduced by Karl Pearson. A histogram consists of 

tabular frequencies, shown as adjacent rectangles, erected over discrete intervals, with 

an area equal to the frequency of the observations in the interval. The height of a 

rectangle is also equal to the frequency density of the interval. That is the frequency 

divided by the width of the interval. The total area of the histogram is equal to the 

number of data. A histogram may also be normalized displaying relative frequencies. 

3.6.5 Normal Distribution 

A normal distribution has a bell-shaped density curve described by its mean µ and 

standard deviation σ. The density curve is symmetrical, centered about its mean, with 

its spread determined by its standard deviation. The height of a normal density curve at 

a given point x is given by 
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http://www.statisticshowto.com/probability-and-statistics/null-hypothesis/
http://www.statisticshowto.com/what-is-an-alternate-hypothesis/
http://www.statisticshowto.com/what-is-an-alternate-hypothesis/
http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Probability_distribution
http://en.wikipedia.org/wiki/Karl_Pearson
http://en.wikipedia.org/wiki/Frequency_(statistics)
http://en.wikipedia.org/wiki/Rectangle
http://en.wikipedia.org/wiki/Normalization_(statistics)
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The Standard Normal curve, shown here, 

has mean 0 and standard deviation 1. If a 

dataset follows a normal distribution, then 

about 68% of the observations will fall 

within  σ of the mean µ, which in this case is with the interval (-1,1). About 95% of the 

observations will fall within 2 standard deviations of the mean, which is the interval (-

2,2) for the standard normal, and about 99.7% of the observations will fall within 3 

standard deviations of the mean, which corresponds to the interval (-3,3) in this case. 

Although it may appear as if a normal distribution does not include any values beyond 

a certain interval, the density is actually positive for all values,(-∞, +∞) Data from any 

normal distribution may be transformed into data following the standard normal 

distribution by subtracting the mean µ and dividing by the standard deviation σ. 

3.6.6 Student-t Distribution 

If Z ~ N (0, 1) and )(~
2

nU    are independent, then the random variable: 
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follows a t-distribution with n degrees of freedom.  write T ~ t (n). The p.d.f. of T is   
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for −∞ < t < ∞. 

3.6.7 Normal Probability Plot 

The normal probability plot is a graphical technique for assessing whether or not a data 

set is approximately normally distributed. 

The data are plotted against a theoretical normal distribution in such a way that the 

points should form an approximate straight line. Departures from this straight line 

http://www.itl.nist.gov/div898/handbook/eda/section3/eda3661.htm
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indicate departures from normality. The normal probability plot is a special case of 

the probability plot.  

3.6.8 Q-Q Plot 

A Q-Q plot is a plot of the quantiles of the first data set against the quantiles of the 

second data set. By a quantile, mean the fraction (or percent) of points below the given 

value. That is, the 0.3 (or 30%) quantile is the point at which 30% percent of the data 

fall below and 70% fall above that value.  

A 45-degree reference line is also plotted. If the two sets come from a population with 

the same distribution, the points should fall approximately along this reference line. 

The greater the departure from this reference line, the greater the evidence for the 

conclusion that the two data sets have come from populations with different 

distributions.  

The advantages of the Q-Q plot are:  

1. The sample sizes do not need to be equal.  

2. Many distributional aspects can be simultaneously tested. For example, shifts in 

location, shifts in scale, changes in symmetry, and the presence of outliers can all 

be detected from this plot. For example, if the two data sets come from populations 

whose distributions differ only by a shift in location, the points should lie along a 

straight line that is displaced either up or down from the 45-degree reference line.  

The Q-Q plot is similar to a probability plot. For a probability plot, the quantiles for 

one of the data samples are replaced with the quantiles of a theoretical distribution.  

3.6.9 Residuals 

The “residuals” in a time series model are what is left over after fitting a model. For 

many (but not all) time series models, the residuals are equal to the difference between 

the observations and the corresponding fitted values. 

yye ttt
ˆ       (3.20) 

http://www.itl.nist.gov/div898/handbook/eda/section3/probplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/probplot.htm
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Residuals are useful in checking whether a model has adequately captured the 

information in the data. A good forecasting method will yield residuals with the 

following properties: 

 The residuals are uncorrelated. If there are correlations between residuals, then 

there is information left in the residuals which should be used in computing 

forecasts. 

 The residuals have zero mean. If the residuals have a mean other than zero, then 

the forecasts are biased. 

3.7 Methodology of the analysis 

The techniques which have described in the previous sections of this chapter are used 

in preliminary analysis and in advanced analysis.  

In chapter 4, descriptive plots are plotted to gain the basic idea about the All Share price 

Index (ASPI) and monthly demand variation in different sector-wise price indices. The 

behaviors of the stock market price indices in previous years are descriptively analyzed 

and the basis of the advanced analysis is built up under the preliminary analysis. 

In chapter 5, further analysis is done based on four main sections. Section 5.1 & 5.2, is 

used to build a model for ASPI using different GARCH family models for bofore and 

after the ending of the war , which was occurred till may 2009 in Sri Lanka. Stationarity 

and variance patterns of the ASPI are inspected by using descriptive time series plots 

of the original series and returns series of the ASPI. Test for existing of volatility 

clusters in returns series of the ASPI is done using Box-pierce LM Test and Test for an 

ARCH effect. Further existence of asymmetric volatility clusters is statistically tested. 

Two distinct EGARCH models are identified to examine the volatility in ASPI. 

Diagnostic checking of the fitted models is done using Heteroskedasticity Test, 

Correlogram of the squared residuals. Error distribution assumption is tested by using 

Q-Q plot. 

In section 5.3, variance patterns of the three selected sector price indices namely, 

Banking Finance & Insurance (BFI), Construction & Engineering (CE), Manufacturing 

(MFU) are investigated with time series plots of the original series, log transformed 

series and returns series over the period 2000-2016. Existence of volatility clusters and 

asymmetric patterns are tested using proper statistical tests and diverse GARCH family 
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models are used to inspect the variance of sector price indices. Furthermore diagnostic 

checking is performed for each built model.  

3.8  Data Description 

The following data sets are used in this study. All data which have used for this study 

has been obtained from Colombo Stock Exchange (CSE), head office. 

 Monthly market price indices of ASPI,S&P SL 20 (2000-2016) 

 Daily market price indices of ASPI,S&P SL 20  (2000-2016) 

 Daily market price indices of Bank Finance and Insurance, Construction & 

Engineering, Manufacturing sector (2000-2016) 
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CHAPTER 4: PRELIMINARY ANALYSIS 

This chapter focuses on obtaining a fundamental idea of the monthly and daily stock 

market indices and other variables which can be affected on stock market indices. At 

the beginning, chapter provides the description of data. Graphical representations such 

as time series plots, ACF & PACF which are used to identify the existing of 

relationships & behaviors of the variables. 

In summary, this chapter focuses on five main aspects as follows, 

1. Monthly variation of three main market price indices 

2. Daily variation of All Share Total Returns Index (ASTRI) 

3. Descriptive Statistics of returns of the ASPI 

4. Monthly variation of market price indices of selected sectors 

5. Descriptive statistics of market price indices of selected sectors 

4.1 Monthly variation of three main market price indices 

4.1.1 Monthly Market Price of ASPI 
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Figure 4.1: Monthly ASPI over 2000-2016 

 

The time series plot depicts monthly variation of ASPI over 2000-2016. It can be clearly 

identified a positive trend over the time when considering overall data. However, it can 

be seen a significant fall in price indices corresponding to the 2008 and 2009 years. 

This decreasing pattern might be due to the critical time period of the war had occurred 

in Sri Lanka.  

Thus, when developing model for ASPI, It is required to consider the data set before 

and after the ending of the war. Therefore two models to be fitted under the Further 

Analysis. 

4.1.2 Monthly market price of S&P SL 20 Price Index 

 

Figure 4.2: Monthly S&P SL 20 over 2013-2016 

S&P SL 20 index has been included to CSE since January 2013.  The Figure 4.2 

illustrates the monthly variation patterns of the S&P SL 20 over 2013-2016. As the time 

series plot, there cannot be clearly identified negative or positive trend over time. It can 

be seen a rapid growth during 2014. However, S&P SL 20  price index has been 

declined to 3200 in 2016 which was the lowest price had recorded till 2016. 
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4.2 Daily variation of All Share Total Returns Index (ASTRI) 

4.2.1 Daily return index of ASTRI 

 

Figure 4.3: Daily ASTRI over 2004-2016 

The Figure 4.3 illustrates that ASTRI has been increased steadily over the period 2004-

2016. But It can be clearly identified some decrement patterns during 2007-2008 & mid 

of 2010 – mid of 2012 periods.  

4.2.2 Comparison of total market returns by ASPI and ASTRI 

Total market returns estimated by ASPI and market returns estimated by ASTRI are 

plotted for 2016. 

 

Figure 4.4: Time Series Plot of Returns of ASPI and Returns of ASTRI in 2016 

The time series plot of Figure 4.4 shows that there is no significant difference in the 

variation pattern of the total market returns calculated for ASPI and ASTRI. Hence, for 

the rest of the study, the analysis was continued by using total market returns calculated 

by ASPI. 
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4.3 Descriptive Statistics of returns of the ASPI 

4.3.1 Basic Statistics of the returns of ASPI 

Table 4.1: Basic Statistics values of the returns of the ASPI 

Statistics Returns of ASPI 

 Mean  1.388236 

 Median  0.340000 

 Maximum  255.2900 

 Minimum -300.5900 

 Std. Dev.  34.14064 

 Skewness -0.057585 

 Kurtosis  12.39698 

 Jarque-Bera  14995.40 

 Probability  0.000000 

 Sum  5657.060 

 Sum Sq. Dev.  4748586. 

 Observations  4075 

The return series of the ASPI indicates the negative skewness (-0.057585) that means 

series consist more decrements than the increments. The Jarque-berra statistics of the 

return series are highly significance (Probability=0.00). It rejects the null hypothesis 

that returns series is normally distributed. Thus returns series of the ASPI is not 

normally distributed. Further Skewness and Kurtosis values also indicates that the 

deviation of the returns from the normal distribution. Thus, when developing a GARCH 

model it is required to assume the error distribution away from the normal distribution. 
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4.3.2 Q-Q Plot of the returns of ASPI 

 

Figure  4.5 : Q-Q Plot of the Returns of ASPI 

 

The Q-Q Plot illustrates that how the returns series of the ASPI deviates from the 

normal distribution graphically. If the sample is perfectly normally distributed all the 

points should fall on the 45 degree line or on other words if the data is normally 

distributed then the quantiles lie on a straight line. Thus the returns of the ASPI 

evidently violate the normality. 

4.4 Monthly variation of market price indices of selected sectors 

 

 

Figure 4.6: Time series Plot of three selected price indices 
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According to the Figure 4.6, BFI sector has recorded higher price indices at all 

considered time period when compared with other two sectors. Besides, BFI sector 

shows a significant positive trend of price index during the considered sixteen years 

period while other two sectors fluctuate simultaneously with a slight trend.  

4.5 Descriptive statistics of market price indices of selected sectors 

4.5.1 Basic Statistics of the returns of selected indices 

Table 4.2: Basic Statistics values of the returns of the selected indices 

Statistics 

Bank Finance & 

Insurance(BFI) 

Construction & 

Engineering(CE) Manufacturing(MFU) 

 Mean  3.583642  0.571396  0.980304 

 Median  0.600000  0.000000  0.150000 

 Maximum  1086.480  676.2500  238.8600 

 Minimum -743.6200 -303.1300 -160.6700 

 Std. Dev.  94.98927  36.33594  23.48700 

 Skewness  0.402267  2.417476  0.568166 

 Kurtosis  17.05431  48.55834  15.24901 

 Jarque-Bera  33647.75  356382.3  25694.50 

 Probability  0.000000  0.000000  0.000000 

 Sum  14603.34  2328.440  3994.740 

 Sum Sq. Dev.  36759543  5378903.  2247377. 

 Observations  4075  4075  4075 

 

The Table 4.2 illustrates the basic statistics values of the returns of the three sector price 

indices of the bank Finance Insurance (BFI) sector, Construction & Engineering (CE) 

sector and Manufacturing (MFU) sector. Mean value and the standard deviation value 

of the returns of the BFI sector is noticeably high when compared with returns of the 

other two sectors. All the three return series indicate a positive Skewness values implies 

that all three series consist of more increments than decrements.   

The Jarque-berra statistics of all the return series are highly significance. It rejects the 

null hypothesis that return series are normally distributed. And this result finally implies 

that the returns of the all series are not normally distributed. The Skewness, Kurtosis 

and the Jarque-Berra statistics (P value =0.00) indicates that the deviation of the returns 

from the normal distribution. The above kind of statistics assures the reliability of the 
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predictions based on the standard deviation. Furthermore when developing volatility 

models, error distribution is required to be assume away from the normal distribution. 

4.5.2 Q-Q Plot of the returns of the selected sector indices 

 

Figure 4.7: Q-Q Plot of the Returns of Selected Sector Indices 

The Q-Q diagrams illustrate that how the each returns series of selected three sector 

indices deviate from the normal distribution graphically. If the sample is perfectly 

normally distributed all points should fall on the 45 degree line or on other words if the 

data is normally distributed then the quantiles will lie on a straight line. According to 

the Q-Q plots of return series of the three price indices, it can be clearly identified that 

three series are highly deviate from the normal distribution.  
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CHAPTER 5: FURTHER ANALYSIS 

The behavior of the stock market price indices in previous years was descriptively 

analyzed and the basis of this advanced analysis was built up in chapter 4. A basic idea 

about the main stock price indices and sector-wise price indices can be obtained through 

chapter 4. 

The further analysis consists in following main parts. 

 Modeling daily ASPI using different GARCH family models before and after 

the ending of the war, to estimate the variance of ASPI. 

 Modeling daily price indices of following three sectors. 

1. Banking Finance & Insurance (BFI) 

2. Construction & Engineering (CE) 

3. Manufacturing (MFU) 

 

5.1 Modeling daily ASPI (2000-2009 May) 

5.1.1 Identifying the Stationarity  

 
Figure 5.1: Time Series plot of the daily ASPI (2000-2009 May) 

Figure 5.1 illustrates that there is a positive trend in the ASPI daily data series till 2007. 

Variance of the series is seems to be not constant. When fitting a time series model it 

is required that the variance of the series to remain constant.  

Time series plot of the 1st differenced series of the ASPI is plotted. 
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Figure 5.2: Returns Series of the ASPI (2000-2009 May) 

According to the Figure 5.2, it can be seen that return series of the ASPI fluctuate 

significantly over the considered periods. Thus variance of the series seems to be non-

constant. 

Existence of the volatility clusters and nature of the volatility (Symmetric or 

Asymmetric) are examined using appropriate statistical tests. 

5.1.2 Test for existing of volatility clusters in returns series of the ASPI 

 Box-pierce LM Test: 

The value of the formula 3.7 is calculated.  
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T=2240, 
2

= 3.871 

Test statistic= Q =0.3482978×2240=780.1871 

Since Q=780.1871 > 
2

=3.871, reject H0 and conclude that there exist volatility 

clustering in the return series of the ASPI at 5% level. 

Since this test is not very robust one, Test for an ARCH effect is also applied. 

Test for an ARCH effect 

Step1: The regression of the returns series is run with intercept using Ordinary Least 

Squares (OLS) method and residuals are obtained. 

Step2:  Squared residuals are calculated. The following regression is run for the 

residuals series. 

𝑢𝑡
2 = 𝛼0 + 𝛼1𝑢𝑡−1

2 + 𝑣𝑡 

Where u is the residual from the initial regression and 1 lag term is included in this 

secondary regression. 

 

Table 5.1: Results of the secondary regression run for the squared residuals 

Method: Least Squares   

Included observations: 2239 after adjustments  

Variable Coefficient Std. Error t-Statistic Prob. 

Squared Residuals 
0.311678 0.020090 15.51438 0.0000 

C 
279.6354 35.16188 7.952800 0.0000 

R-squared 
0.097145 

    Mean dependent var 
406.1553 

Adjusted R-squared 
0.096741 

    S.D. dependent var 
1702.891 

S.E. of regression 
1618.426 

    Akaike info criterion 
17.61719 

 

Step 3: T*𝑅2 is calculated. 

H0: There is no ARCH effect present 

H1: There exists an ARCH effect. 

T=2239   𝑅2 =0.096741 
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T*𝑅2 = 216.60~ 𝑥2(1) 

𝑥2(1) = 3.871 at 5% level of significance. 

Since T*𝑅2 = 216.60 ≫ 3.871   H0 is rejected at 5 % level. Therefore, the returns 

series of the ASPI exists an ARCH effect. 

5.1.3 Test for asymmetry in volatility clustering: 

The value of the denominator of the formula 3.9 is calculated. 

1st order autocorrelation coefficient between lag returns and current squared returns, 

ν =




T

t
tt rr

2
1

2
 = -9261089.911 

Since ν = 




T

t
tt rr

2
1

2
     has taken negative value, formula   is a negative quantity here. 

Corresponding Box-Pierce LM test is significant at 5% level. there exists asymmetric 

volatility clusters in the return series of the ASPI.  

The asymmetric of the volatility is happened when volatility increases more when the 

stock prices were falling than when it was rising by the same amount.  Asymmetric 

Volatility series can be modeled using asymmetric GARCH models such as EGARCH. 

5.1.4 GARCH model for the ASPI (2000-2009 May) 

As described in the Chapter 4, returns series of the ASPI is not normally distributed. In 

addition Skewness and Kurtosis values also indicates that the deviation of the returns 

from the normal distribution. Thus, when fitting a GARCH model it is required to 

assume the error distribution away from the normal distribution. Also, Q-Q Plot of the 

Returns of ASPI evidently violates the normality. 

 

 

 

EGARCH(1,1) Model 
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Table 5.2 : Parameter Estimation of the E-GARCH(1,1) Model 

 Coefficient Std. Error z-Statistic Prob. 

Mean equation 

θ 
0.243838 0.020089 12.13767 0.0000 

Variance Equation 

ω 
-0.224414 0.028652 -7.832257 

0.0000 

α 
0.506710 0.039232 12.91564 

0.0000 

β 
0.975963 0.005052 193.1660 

0.0000 

γ 
-0.039172 0.022076 -1.774439 

0.0430 

T-Distribution. DOF 
3.645676 0.303466 12.01347 

0.0000 

According to the Table 5.2, all coefficient of the EGARCH (1,1) model are significant 

at 5% level.  The mean and variance equations of the fitted model can be represented 

as follows. 

The Mean Equation 

𝑟𝑡 =  𝐶 + 𝜃𝑟𝑡−1 + 𝜀𝑡 

𝑟𝑡 =  0.24𝑟𝑡−1 

The Variance Equation 

log(𝜎𝑡
2) = 𝜔 + 𝛼 |

𝜀𝑡−1

𝜎𝑡−1
| + 𝛽𝑙𝑜𝑔(𝜎𝑡−1

2 ) + 𝛾
𝜀𝑡−1

𝜎𝑡−1
 

 

log(𝜎𝑡
2) = −0.22 + 0.51 |

𝜀𝑡−1

𝜎𝑡−1
| + 0.98𝑙𝑜𝑔(𝜎𝑡−1

2 ) − 0.04
𝜀𝑡−1

𝜎𝑡−1
 

𝛼, 𝛽 > 0 

Note that the left-hand side is the log of the conditional variance. This implies that the 

leverage effect is exponential, rather than quadratic, and that forecasts of the conditional 

variance are guaranteed to be nonnegative. 

Here, it can be seen that the relatively small degrees of freedom parameter for the t-

distribution (3.65) suggests that the distribution of the standardized errors departs 

significantly from normality. 



37 

 

Diagnostic checking 

Heteroskedasticity Test (ARCH-LM test) 

Table 5.3 : Heteroskedasticity Test for EGARCH (1,1) model 

F-statistic 
0.726268 

Prob. F(1,2236) 
0.3942 

Observed R-

squared 
0.726682 

Prob. Chi-Square(1) 
0.3940 

 

According to the results of the Table 5.3, coefficient of the lag value of the squared 

standard error is insignificant. Thus errors don’t depend on the lag values of the errors. 

Both test statistics (F statistic & observed R-squared) do not reject the null hypothesis 

that standardized residuals exhibit additional ARCH effect. Hence, there is no 

heteroscedasticity in the standardized residuals. 

 

The correlogram of the squared residuals 

Table 5.4 : The correlogram of Standardized Residuals 

Lag ACF PACF Q-Stat Prob* 

1 0.018 0.018 0.7280 0.394 

2 0.013 0.013 1.1187 0.572 

3 -0.024 -0.024 2.3831 0.497 

4 -0.019 -0.019 3.2214 0.521 

5 -0.007 -0.006 3.3365 0.648 

6 -0.026 -0.026 4.8837 0.559 

7 -0.002 -0.002 4.8956 0.673 

8 -0.006 -0.006 4.9662 0.761 

9 -0.003 -0.004 4.9885 0.835 

10 -0.007 -0.008 5.0936 0.885 

11 -0.015 -0.015 5.5757 0.900 

12 -0.006 -0.007 5.6688 0.932 

13 0.010 0.010 5.8749 0.951 

14 -0.013 -0.015 6.2707 0.959 

15 -0.006 -0.007 6.3636 0.973 

16 -0.021 -0.021 7.3833 0.965 

17 -0.019 -0.019 8.1569 0.963 

Variable Coefficient Std. Error t-Statistic Prob. 

Standard 𝜀𝑡−1
2  

0.018019 0.021144 0.852214 0.3942 
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18 -0.015 -0.015 8.6684 0.967 

19 -0.003 -0.004 8.6921 0.978 

20 -0.015 -0.018 9.2122 0.980 

21 -0.001 -0.003 9.2140 0.987 

22 -0.021 -0.023 10.212 0.984 

23 -0.010 -0.012 10.458 0.988 

24 -0.007 -0.009 10.582 0.992 

25 0.003 0.001 10.597 0.995 

26 -0.012 -0.016 10.949 0.996 

27 -0.003 -0.005 10.976 0.997 

28 -0.011 -0.014 11.271 0.998 

29 -0.009 -0.011 11.458 0.999 

30 0.015 0.014 11.999 0.999 

31 0.014 0.011 12.437 0.999 

32 0.015 0.011 12.962 0.999 

33 -0.009 -0.012 13.149 0.999 

34 -0.013 -0.015 13.520 0.999 

35 -0.020 -0.020 14.445 0.999 

36 -0.011 -0.012 14.740 0.999 

According to the Table 5.4, the correlogram of the squared residuals consists of the 

highly insignificance Q - Statistics values from lag 1 to 36. These results confirm that 

the selected variance equation is highly accepted to describe the error variance of the 

mean equation. 

Q-Q plot: 

 

Figure 5.3 : Q-Q plot of the EGARCH (1, 1) model 

The Figure 5.3 illustrates the Q-Q plot which has drawn with the assumption of the 

residuals follows t-distribution. As above plot, it can be seen that the residuals are much 
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closed to the straight line. Thus the residuals of the fitted model follow the t-

distribution. 

Actual and fitted volatility 

Since the actual volatility is unobservable, the squared return series will be used as a 

proxy for the realized volatility. A plot of the proxy against the fitted volatility provides 

an indication of the models ability to track variations in ASPI (2000-2016 May). 

 

Figure 5.4 : Actual & fitted volatility in return series of the ASPI(2000-2016 May) 

According to the Figure 5.4, the fitted volatilities have captured the patterns of the 

squared return series. Thus this model can be used to forecast the volatilities of the 

ASPI (2000-2016 May). Further it can be observed that estimated variance of the series 

fluctuated in the range  0- 16,000.   

. 
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5.2 Modeling daily ASPI (2009 May-2016) 

5.2.1 Identifying the Stationarity  

 
Figure 5.5 : Time Series plot of the daily ASPI (2009 May-2016) 

Figure 5.5 illustrates that there is a slight positive trend in the ASPI daily data series of 

2009 May-2016. Variance of the series is seems to be not constant. When fitting a time 

series model it is required that the variance of the series to remain constant.  

Time series plot of the 1st differenced series of the ASPI is plotted. 

 

Figure 5.6 : Returns Series of the ASPI (2000-2009 May) 

According to the Figure 5.6, it can be seen that return series of the ASPI fluctuate 

significantly over the considered periods. Thus variance of the series seems to be non-

constant. 
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Existence of the volatility clusters and nature of the volatility (Symmetric or 

Asymmetric) are examined using appropriate statistical tests. 

5.2.2 Test for existing of volatility clusters in returns series of the ASPI 

 Box-pierce LM Test: 

The value of the formula 3.7 is calculated.  






T

t
tt rr

2

2

1

2
=  21864363985.93  




T

t
tr

2

4
= 61552416653.93 

 1st order autocorrelation coefficient of squared return series = 










T

t
t

T

t
tt

r

rr

2

4

2

2

1

2

= 0.355215 

T=1836, 
2

= 3.871 

Test statistic= Q =0.355215×1836=652.175 

Since Q=651.82 > 
2

=3.871, reject H0 and conclude that there exist volatility 

clustering in the return series of the ASPI(2009 May-2016)  at 5% level. 

Since this test is not very robust one, Test for an ARCH effect is also applied. 

Test for an ARCH effect 

Step1: The regression of the returns series is run with intercept using Ordinary Least 

Squares (OLS) method and residuals are obtained. 

Step2:  Squared residuals are calculated. The following regression is run for the 

residuals series. 

𝑢𝑡
2 = 𝛼0 + 𝛼1𝑢𝑡−1

2 + 𝑣𝑡 

Where u is the residual from the initial regression and 1 lag term is included in this 

secondary regression. 
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Table 5.5: Results of the secondary regression run for the squared residuals 

Method: Least Squares   

Included observations: 1836 after adjustments  

Variable Coefficient Std. Error t-Statistic Prob. 

Squared Residuals 
0.260687 0.022555 11.55766 0.0000 

C 
1540.546 130.5564 11.79985 0.0000 

R-squared 
0.067959 

    Mean dependent var 
2083.679 

Adjusted R-squared 
0.067451 

    S.D. dependent var 
5401.708 

S.E. of regression 
5216.354 

    Akaike info criterion 
19.95807 

 

Step 3: T*𝑅2 is calculated. 

H0: There is no ARCH effect present 

H1: There exists an ARCH effect. 

T=1836   𝑅2 =0.067959 

T*𝑅2 = 124.77~ 𝑥2(1) 

𝑥2(1) = 3.871 at 5% level of significance. 

Since T*𝑅2 = 124.77 ≫ 3.871   H0 is rejected at 5 % level. Therefore, the returns 

series of the ASPI (2009 May-2016)   exists an ARCH effect. 

5.2.3 Test for asymmetry in volatility clustering: 

The value of the denominator of the formula 3.9 is calculated. 

1st order autocorrelation coefficient between lag returns and current squared returns, 

ν =




T

t
tt rr

2
1

2
 = -13054788.89 

Since ν = 




T

t
tt rr

2
1

2
     has taken negative value, formula   is a negative quantity here. 
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Corresponding Box-Pierce LM test is significant at 5% level. there exists asymmetric 

volatility clusters in the return series of the ASPI(2009 May-2016)   .  

The asymmetric of the volatility is happened when volatility increases more when the 

stock prices were falling than when it was rising by the same amount.  Asymmetric 

Volatility series can be modeled using asymmetric GARCH models such as EGARCH. 

5.2.4 GARCH model for the ASPI (2009 May-2016) 

As described in the Chapter 4, returns series of the ASPI is not normally distributed. In 

addition Skewness and Kurtosis values also indicates that the deviation of the returns 

from the normal distribution. Thus, when fitting a GARCH model it is required to 

assume the error distribution away from the normal distribution. Also, Q-Q Plot of the 

Returns of ASPI evidently violates the normality. 

EGARCH (2, 2) Model 

Table 5.6 : Parameter Estimation of the EGARCH(2,2) Model 

 Coefficient Std. Error z-Statistic Prob. 

Mean equation 

θ 
0.236866 0.024031 9.856887 0.0000 

Variance Equation 

ω 
0.084382 0.089307 0.944853 

0.0000 

α1 
0.408360 0.062047 6.581509 

0.0000 

α2 
-0.152929 0.195887 -0.780700 

0.0000 

β1 
 0.032850 0.027058 -1.214049 

0.0000 

β2 
1.149086 0.553858 2.074693 

0.0000 

γ 
-0.186402 0.525933 -0.354422 

0.0032 

T-Distribution. DOF 
5.364308 0.763544 7.025543 0.0000 

 

According to the Table 5.5 all coefficients of the EGARCH (2, 2) model are significant 

at 5% level.  The mean and variance equations of the fitted model can be represented 

as follows. 

 

The Mean Equation 
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𝑟𝑡 =  𝐶 + 𝜃𝑟𝑡−1 + 𝜀𝑡 

𝑟𝑡 =  0.24𝑟𝑡−1 

The Variance Equation 

log(𝜎𝑡
2) = 𝜔 + 𝛼1 |

𝜀𝑡−1

𝜎𝑡−1
| + 𝛼2 |

𝜀𝑡−2

𝜎𝑡−2
| + 𝛽1𝑙𝑜𝑔(𝜎𝑡−1

2 ) + 𝛽2𝑙𝑜𝑔(𝜎𝑡−2
2 ) + 𝛾

𝜀𝑡−1

𝜎𝑡−1
 

 

log(𝜎𝑡
2) = 0.084 + 0.41 |

𝜀𝑡−1

𝜎𝑡−1
| − 0.15 |

𝜀𝑡−2

𝜎𝑡−2
| + 0.033𝑙𝑜𝑔(𝜎𝑡−1

2 ) + 1.15𝑙𝑜𝑔

− 0.19
𝜀𝑡−1

𝜎𝑡−1
 

𝛼1, 𝛽1 > 0 

Note that the left-hand side is the log of the conditional variance. This implies that the 

leverage effect is exponential, rather than quadratic, and that forecasts of the conditional 

variance are guaranteed to be nonnegative. 

Here, also we see that the relatively small degrees of freedom parameter for the t-

distribution (5.36) suggests that the distribution of the standardized errors departs 

significantly from normality. 

 

Diagnostic checking 

Heteroskedasticity Test (ARCH-LM test) 

Table 5.7 : Heteroskedasticity Test for EGARCH (2,2) model 

F-statistic 
0.004944     Prob. F(1,1831) 0.9439 

Observed R-

squared 
0.004950     Prob. Chi-Square(1) 0.9439 

According to the results of above Table 5.6, both test statistics (F statistic & observed 

R-squared) do not reject the null hypothesis that standardized residuals do not exhibit 

additional ARCH effect. Hence there is no heteroscedasticity in the standardized 

residuals of the fitted model. 

Variable Coefficient Std. Error t-Statistic Prob. 

Standard 𝜀𝑡−1
2  

-0.001643 0.023362 -0.070316 0.9439 
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The correlogram of the squared residuals 

Table 5.8 : The correlogram of standardized residuals 

Lag Value AC   PAC  Q-Stat  Prob* 

1 -0.002 -0.002 0.0050 0.944 

2 0.012 0.012 0.2651 0.876 

3 -0.007 -0.007 0.3620 0.948 

4 -0.009 -0.009 0.5124 0.972 

5 -0.012 -0.012 0.7916 0.978 

6 0.006 0.006 0.8616 0.990 

7 0.001 0.001 0.8622 0.997 

8 0.001 0.000 0.8630 0.999 

9 0.025 0.025 1.9846 0.992 

10 -0.024 -0.024 3.0572 0.980 

11 -0.001 -0.002 3.0606 0.990 

12 
0.028 0.028 4.4597 0.974 

13 0.006 0.007 4.5331 0.984 

14 0.036 0.035 6.8760 0.939 

15 -0.046 -0.047 10.784 0.768 

16 0.027 0.027 12.110 0.736 

17 0.047 0.049 16.144 0.514 

18 -0.021 -0.022 16.928 0.528 

19 -0.020 -0.020 17.663 0.545 

20 -0.019 -0.020 18.342 0.565 

21 0.018 0.019 18.967 0.587 

22 0.003 0.005 18.988 0.646 

23 -0.034 -0.038 21.105 0.575 

24 -0.029 -0.027 22.690 0.538 

25 0.025 0.023 23.875 0.527 

26 0.008 0.007 24.006 0.576 

27 0.002 0.005 24.011 0.630 

28 -0.017 -0.021 24.563 0.652 

29 -0.025 -0.025 25.757 0.638 

30 -0.000 -0.003 25.757 0.687 

31 0.032 0.034 27.667 0.638 

32 -0.029 -0.022 29.250 0.606 

33 0.031 0.025 31.079 0.563 

34 0.007 0.003 31.177 0.607 

35 -0.007 -0.004 31.265 0.649 

36 0.037 0.045 33.831 0.572 

The correlogram of standardized residuals are shown in Table 5.7. Q statistics values 

of lag 1 to 36 are highly insignificant, hence selected variance equation is adequate to 

describe the error variance of the mean equation. 
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Q-Q plot: 

 

Figure 5.7 : Q-Q plot of the EGARCH (2, 2) model 

The Q-Q plot depicts that apart from few large and small residuals most of the points 

are laid in the straight line. Therefore assumptions made for the error distribution is 

validated. 

Actual and fitted volatility 

Since the actual volatility is unobservable, the squared return series will be used as a 

proxy for the realized volatility. A plot of the proxy against the fitted volatility provides 

an indication of the models ability to track variations in ASPI(2009 May-2016). 
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Figure 5.8: Actual & fitted volatility in return series of the ASPI 

According to the Figure 5.8, the fitted volatilities have captured the patterns of the 

squared return series. Thus this model can be used to forecast the volatilities of the 

ASPI. Further it can be observed that estimated variance of the series fluctuated in the 

range  0- 20,000.   
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5.3 Modeling sector-wise daily price indices 

This study also focuses on discussing the market performances of three sector price 

indices. Those are as follows.  

1. Banking Finance & Insurance (BFI) 

2. Construction & Engineering(CE) 

3. Manufacturing(MFU) 

These sectors are selected based on the GDP contribution of the sectors as mentioned 

in the annual reports of the central bank. 

5.3.1 Banking Finance & Insurance (BFI) sector price index (2000-2016) 

Identifying the stationarity of the BFI Series 

 

Figure 5.9 : Time Series plot of the Daily BFI 

As depicts in Figure 5.9, there is a positive trend of the BFI series over the period 2000-

2016. However BFI sector price index has been fall noticeably in some time intervals. 

Thus variance of the series seems to be non-constant. 

Log transformed series of the BFI has used to inspect the variance stability. 
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Figure 5.10 : Log Transformed series of the BFI 

According to the Figure 5.10, log transformed series shows very little fluctuation 

patterns when compared with Figure 5.9. 1st difference series of the BFI is obtained for 

more assessment. 

 

Figure 5.11 : Returns series of the BFI 

According to the Figure 5.11, the variance of the series seems to be irregular with time. 

In some time periods returns of BFI has  increased significantly while in other periods 

returns takes small values. Hence it can be suspected that returns series of the BFI exists 

volatility clusters.  

Existence of the volatility clusters and nature of the volatility (Symmetric or 

Asymmetric) were examined using appropriate statistical tests. 
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Test for existing of volatility clusters in returns series of the BFI 

Box-pierce LM Test: 

The value of the formula 3.7 is calculated.  






T

t
tt rr

2

2

1

2
 = 1908570173059.71 




T

t
tr

2

4

  = 5678145584069.82 

1st order autocorrelation coefficient of squared return series = 










T

t
t

T

t
tt

r

rr

2

4

2

2

1

2

 = 0.336126 

T=4075, 
2 =3.871 

Test statistic = Q =0.336126×4075=1369.712 

Box-pierce  Q =1369.712 >
2  =3.871 H0 is rejected and conclude that there exist 

volatility clustering in the return series of the BFI at 5% level. 

Since this test is not very robust one, Test for an ARCH effect is also performed. 

Test for an ARCH effect 

Step1: The regression of the returns series is run with intercept using Ordinary Least 

Squares (OLS) method and residuals series is obtained. 

Step2: Squared residuals are calculated. The following regression is run for the 

residuals series. 

𝑢𝑡
2 = 𝛼0 + 𝛼1𝑢𝑡−1

2 + 𝑣𝑡 

Where u is the residual from the initial regression and 1 lag term is included in this 

secondary regression. 

Table 5.9 : Results of the secondary regression run for the squared residuals 

Method: Least Squares   

Included observations: 4074 after adjustments  

Variable Coefficient Std. Error t-Statistic Prob.   
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Squared Residuals 
0.293842 0.014979 19.61664 0.0000 

C 
6371.148 558.0870 11.41605 0.0000 

R-squared 
0.086343 

    Mean dependent var 
9022.471 

Adjusted R-squared 
0.086118 

    S.D. dependent var 
36152.88 

S.E. of regression 
34561.13 

    Akaike info criterion 
23.73934 

 

Step3:T*𝑅2 is calculated. 

H0: There is no ARCH effect present 

H1: There exists an ARCH effect. 

T=4074   𝑅2 =0.086343 

T*𝑅2 = 351.761 ~ 𝑥2(1) 

𝑥2(1) = 3.871 at 5% level of significance. 

Since T*𝑅2 = 351.761 ≫ 3.871   H0 is rejected at 5 % level. Therefore the returns 

series of the BFI exists an ARCH effect. 

Test for asymmetry in volatility clustering: 

The value of the denominator of the formula 3.9 is calculated. 

1st order autocorrelation coefficient between lag returns and current squared returns, 

ν  =




T

t
tt rr

2
1

2
 = 531536718.69 

Since ν = 




T

t
tt rr

2
1

2
 has taken positive value, formula 3.9 is a positive quantity. 

Also, corresponding Box-Pierce LM test is significant at 5% level. Thus as the test 

described in Chapter 3, there is no asymmetric volatility clusters in the return series of 

the BFI.  

GARCH model for the BFI 

As described in Chapter 4, returns series of the BFI is not normally distributed. 

Skewness and Kurtosis values also indicates that the deviation of the returns from the 

normal distribution. Therefore, when fitting a GARCH model for the BFI returns it is 

required to assume the error distribution away from the normal distribution.  
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GARCH (1, 2) Model 

Table 5.10 : Parameter Estimation of the GARCH(1,2) Model 

 Coefficient Std. Error z-Statistic Prob. 

Mean equation 

θ 0.190849 0.015757 12.11176 0.0000 

Variance Equation 

α0 8.035175 2.657596 3.023475 0.0025 

α 0.457763 0.060940 7.511734 0.0000 

β1 0.539784 0.116528 4.632241 0.0000 

β2 0.192801 0.095205 2.025116 0.0029 

T-Distribution. DOF 3.091726 0.162197 19.06159 0.0000 

According to the Table 5.10, all the coefficients of the GARCH(1,2) model are 

significant at 5 % level. The mean and variance equations of the fitted model can be 

written as follows. 

The Mean Equation 

𝑟𝑡 =  𝐶 + 𝜃𝑟𝑡−1 + 𝜀𝑡 

𝑟𝑡 =  0.19𝑟𝑡−1 

The Variance Equation 

𝜎𝑡
2 = 𝑎0 + 𝛼𝜀𝑡−1

2 + 𝑏𝜎𝑡−1
2  

𝜎𝑡
2 = 8.04 + 0.46𝜀𝑡−1

2 + 0.54𝜎𝑡−1
2 + 0.19𝜎𝑡−2

2  

𝑎0 > 0  𝑎𝑛𝑑  𝛼, 𝛽1, 𝛽2 > 0 

Here, also we see that the relatively small degrees of freedom parameter for the t-

distribution (3.09) suggests that the distribution of the standardized errors departs 

significantly from normality. 

Diagnostic checking 

Heteroskedasticity Test (ARCH-LM test) 

Table 5.11 : Heteroskedasticity Test for GARCH (1,2) model 

F-statistic 0.006883 Prob. F(1,4071) 0.9339 

Observed R-

squared 0.006886 Prob. Chi-Square(1) 0.9339 

Variable Coefficient Std. Error t-Statistic Prob. 
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According to the results of the Table 5.11, coefficient of the lag value of the squared 

standard error is insignificant. Thus errors do not depend on the lag values of the errors. 

F statistic and observed R-squared values are insignificant implies that standardized 

residuals do not exhibit additional ARCH effect. Hence there is no heteroscedasticity 

in the standardized residuals. 

The correlogram of the squared residuals 

Table 5.12 : The correlogram of standardized residuals 

Lag AC PAC Q-Stat Prob* 

1 0.001 0.001 0.0069 0.934 

2 -0.002 -0.002 0.0284 0.986 

3 -0.002 -0.002 0.0471 0.997 

4 -0.004 -0.004 0.1031 0.999 

5 -0.004 -0.004 0.1567 1.000 

6 -0.003 -0.003 0.2019 1.000 

7 -0.000 -0.000 0.2026 1.000 

8 -0.004 -0.004 0.2591 1.000 

9 -0.004 -0.004 0.3214 1.000 

10 -0.004 -0.004 0.3860 1.000 

11 -0.003 -0.003 0.4323 1.000 

12 -0.004 -0.004 0.4928 1.000 

13 -0.002 -0.002 0.5036 1.000 

14 0.013 0.013 1.1851 1.000 

15 -0.002 -0.002 1.2013 1.000 

16 -0.002 -0.002 1.2193 1.000 

17 -0.002 -0.002 1.2358 1.000 

18 -0.004 -0.004 1.2899 1.000 

19 -0.004 -0.004 1.3498 1.000 

20 -0.003 -0.003 1.3984 1.000 

21 -0.002 -0.002 1.4205 1.000 

22 -0.003 -0.003 1.4544 1.000 

23 -0.003 -0.003 1.4844 1.000 

24 -0.003 -0.004 1.5338 1.000 

25 -0.002 -0.002 1.5517 1.000 

26 -0.002 -0.002 1.5693 1.000 

27 -0.001 -0.001 1.5710 1.000 

28 0.007 0.006 1.7521 1.000 

29 -0.004 -0.004 1.8165 1.000 

30 -0.003 -0.003 1.8443 1.000 

Standard 𝜀𝑡−1
2  0.001300 0.015673 0.082964 0.9339 
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31 -0.003 -0.003 1.8844 1.000 

32 -0.004 -0.004 1.9408 1.000 

33 -0.003 -0.003 1.9897 1.000 

34 -0.003 -0.003 2.0306 1.000 

35 -0.001 -0.001 2.0374 1.000 

36 -0.000 -0.000 2.0375 1.000 
 

The correlogram of standardized residuals of the GARCH(1,2) model are shown in 

Table 5.12. Q-statistics values of the correlogram of the squared residuals are greater 

than to 0.05 for lag 1 to 36 at 5% level. Thus ACF and PACF values of the squared 

residuals are insignificant up to lag 36 illustrated that chosen variance equation can be 

used to describe the error variance of the mean equation. 

Q-Q plot: 

 

Figure 5.12 : Q-Q plot of the GARCH (1, 2) model 

The Figure 5.12 depicts the Q-Q plot which has drawn with the assumption of the 

residuals follows t-distribution. Accordingly, apart from few large and small outliers 

data points residuals lie nearly in a straight line prove that error distribution has been 

correctly specified. 

 

 

 

-12

-8

-4

0

4

8

12

-30 -20 -10 0 10 20

Quantiles of RESID02

Q
u

a
n

ti
le

s
 o

f 
S

tu
d

e
n

t'
s
 t



54 

 

Actual and fitted volatility 

Since the actual volatility is unobservable, the squared return series will be used as a 

proxy for the realized volatility. A plot of the proxy against the fitted volatility provides 

an indication of the models ability to track variations in BFI. 
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Figure 5.13 : Actual & fitted volatility in return series of the BFI 

According to the Figure 5.13, the fitted volatilities have captured the patterns of the 

squared return series. Thus this model can be used to forecast the volatilities of the BFI. 

5.3.2 Construction & Engineering (CE) Sector Price Index ( 2000-2016) 

Identifying the Stationarity of the CE Series 

 

Figure 5.14 : Time Series plot of the daily CE 
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The Figure 5.14 shows the time series plot of the daily price index of the Construction 

& Engineering (CE) sector over the period (200-2016). The series consists a positive 

trend when considering initial and final data points. However there can be seen many 

sudden increments and decrements of the price index during the considered period. 

Thus variance of the CE price index series seems to be non-constant. 

Log transformed series of the CE sector index has been obtained to inspect the variance 

stability. 

 

Figure 5.15 : Log Transformed series of the CE 

According to the Figure 5.15, log transformed series of the CE index also depicts little 

fluctuation patterns.  Severe fluctuations patterns had observed in original series have 

been removed. However, very slight fluctuation patterns can be seen. 1st difference 

series of the CE index series is obtained for more assessment. 

 

Figure 5.16 : Returns series of the CE 
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According to the Figure 5.16, it can be seen that variance of the returns of CE index has 

been changed over the time.  In first half of the plot, returns of CE seems to be remain 

constant while in last part of the considered period returns values has been fluctuated 

noticeably. Thus it can be supposed that returns series of the CE exist volatility clusters.  

Existence of the volatility clusters and the symmetricity of the volatility clusters were 

examined using appropriate statistical tests. 

Test for existing of volatility clusters in returns series of the BFI 

Box-pierce LM Test: 

The value of the formula 3.7 is calculated.  






T

t
tt rr

2

2

1

2
= 34629136717.14 




T

t
tr

2

4
= 345855727354.48 

1st order autocorrelation coefficient of squared return series= 










T

t
t

T

t
tt

r

rr

2

4

2

2

1

2

= 0.100126 

T=4075,  
2 = 3.871 

Test statistic= Q =0.100126×4075=408.01 

Since Q = 408.01 >
2 = 3.871 we reject H0 and conclude that there exist volatility 

clustering in the return series of the CE price index at 5% level. 

Since this test is not very robust one, Test for an ARCH effect method is also performed. 

Test for an ARCH effect 

Step1: The regression of the returns series is run with intercept using Ordinary Least 

Squares (OLS) and residuals are obtained. 

Step2: Squared residuals are calculated. The following regression is run for the 

residuals series. 

𝑢𝑡
2 = 𝛼0 + 𝛼1𝑢𝑡−1

2 + 𝑣𝑡 

Where u is the residual from the initial regression and lag 1 term is included in this 

secondary regression. 
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Table 5.13 : Results of the secondary regression run for the squared residuals 

Method: Least Squares   

Included observations: 4074 after adjustments  

Variable Coefficient Std. Error t-Statistic Prob. 

Squared Residuals 
0.081066 0.015619 5.190075 0.0000 

C 
1213.273 143.6860 8.443916 0.0000 

R-squared 
0.006572 

    Mean dependent var 
1320.289 

Adjusted R-squared 
0.006328 

    S.D. dependent var 
9105.106 

S.E. of regression 
9076.253 

    Akaike info criterion 
21.06520 

 

Step 3 :T*𝑅2 is calculated. 

H0: There is no ARCH effect present 

H1: There exists an ARCH effect. 

T= 4074   𝑅2 = 0.006572 

T*𝑅2 = 26.77 ~ 𝑥2(1) 

𝑥2(1) = 3.871 at 5% level of significance. 

Since T*𝑅2 = 26.77 ≫ 3.871   H0 is rejected at 5 % level. Therefore the returns series 

of the CE exists an ARCH effect. 

Test for asymmetry in volatility clustering: 

The value of the denominator of the formula 3.9 is calculated. 

1st order autocorrelation coefficient between lag returns and current squared returns, 

ν =




T

t
tt rr

2
1

2
= 69387170.07 

Since ν = 




T

t
tt rr

2
1

2
 has taken positive value, formula 3.9 is a positive quantity. 
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Also corresponding Box-Pierce LM test is significant at 5% level. Thus as the test 

described in Chapter 3, there is no asymmetric volatility clusters in the return series of 

the CE.  

GARCH model for the CE 

According to the Chapter 4, returns series of the CE is not normally distributed. In 

addition Skewness and Kurtosis values also indicates that the deviation of the returns 

from the normal distribution. Hence error distribution of the model requires to be 

assumed away from the normal distribution.  

GARCH (1, 2) Model 

Table 5.14 : Parameter Estimation of the GARCH(1,2) Model 

 Coefficient Std. Error z-Statistic Prob. 

Mean equation 

c 0.230413 0.104299 2.209152 0.0272 

Variance Equation 

α0 0.979106 0.109862 8.912133 0.0000 

α 0.220424 0.009442 23.34481 0.0000 

β1 0.439019 0.047024 9.336059 0.0000 

β2 0.388682 0.041251 9.422279 0.0000 

As depicts in Table 5.14, all the coefficients of the GARCH(1,2) model significant at 5 

% level. The mean and variance equations of the fitted model are represented as follows. 

The Mean Equation 

𝑟𝑡 =  𝐶 + 𝜃𝑟𝑡−1 + 𝜀𝑡 

𝑟𝑡 =  0.23 

The Variance Equation 

𝜎𝑡
2 = 𝑎0 + 𝛼𝜀𝑡−1

2 + 𝛽1𝜎𝑡−1
2 + 𝛽2𝜎𝑡−2

2  

𝜎𝑡
2 = 0.98 + 0.22𝜀𝑡−1

2 + 0.44𝜎𝑡−1
2 + 0.39𝜎𝑡−2

2  

𝑎0 > 0  𝑎𝑛𝑑𝛼, 𝛽1, 𝛽2 > 0 

 

Diagnostic checking 
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Heteroskedasticity Test (ARCH-LM test) 

Table 5.15 : Heteroskedasticity Test for GARCH (1,2) model 

F-statistic 0.012459 Prob. F(1,4071) 0.9111 

Observed R-

squared 0.012466 Prob. Chi-Square(1) 0.9111 

According to the results of the Table 5.15, coefficient of the lag value of the squared 

standard error is insignificant. Thus errors do not depend on the lag values of the errors. 

Both test statistics (F statistic & observed R-squared) do not reject the null hypothesis 

that standardized residuals exhibit additional ARCH effect. Hence there is no 

heteroscedasticity in the standardized residuals. 

The correlogram of the squared residuals 

Table 5.16: The correlogram of standardized residuals 

Lag AC PAC Q-Stat Prob* 

1 -0.002 -0.002 0.0125 0.911 

2 0.005 0.005 0.1274 0.938 

3 -0.002 -0.002 0.1520 0.985 

4 0.035 0.035 5.0675 0.280 

5 -0.006 -0.006 5.2394 0.387 

6 -0.011 -0.011 5.6975 0.458 

7 -0.004 -0.004 5.7721 0.567 

8 -0.004 -0.005 5.8267 0.667 

9 -0.010 -0.010 6.2630 0.713 

10 -0.016 -0.016 7.3519 0.692 

11 -0.012 -0.012 7.9905 0.714 

12 -0.016 -0.016 9.0119 0.702 

13 -0.005 -0.005 9.1348 0.763 

14 -0.015 -0.014 10.057 0.758 

15 -0.021 -0.020 11.811 0.693 

16 -0.012 -0.011 12.385 0.717 

17 -0.025 -0.025 14.972 0.598 

18 -0.007 -0.007 15.199 0.648 

19 -0.025 -0.024 17.698 0.543 

20 -0.014 -0.015 18.469 0.557 

21 -0.015 -0.015 19.388 0.560 

22 -0.015 -0.017 20.321 0.563 

Variable Coefficient Std. Error t-Statistic Prob. 

Standard 𝜀𝑡−1
2  -0.001749 0.015671 -0.111622 0.9111 
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23 -0.018 -0.018 21.585 0.545 

24 0.016 0.015 22.690 0.538 

25 -0.021 -0.023 24.558 0.487 

26 -0.006 -0.008 24.710 0.535 

27 -0.018 -0.020 26.089 0.514 

28 0.001 -0.004 26.091 0.568 

29 0.002 -0.000 26.103 0.620 

30 -0.019 -0.022 27.646 0.589 

31 -0.003 -0.006 27.684 0.637 

32 -0.002 -0.006 27.707 0.684 

33 -0.012 -0.016 28.298 0.700 

34 -0.012 -0.014 28.857 0.718 

35 0.072 0.069 50.053 0.058 

36 -0.006 -0.010 50.203 0.058 

The correlogram of standardized residuals of the GARCH(1,2) model are shown in 

Table 5.16. Q-statistics values of the correlogram of the squared residuals are 

insignificance up to lag 36 at 5% level. These results prove that the chosen variance 

equation is highly accepted to describe the error variance of the mean equation. 

Q-Q plot: 

 

Figure 5.17 : Q-Q plot of the GARCH (1, 2) model 

The Figure 5.17 depicts the Q-Q plot which has drawn with the assumption of the 

residuals follows t-distribution. Since the Q-Q plot form a straight line, error 

distribution has correctly specified.  
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Actual and fitted volatility 

Since the actual volatility is unobservable, the squared return series will be used as a 

proxy for the realized volatility. A plot of the proxy against the fitted volatility provides 

an indication of the models ability to track variations in CE price index. 
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Figure 5.18 : Actual & fitted volatility in return series of the CE 

As shown in Figure 5.18, fitted volatilities have captured the patterns of the squared 

return series. Thus this model can be used to forecast the volatilities of the MFU price 

index. 

5.3.3 Manufacturing (MFU) Sector Price Index ( 2000-2016) 

Identifying the stationarity of the MFU Series 

 

Figure 5.19 : Time Series plot of the daily MFU 
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The Figure 5.19 depicts the time series plot of the daily price index of the 

Manufacturing (MFU) sector over the period (2000-2016). According to this plot, it can 

be seen a clear trend with slight variation patterns over the first half time period (2000-

2008), while noticeable up and down fluctuations thereafter. 

Log transformed series of the MFU sector index has been obtained to inspect the 

variance stability. 

 

 

Figure 5.20 : Log Transformed series of the MFU 

As shown in the Figure 5.20, log transformed series of the MFU index consists many 

variation patterns.  However, huge fluctuation patterns had observed in original series 

has been removed.  1st difference series of the MFU index series obtained for more 

evaluation. 

 

Figure 5.21 : Returns series of the MFU 
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Time series plot of the returns of the MFU index has visibly depicted that variance of 

the series change over the time. In first half time period, returns of MFU series seems 

to be vary in small range ( between -100 and 100) while in last part of the considered 

period returns values fluctuated extremely with higher variation. Thus it can be 

supposed that returns series of the MFU index exists volatility clusters. 

Existence of the volatility clusters and nature of the volatility (Symmetric or 

Asymmetric) were examined using appropriate statistical tests. 

Test for existing of volatility clusters in returns series of the MFU 

Box-pierce LM Test: 

The value of the formula 3.7 is calculated.  






T

t
tt rr

2

2

1

2
= 4762149296.80 




T

t
tr

2

4
=19030729690.64 

1st order autocorrelation coefficient of squared return series= 










T

t
t

T

t
tt

r

rr

2

4

2

2

1

2

= 0.250235 

T=4075, 
2  = 3.871 

Test statistic= Q =0.250235×4075=1019.71 

Since Q=1019.71 >
2 = 3.871 we reject H0 and conclude that there exist volatility 

clustering in the return series of the CE price index at 5% level. 

Since this test is not very robust one, Test for an ARCH effect method is also performed. 

Test for an ARCH effect 

Step1: The regression of the returns series is run with intercept using Ordinary Least 

Squares (OLS) and residuals are obtained. 

Step2: Squared residuals are calculated. The following regression is run for the 

residuals series. 

𝑢𝑡
2 = 𝛼0 + 𝛼1𝑢𝑡−1

2 + 𝑣𝑡 

Where u is the residual from the initial regression and lag 1 term is included in this 

secondary regression. 
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Table 5.17 : Results of the secondary regression run for the squared residuals 

Method: Least Squares   

Included observations: 4074 after adjustments  

Variable Coefficient Std. Error t-Statistic Prob. 

Squared Residuals 
0.199386 0.015356 12.98400 0.0000 

C 
441.6462 33.07571 13.35258 0.0000 

R-squared 
0.039755 

Mean dependent var 
551.6324 

Adjusted R-squared 
0.039519 

S.D. dependent var 
2082.303 

S.E. of regression 
2040.743 

Akaike info criterion 
18.08051 

 

Step3:T*𝑅2 is calculated. 

H0: There is no ARCH effect in returns of the MFU 

H1: There exists an ARCH effect in returns of the MFU 

T=4074   𝑅2 =0.039755 

T*𝑅2 = 161.96 ~ 𝑥2(1) 

𝑥2(1) = 3.871 at 5% level of significance. 

Since T*𝑅2 = 161.96 ≫ 3.871   H0 is rejected at 5 % level. Therefore the returns 

series of the MFU exists an ARCH effect. 

Test for asymmetry in volatility clustering: 

The value of the denominator of the formula 3.9 is calculated. 

1st order autocorrelation coefficient between lag returns and current squared returns, 

ν =




T

t
tt rr

2
1

2
 = -1692527 

Since ν = 




T

t
tt rr

2
1

2
 has taken negative value, formula 3.9 is a negative quantity. 

As explained in earlier, corresponding Box-Pierce LM test is significant at 5% level. 

Accordingly, there exist asymmetric volatility clusters in the return series of the MFU 

index.  
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The Asymmetric of the volatility is happened when volatility increases more when the 

stock prices were falling than when it was rising by the same amount.  Asymmetric 

Volatility series can be modeled using asymmetric GARCH models such as EGARCH. 

GARCH model for the MFU 

As described in Chapter 4, returns series of the MFU is not normally distributed. 

Skewness and Kurtosis values also indicates that the deviation of the returns from the 

normal distribution. Therefore Error Distribution is require to be assumed away from 

the Normal Distribution. 

EGARCH (2, 2) Model 

Table 5.18 : Parameter Estimation of the EGARCH(2,2) Model 

 Coefficient Std. Error z-Statistic Prob. 

Mean equation 

θ 0.150268 0.001696 88.58649 0.0000 

Variance Equation 

ω -0.415210 0.018435 -22.52261 0.0000 

α1 0.358674 0.010001 35.86218 0.0000 

α2 0.336556 0.011852 28.39706 0.0000 

β1 -0.008586 0.001898 -4.523691 0.0000 

β2 0.986896 0.001398 705.7737 0.0000 

γ -0.005913 0.000788 -7.500764 0.0000 

As depicts in Table 5.18, all the coefficients of the EGARCH(2,2) model significant at 

5 % level. The mean and variance equations of the fitted model are represented as 

follows. 

 

The Mean Equation 

𝑟𝑡 =  𝐶 + 𝜃𝑟𝑡−1 + 𝜀𝑡 

𝑟𝑡 =  0.15𝑟𝑡−1 
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The Variance Equation 

log(𝜎𝑡
2) = 𝜔 + 𝛼1 |

𝜀𝑡−1

𝜎𝑡−1
| + 𝛼2 |

𝜀𝑡−2

𝜎𝑡−2
| + 𝛽1𝑙𝑜𝑔(𝜎𝑡−1

2 ) + +𝛽2𝑙𝑜𝑔(𝜎𝑡−2
2 ) + 𝛾

𝜀𝑡−1

𝜎𝑡−1
 

 

log(𝜎𝑡
2) = −0.41 + 0.36 |

𝜀𝑡−1

𝜎𝑡−1
| + 0.34 |

𝜀𝑡−2

𝜎𝑡−2
| − 0.001𝑙𝑜𝑔(𝜎𝑡−1

2 ) + 0.99𝑙𝑜𝑔(𝜎𝑡−2
2 )

− 0.006
𝜀𝑡−1

𝜎𝑡−1
 

𝛼1, 𝛽1 > 0 

Note that the left-hand side is the log of the conditional variance. This implies that the 

leverage effect is exponential, rather than quadratic, and that forecasts of the conditional 

variance are guaranteed to be nonnegative. 

Diagnostic checking 

Heteroskedasticity Test (ARCH-LM test) 

Table 5.19 : Heteroskedasticity Test for EGARCH (2,2) model 

F-statistic 0.993561 Prob. F(1,4071) 0.3189 

Observed R-

squared 0.993806 Prob. Chi-Square(1) 0.3188 

According to the results of the Table 5.19, coefficient of the lag value of the squared 

standard error is insignificant. Thus errors do not depend on the lag values of the errors. 

Both test statistics (F statistic & observed R-squared) do not reject the null hypothesis 

that standardized residuals exhibit additional ARCH effect. Hence there is no 

heteroscedasticity in the standardized residuals. 

 

The correlogram of the squared residuals 

Table 5.20: The correlogram of standardized residuals 

Lag AC PAC Q-Stat Prob* 

1 0.016 0.016 0.9948 0.319 

2 -0.025 -0.025 3.5077 0.173 

Variable Coefficient Std. Error t-Statistic Prob. 

Standard 𝜀𝑡−1
2  0.015621 0.015671 0.996775 0.3189 
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3 -0.026 -0.025 6.3175 0.097 

4 -0.014 -0.013 7.0651 0.132 

5 0.007 0.006 7.2520 0.203 

6 -0.018 -0.020 8.6309 0.195 

7 0.018 0.018 9.9359 0.192 

8 -0.023 -0.025 12.165 0.144 

9 -0.011 -0.011 12.701 0.177 

10 -0.019 -0.019 14.124 0.167 

11 -0.001 -0.002 14.129 0.226 

12 0.007 0.004 14.316 0.281 

13 -0.003 -0.003 14.350 0.350 

14 -0.021 -0.022 16.146 0.305 

15 -0.008 -0.006 16.399 0.356 

16 -0.020 -0.021 17.963 0.326 

17 -0.017 -0.018 19.164 0.319 

18 -0.020 -0.022 20.795 0.290 

19 -0.016 -0.018 21.828 0.293 

20 -0.003 -0.006 21.860 0.348 

21 -0.020 -0.022 23.565 0.315 

22 -0.018 -0.021 24.906 0.302 

23 -0.012 -0.014 25.517 0.324 

24 -0.024 -0.028 27.846 0.267 

25 -0.006 -0.010 28.000 0.308 

26 -0.008 -0.012 28.235 0.347 

27 -0.001 -0.006 28.238 0.399 

28 -0.022 -0.026 30.210 0.353 

29 -0.025 -0.028 32.763 0.287 

30 -0.004 -0.008 32.821 0.330 

31 0.006 0.000 32.946 0.372 

32 0.001 -0.007 32.947 0.421 

33 -0.008 -0.013 33.244 0.455 

34 -0.002 -0.006 33.257 0.504 

35 -0.016 -0.021 34.347 0.499 

36 -0.003 -0.008 34.391 0.545 

 

The correlogram of standardized residuals of the EGARCH(2,2) model are shown in 

Table 5.20. Q-statistics values of the correlogram of the squared residuals are 

insignificance up to lag 36 at 5% level, implies that chosen variance equation can be 

accepted to describe the error variance of the mean equation. 

Q-Q plot: 
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Figure 5.22 : Q-Q plot of the EGARCH (2, 2) model 

The Figure 5.22 illustrates the Q-Q plot which has drawn with the assumption of the 

residuals follows t-distribution. As above plot, it can be seen that the residuals are much 

closed to the straight line. Thus the assumption made for the error distribution as t-

distribution can be accepted.  

Actual and fitted volatility 

Since the actual volatility is unobservable, the squared return series will be used as a 

proxy for the realized volatility. A plot of the proxy against the fitted volatility provides 

an indication of the models ability to track variations in MFU price index. 
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Figure 5.23 : Actual & fitted volatility in return series of the MFU 

As shown in Figure 5.23, fitted volatilities have captured the patterns of the squared 

return series. Thus this model can be used to forecast the volatilities of the MFU price 

index. 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 6: GENERAL DISCUSSION & CONCLUSION 

This chapter explains on the whole discussion of the thesis, findings, limitation and the 

future suggestions and the conclusions to be taken. 

6.1 General Discussion 

6.1.1 Overview of the Study 

This research is based on a statistical analysis of ASPI and sector wise stock price 

indices in Colombo Stock Exchange (CSE) during the period of 2000 to 2016. The main 

objective of this research was to build an appropriate model to estimate market volatility 

of All Share Price Index (ASPI). Under this main objective, volatility pattern of the 
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stock indices investigated using symmetric and asymmetric models. Since there was a 

significant fall in the ASPI during the period of ending the war the data set was divided 

in to two main parts such as 2000-2009 May and 2009 May 2016. Two distinct models 

were built for that time periods, in order to identify the changers in the ASPI before and 

after the ending of the war. Apart from that, appropriate Generalized Autoregressive 

Conditional Heteroscedastic (GARCH) family models were built for three selected 

sector price indices. 

In order to gain a fundamental idea of the monthly and daily stock market indices and 

other variables which can be affected on stock market indices, preliminary analysis was 

carried out in chapter 4. The preliminary analysis was based on monthly variation of 

three main market price indices, daily variation of All Share Total Returns Index 

(ASTRI), descriptive statistics of returns of the ASPI, monthly variation of market price 

indices of selected sectors and descriptive statistics of market price indices of selected 

sectors. 

When considering ASPI, It can be clearly identify a positive trend over the time. 

However, it can be seen a significant fall in price indices corresponding to the 2008 and 

2009 years. This decreasing pattern is corresponded to to the critical time period of the 

war had occurred in Sri Lanka. Further, ASPI has been improved considerably in 2009-

2011 periods and the highest ASPI value had been recorded in February 2011. 

According to the time series plot of S&P SL 20 index, there cannot be clearly identified 

negative or positive trend over time. It can be seen a rapid growth during 2014. 

However S&P SL 20 index has been declined to 3200 in 2016 which was the lowest 

price had recorded yet 2016. 

Analysis on Daily variation of All Share Total Returns Index (ASTRI) has shown that 

ASTRI has been increased steadily over the period 2004-2016. But It can be clearly 

identified a huge rise occurred suddenly, in 6th July 2010 apart from the regular 

increment. When comparing total market returns by ASPI and ASTRI, there is no 

difference in total market returns calculated for ASPI and ASTRI. Hence, for the rest 

of the study, the analysis was continued by using total market returns calculated by 

ASPI. 

In view of descriptive statistics of returns of the ASPI, indicates that negative Skewness 

(-0.057585) implies series consist of more decrements than the increments. The Jarque-
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berra statistics of the return series are highly significance (Probability=0.00). It rejects 

the null hypothesis that returns series is normally distributed. Thus returns series of the 

ASPI is not normally distributed. Further Skewness and Kurtosis values also indicates 

that the deviation of the returns from the normal distribution. Therefore, when 

developing a GARCH model it is required to assume the error distribution away from 

the normal distribution. Moreover Q-Q Plot of the returns of the ASPI evidently violates 

the normality. 

When considering monthly variation of market price indices of three sectors, Bank 

Finance and Insurance sector recorded higher price indices at all times when compared 

with other two sectors. According to the descriptive statistics of the returns of the three 

sector price indices, mean value and the standard deviation value of the returns of the 

BFI sector is noticeably high when compared with returns of the other two sectors. All 

the three return series indicate the positive skewness implies that all the three series 

consist of more growth than fall. According to the Q-Q plots of return series of the three 

price indices, it can be clearly identified that three series are deviated from the normal 

distribution. 

6.1.2 Discussion on GARCH family models 

Two models were finalized for ASPI, for before and after the 2009, May and three 

models were built for sector price indices named BFI, CE & MFU consecutively. 

 

GARCH Models for ASPI 

 

Time series plot of the daily ASPI series has clearly showed a positive trend and a non-

constant variance over the periods 2000-2016. However, ASPI has declined 

significantly, during the critical time period of the war which was ended in 18th May 

2018.  Thus two distinct models were developed for ASPI before and after the ending 

of the war. 

EGARCH (1,1) Model for ASPI ( 2000-2009 May) 

Time series plot of the daily ASPI series of (2000-2009 May) illustrated a positive trend 

till 2007. Thereafter a significant decrement can be observed. Returns series indicated 

the existence of volatility clusters of ASPI(2000-2009 May). 
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Results of the Box-pierce LM Test and Test for an ARCH effect proved that returns 

series of the ASPI(2000-2009 May)  consist an ARCH effect. Test for asymmetry in 

volatility clustering has resulted that asymmetric volatility clusters exist in the return 

series of the ASPI(2000-2009 May).  

EGARCH (1,1) model is developed to estimate the volatility of ASPI for 2000-2009 

May time period. ARCH-LM test resulted that there is no heteroscedasticity in the 

standardized residuals of the EGARCH model. The correlogram of the squared 

residuals consists of insignificance Q-Statistics values up to lag 36 for developed model 

for the returns of the ASPI of 2000 -2009 May. These results indicate that the selected 

variance equation is highly accepted to describe the error variance of the mean equation. 

Q-Q plots which have drawn with the assumption of the residuals follows t-distribution 

depicted an straight line apart from few large and small data points , evidently supported 

for the made assumption on the error distribution. 

Since the actual volatility is unobservable, the squared return series can be used as a 

substitute for the realized volatility. A plot of squared returns against the fitted volatility 

provides an indication of the model ability to track variance in the returns of the ASPI 

of 2000-2009 May time period. 

 

 

EGARCH (2,2) Model for ASPI (2009 May-2016) 

Time series plot of the daily ASPI series of (2009 May-2016) showed a positive trend 

over the period. Returns series indicated the existence of volatility clusters of 

ASPI(2000-2009 May). 

Results of the Box-pierce LM Test and Test for an ARCH effect resulted that returns 

series of the ASPI (2009 May-2016) consist an ARCH effect. Test for asymmetry in 

volatility clustering has showed that asymmetric volatility clusters exist in the return 

series of the ASPI (2009 May-2016) also. 

EGARCH (2,2) model is appropriated to estimate the volatility of ASPI for 2009 May-

2016 time period.  According to the ARCH-LM test, is no heteroscedasticity in the 

standardized residuals of the EGARCH model. The correlogram of the squared 
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residuals consists of insignificance Q-Statistics values up to lag 36 for  the model built 

up for ASPI of 2009 May - 2016. Thus the selected variance equation can be accepted 

to describe the error variance of the mean equation. Q-Q plots which have drawn with 

the assumption of the residuals follows t-distribution depicted an straight line apart 

from few large and small data points , evidently supported for the made assumption on 

the error distribution. 

Since the actual volatility is unobservable, the squared return series can be used as a 

substitute for the realized volatility. A plot of squared returns against the fitted volatility 

provides an indication of the model ability to track variance in the returns of the ASPI 

of 2009 May-2016 period. 

Comparison for pre and post war performance of the ASPI of the CSE 

The behavior of the ASPI before and after the war has been observed through distinct 

GARCH models. Both series consist asymmetric volatility, and developed EGARCH 

models.  But EGARCH (1,1) model is appropriated to capture the volatility of the ASPI 

,before the war while EGARCH(2,2) model is fitted well for capture the volatility of 

the ASPI after the ending of the war. Thus more terms are required to capture the 

variance of the ASPI after the ending of the war implies that variance of the price has 

been fluctuated highly in post war period. Those highly fluctuated variance patterns can 

be observed also through the graphs of the actual versus estimated volatilities. 

GARCH Model for BFI sector price index 

Time series plot of the BFI has been illustrated a positive trend over the period 2000-

2016. But BFI sector price index has been dropped noticeably in several time intervals 

of the considered period. Log transformed series of the BFI sector price index depicted 

a very little fluctuation pattern when compare with the original series. Returns series of 

the BFI price index has indicated the existence of volatility patterns of the series. As 

discussed in Chapter 5, Statistical Tests have performed for verify the suitability of 

developing GARCH family model for BFI series, have indicated that series exist 

symmetric volatilities. GARCH(1,2) were recognized for estimate the volatility of BFI 

sector price index. Diagnostic tests were supported to this model and error distribution 

was correctly specified as the t-distribution. 
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GARCH Model for CE sector price index 

Time series plot of the CE sector price index consist a positive trend when considering 

initial and final data points. However there were many sudden increments and 

decrements of the price index during the considered period (2000-2016). Hence 

variance of the CE price index was identified as non-constant. When considering 

returns series of the CE sector price index, in first half time period returns seems to be 

remaining constant while in last part of the considered period returns values have 

fluctuated highly with higher variance.  Appropriate Tests were performed for verify 

the suitability of developing GARCH family model for returns of the CE sector price 

index. 

GARCH(1,2) Model was recognized for estimate the variance due to the symmetricity 

of the returns series of the CE sector price index. Diagnostics tests were used for check 

the suitability of the model and the error distribution was distributed as t-distribution 

according to the drawn Q-Q plot. 

GARCH Model for MFU sector price index 

According to the time series plot of the Manufacturing (MFU) sector during 2000-2016, 

there were slight trend during first half time period (2000-2008), while considerable up 

and down fluctuations thereafter. Log transformed series of the MFU index also showed 

numerous deviation patterns, but huge fluctuation patterns had observed in original 

series has been removed. According to the time series plot of the returns of MFU, 

returns of fist half period had fluctuated in small range (between -100 and 100) while 

returns of second half period had been changed extremely with higher variation. Box-

pierce LM Test and ARCH effect test statistically proved the existence of volatility in 

the returns series of the MFU. Existence of asymmetric volatility of the returns of MFU 

was indicated by the results of the test for Asymmetric volatility. 

EGARCH(2,2) model was developed to estimate the variance of the returns series of 

the MFU sector price index.  ARCH LM test had resulted that there was no 

heteroscedasticity in the standardized residuals of the model. Q-statistics values of the 

correlogram of the squared residuals of the model were highly insignificance from lag 
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1 to 36 at 5% level. Thus error distribution of EGARCH(2,2) model has been correctly 

specified as t- distribution.  

 

6.2 Conclusions 

ASPI of the both pre and post war periods consist asymmetric volatilities indicated that 

existence of leverage effect in the series. Therefore returns and the conditional returns 

volatility of the ASPI are negatively correlated. The presence of the asymmetric 

volatility is most apparent during stock market crashes when a large decline in stock 

price is associated with a significant increase in market volatility. Thus it can be 

concluded that the drop of the ASPI during the critical period of the war associated with 

asymmetric behavior of the series. Further, significant increment of the stock price after 

the ending of the war has been observed also due to the stock market crash occurred 

during the 2009. 

 As the comparison made for the EGARCH models pre and post period of the war, more 

terms are required to estimate the volatility of the  ASPI for the post war period. 

According to the Figures of actual versus estimated volatilities it can be concluded that 

the estimated variance has fluctuated in a wide range for the post-war (2000-2009 May) 

period when compared with pre-war period (2009 May-2016).  

When considering the sector price indices, asymmetric behavior of the price can be 

observed only in the MFU sector. The estimated volatility of the BFI sector has been 

fluctuated in a wide range when compared with other two sectors CE and MFU as 

indicated by the plots of actual versus estimated volatilities.  

6.3 Recommendations and Limitations 

 

 When developing a GARCH model for ASPI and all other sector price indices 

of Colombo Stock Exchange, it is required to assume the error distribution away 

from the normal distribution. 

 All GARCH model were fitted using Eviews software and it doesn’t has an 

option to forecast just for next few data points without considering all data 
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points of the fitted model. As future work GARCH models can be improved 

with new software. 

 Arithmetic returns were used for all analysis of price indices, as a future work 

geometric return can be used to reconstruct volatility models for Colombo Stock 

Exchange price indices. 
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