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Abstract

An intelligent service robot is a machine that is able to gather information from the
environment and use its knowledge to operate safely in a meaningful and purposive
manner. Intelligent service robots are currently being developed to cater to demands
in emerging areas of robotic applications such as caretaking and assistance, healthcare
and edutainment. These service robots are intended to be operated by nonexpert users.
Hence, they should have the ability to interact with humans in a human-friendly man-
ner. Humans prefer to use voice instructions, responses, and suggestions in their daily
interactions. Such voice instructions and responses often include uncertain informa-
tion such as “little” and “far” rather than precise quantitative values. The uncertain
information such as “little” and “far” have no definitive meanings and depend heavily
on factors such as environment, context, user and experience. Therefore, the ability of
robots to understand uncertain information is a crucial factor in the implementation
of human-friendly interactive features in robots.

This research has been conducted with the intention of developing effective methodolo-
gies for interpreting uncertain notions such as “little”, “near” and “far” in navigational
user commands in order to enhance human-robot interaction. The natural tendencies
of humans have been considered for the development of the methodologies since ability
of the robot in replicating the natural behavior of humans vastly enhances the rap-
port between the robot and the user. The methodologies have been developed using
fuzzy logic and fuzzy neural networks that are capable of adapting the perception of
uncertain information according to the environment, experience and user. User studies
have been conducted in artificially created domestic environments to experimentally
validate the performance of the proposed methods. An intelligent service robot named
as Moratuwa Intelligent Robot (MIRob), which has been developed as a part of the
research, has been used for the experiments.

The robot’s perception of distance and direction related uncertain information in nav-
igation commands is adapted according to the environment. According to the exper-
imental results, a service robot can effectively cope with distance-related uncertain
information when the robot’s perception of distance-related uncertain information is
adapted to the environment. The effectiveness can be further improved by perceiving
the environment in a human-like manner. The adaptation of the directional percep-
tion in accordance to the environment remarkably improves the overall interpretation
ability of uncertain notions. User feedback is used to adapt the perception toward
the user while adapting to the environment and this adaptation vastly improves user
satisfaction. Methods have also been proposed to interpret the uncertain information
in relation to relative references and the methods are capable of replicating human-like
behavior. Furthermore, the information conveyed though pointing gestures that ac-
company voice instructions is fused to further enhance the understanding of the user
instructions. This fusion significantly reduces the errors in interpreting the uncertain
information. Furthermore, it reduces the number of steps required to navigate a robot
toward a goal. A vast research gap is still remaining in this particular research niche
for future developments and hence possible future improvements are also synthesized.

Keywords-Understanding Uncertain Information; Human-Friendly Robotics;
Human-Robot Interaction; Social Robotics, Service Robotics
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Chapter 1

INTRODUCTION

An intelligent service robot is a machine that is able to gather information

from the environment and use its knowledge to operate safely in a meaningful

and purposive manner [1]. Recent developments of intelligent service robots open

up new areas of robotic applications such as healthcare [2,3], rehabilitation [4,5],

caretaking [6,7], assistance [8,9], education [10,11] and entertainment [12,13]. A

few examples of such service robots are shown in Fig. 1.1. Particularly, intelligent

service robots are being developed to use as assistive aids for elderly or disabled

people [14–17] as a solution for the widening gap between the supply and demand

of human caregivers, which will create profound complications in socioeconomic

behaviors of the society [18,19].

The intelligent service robots used for these kind of emerging areas of robotic

applications, are anticipated to have direct interactions with human users in do-

mestic environments where most of the users are in the non-expert category.

Hence, the interaction between the service robots and the human users are pre-

ferred to be human friendly in order to provide a sophisticated service to the

users [23–26]. Human friendly robots should possess human-like interaction abil-

ities and the dream for a perfect service robot obviously depends on that. Avail-

ability of the human-human like communication abilities in human-robot inter-

action would enhance the overall interaction between the human user and the

non-human robot partner and this would eventually increase the satisfaction of

the user [23,27]. In contrast, development of human friendly interactive features

in service robots is complicated for the reason that social cognitive features of
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(a) (b) (c)

(d) (e) (f)

Figure 1.1: Examples of service robots used in emerging areas of robotics ap-
plications. (a) Care-O-bot 3 supporting elderly people at home.[Image courtesy:
www.care-o-bot.de] (b) HealthBot [3] with a patient [Reprinted with permission
c©2016 IEEE] (c) REEM robot [20] interacting with a human [Reprinted with

permission c©2015 Taylor & Francis] (d) A robot tutor interact with a preschool
child [21]. (e) Assistant Personal Robot (APR) [9] detecting a fallen person.
(f)Humanoid service robot Pepper [22] with a older person.

the human beings should be incorporated into the robots [23].

Voice communication is one of the main communication modalities used by

humans to convey instructions to the peers [28]. Therefore, human like voice

communication capability of robots will enhance the overall interaction between

robots and their users. This will eventually increase the rapport between the users

and the robot assistants; the users can gain a more sophisticated service from

the robot companions [24, 29]. Precise quantitative information is not conveyed

through the voice communication and the natural voice instructions and responses

often include uncertain information, lexical symbols and notions that have to be

interpreted for clear comprehension. For example, a human user prefers to use
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the command, “move little bit forward” rather than the command, “move 40

centimeters forward” in a situation similar to the scenario shown in Fig. 1.2(a).

The quantitative meaning of the term “little” has no definitive distance and

the quantitative meaning depend on various factors. In here, the quantitative

distance meant by the user may be in the order of 40–80 cm. However, in the

situation shown in Fig. 1.2(b). The robot is commanded, “place it little bit

away from the box” in order to place the cup on the table. The quantitative

meaning of the term “little” in this kind of situation would be approximately

in the order of 5–15 cm and the quantitative distance meant by “little” in this

situation is clearly different from the earlier situation. Furthermore, the scenarios

show in Fig. 1.2(c) and Fig. 1.2(d) show that the same quantitative size could

be referred using completely controversial language descriptors in two different

situations. Fig. 1.2(c) shows a situation where a baseball is surrounded with

two golf balls and most probably in this situation the size of the baseball will

be referred as “large” in a language instruction issued by a person. In scenario

shown in Fig. 1.2(d), the same baseball is surrounded with a soccer ball, football

and a basketball. Even though, quantitatively the size of the baseball is the same

in both the situation, a person will refer the size of the baseball as “very small”

in the second scenario.

However, humans have the ability to interpret a reasonable quantitative value

for such uncertain terms. These kind of uncertain terms are also referred to as

fuzzy linguistic information or qualitative terms. Even though the quantitative

meaning of uncertain terms such as “little”, “far”, “high” and “large” depends

on various factors, uncertain terms are involuntarily included in the voice in-

structions, suggestions and responses because of the unbridled cognitive ability

of humans to understand the quantitative meaning of such terms based on the fac-

tors which affect the meaning. Therefore, the cognitive ability of a service robot

to understand and appropriately respond to uncertain information in voice com-

mands and responses is mandatory in order to provide human friendly assistance

to the user.
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2

Move little 

forward

Where to move

40 cm, 60 cm, 

1m ….

Place it little bit 

away from the box
Where is meant by little 

bit away ?

5 cm, 15 cm…….. away

Very small ball
Large 

ball

(a) (b) (d)(c)

Figure 1.2: This shows example scenarios where the uncertain information is used for a purposive task and how the meanings
alter in different situations. (a) shows a situation where a robot is commanded to move little bit forward by a human user. (b)
shows a situation where a robot is asked to place a cup little bit away from the box on the table. (c) shows a scenario where a
baseball is surrounded with two golf ball. (d) shows a situation where the same baseball is surrounded with a football, soccer ball
and a basket ball.
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1.1 Problem Statement

As depicted in Fig. 1.3, the robot should be capable of inferring the meaning of

information conveyed from a voice instruction to perform the exact requirement

of the navigation task requested by the user. This sort of navigation voice instruc-

tion may consists of uncertain lexical notions in relation to distances, directions,

references, path, positions etc. Therefore, this uncertain information must be

interpreted effectively and succinctly to fulfill the request of the user. The exact

meaning of the uncertain information depends on various factors such as envi-

ronment, experience, context and the user. Furthermore, non-verbal instructions

such as gestures may be accompanied with the navigation voice instructions for

enhancing the idea transferred to the peer; the meaning of the uncertain infor-

mation may also depend on the non-verbal instructions associated with the voice

instructions.

The overall interaction and the rapport between the user and the robot obvi-

ously depend on the ability of the robot in correctly identifying and reacting in

these sort of scenarios. Therefore, this thesis investigates the methods for resolv-

Voice 
command

Gestures

Navigation
Instruction 
(voice + gestures)

Direction
Distance

Reference
Position

Path ?
Environment 
Experience
Context
User

Figure 1.3: Usage of uncertain information in navigational command

5



ing spatial ambiguities arisen due to the inclusion of uncertain information such

as “little”, “large”, “few” and “far” in navigation instructions for improving the

human-robot interaction.

1.2 Thesis Contributions

This thesis contributes toward addressing the above-outlined issues by de-

veloping methods of interpreting uncertain information in relation to distances,

directions and references in navigational commands.

This has been archived by resolving the issues in:

• Interpreting distance-related uncertain information by adapting the percep-

tion according to the environment

• Interpreting fuzzy directional notions by adapting the perception according

to the environment

• Personalizing the perception of uncertain information while adapting ac-

cording to the environment

• Interpreting uncertainties in relation to the relative references

• Adapting the perception of uncertain information according to the infor-

mation conveyed non-verbally instructions
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1.3 Thesis Overview

This section provides an overview of the succeeding chapters of the thesis.

Chapter 2 outlines the current state of the art in dealing with uncertain infor-

mation in language instructions by the robots and systems. The existing

approaches for dealing with uncertain information available in the literature

have been critically analyzed in order to identify the limitations of the cur-

rent state of the art and the possible future developments. The limitations

of the existing system are summarized and the possible future directions

are synthesized as the contribution of the review.

Chapter 3 provides an overview of an intelligent service robot named Moratuwa

intelligent Robot (MIRob) that has also been developed as a part of this

research. An overview of the hardware system used for the validation of

the proposed concepts is explained at the beginning. Then, the functional

overview of the system is briefed including all the auxiliary modules that are

required for full filing the requirements of navigation instructions. More-

over, the work presented in this chapter explains the supportive modules

used in the work presented in succeeding chapters. The terminologies and

the names of the modules defined in this chapter will be used in subsequent

chapters in this thesis. The developments of the Interaction Management

Module (IMM) and the Robot Experience Model (REM), which are useful

in the process of handling the interaction with the user and evaluating the

uncertain information , are the main contributions presented in this chap-

ter. Particulars on experimental validation of these auxiliary modules are

also presented.

Chapter 4 contributes by proposing methods of adapting the robot’s perception

of distance-related uncertain information based on the environment. The

chapter begins with an explanation about the rationales behind the pro-

7



posed method of adapting the perception. A module called Distance Inter-

preter (DisI) is proposed for assigning quantitative values for the distance-

related uncertain terms in navigation instructions. This module is capable

of adapting the robot’s perception of distance-related uncertain information

according to the characteristics of the environment. Particulars on experi-

mental validation of the proposed DisI in adapting the perception according

to the environment are presented.

Chapter 5 proposes a method for enhancing the interpretation of the fuzzy

notions in motional and positional navigation command by adapting the

robot’s directional perception based on the environmental setting. The re-

quirement of the adaptive directional perception for the robots instead of

fixed directional perception is explained at the beginning of the chapter.

Then, a module called Direction Interpreter (DirI), which is deployed for

the system to adapt the robots perception of directional notions according

to the environment setting, is explained. At the latter stage of the chapter,

the performance improvement caused to the understanding of navigational

commands by the robot due to the deployment of the proposed module for

adapting the robot’s directional perception is discussed with the experimen-

tal results.

Chapter 6 proposes a method for enchaining the satisfaction of the user by

adapting the robots perception of uncertain information based on the cur-

rent environment and the corrective feedback received from the user. The

advantage of learning the perception from the user feedback is discussed at

the beginning of the chapter. The reimplementation of the Distance Inter-

preter (DisI) with fuzzy neural networks, which are capable of concurrently

adapting to the environment while learning from user feedback, is explained.

Particulars on the Feedback Evaluation Module (FEM) deployed to eval-

uate the quantitative errors of the feedback statements are discussed. At

last, the improvement of the user satisfaction due to the proposed learning

ability is analyzed and presented with an experimental validation.
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Chapter 7 proposes a module called Relative Uncertainty Interpreter (RUI) to

interpret the uncertain information in relation to the relative references.

Phrases with uncertain information associated with relative references such

as large table, table left of the door and table close to the door are invol-

untary included in navigation instructions; hence it is necessary to deploy

the RUI for effective interpretation of navigation instructions. The natural

tendencies in usage of uncertain information in relation relative reference

are explained in the chapter with the aid of the results of a human study.

The RUI has been designed by considering the identified natural tendencies

of humans. The performance and behavior of the proposed RUI has been

compared against a result of a human study to evaluate the performance

and the outcomes are discussed and presented.

Chapter 8 investigates a way to adapt the robots perception of distance-related

uncertain information by fusing the spatial information of the environmental

and the influential notions conveyed non-verbally. The rationale behind the

proposed adaptation method is discussed against a system that is capable

on adapting the perception based only on the environment setting. The

proposed method has been implemented by fusing the notions conveyed

through the pointing gestures with the aid of a fuzzy inference system. The

factors considered for the design of the fuzzy inference system is detailed

in the chapter. Particulars on the method adopted for extracting the point

referred by a pointing gesture is also explained. Finally, the experimental

validation of the proposed system is presented and discussed.

Chapter 9 proposes a method to resolve the ambiguities arisen when interpret-

ing distance-related uncertain information due to the arrangement of the

environment. The intention of the user identified through the information

conveyed from pointing gestures is used to resolve these sort of ambiguities

in interpretation of the navigation instructions. The rationale behind the

proposed concept is explained at the beginning of the chapter. A mod-

ule called Motion Intention Switcher (MIS) is proposed to deploy into the
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system for identifying the actual intention of the user based on the accompa-

nied non-verbal instructions. Subsequently, the MIS shifts the perceptive

distance of the system between a default hypothesis and alternative hy-

potheses for responding the user in an effective manner. The behavior and

the performance of the proposed MIS have been evaluated and the outcomes

are discussed.

Chapter 10 provides the concluding remarks of the thesis together with a con-

cise discussion on the future directions of the work.
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Chapter 2

A REVIEW ON SERVICE ROBOTS DEALING WITH

UNCERTAIN INFORMATION IN LANGUAGE INSTRUC-

TIONS

2.1 Voice and Natural Language Communication in Human-robot In-

teraction

With the development of voice recognition and voice synthesis engines, studies

are being carried out in order to enhance the voice communication interfaces of

robotic systems [30–32]. However, many of early studies in this area have pri-

marily focused on implementing voice communication interfaces between robots

and humans, and the studies are limited to ordinary control of a robotic sys-

tem with limited number of user instructions such as controlling of automated

wheelchairs [33–35]. Those systems are capable of understanding simple single

word commands such as “go” and “stop” which are already prerecorded in the

memory of the system.

For a general-purpose service robot, capability to handle only a limited number

of simple instructions is not sufficient since the number of functionalities of such

robotic system is much higher [27, 36, 37]. For instance, a service robot, which

works in the capacity of a nurse, has to be capable of conveying empathy to a

patient when communicating sensitive information related to the condition of the

patient and a domestic service robot, which acts like a customer handling agent

in a service desk, should be capable of adjusting the speech based on the char-
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acteristic of the customer. In addition to that, such system would not facilitate

human like service. Therefore, human-like voice communication abilities in robots

are preferred for service robots specially for achieving human-like human-robot

communication. In this context, service robots with human like voice communi-

cation capabilities have been developed and those robots are capable of obeying

natural language user instructions and responding with natural language dialogue

phrases [20, 28,38,39].

Natural language voice instructions, responses and suggestions often include

lexical symbols and notions, uncertain terms, redundant words and prepositions.

Therefore, the robotic systems with human like voice communication abilities

should possess the ability to understand them appropriately. Methodologies have

been developed in order to compute the spatial relations referred by the preposi-

tions such as “behind”, “at” and “near” [40–43]. The methods proposed in [40,41]

are capable of distinguishing the meaning of “at” and “near”; the methods pro-

posed in [42, 43] are capable of grounding spatial relationships in human robot

interactions and the method proposed in [44] can create abstract map of the work-

ing environment based on the semantic description with prepositions. Natural

language voice instructions are often inaccurate or ambiguous and exact meanings

of such commands depend on the context of interest. For example, the expres-

sion, “the red ball on the table near the vase” can be considered. In here, there

are two alternative interpretations for the expression; the red ball is expected to

be near the vase or the table near the vase. The correct interpretation among the

alternatives depends on the actual arrangement of the environment. The method

proposed in [45] is capable of correctly understanding such ambiguous or inac-

curate commands by considering the arrangement of the environment. Methods

have been developed to enhance the voice communication between robots and hu-

mans by integrating multimodal interaction capabilities; method proposed in [46]

is capable of identifying a referring object in a user instructions with the aid of

pointing gestures of the user, method proposed in [47] is capable of generating

gestures on a robot related to object referring communications, and methods pro-
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posed in [48] is capable of fusing information from multiple modalities. Knowledge

acquisition and symbol grounding through human-robot multimodal interactions

have also been studied [49].

The above-mentioned methods are capable of interacting with natural lan-

guage voice instructions and responses to some extent. However, the systems

lack the ability of understanding uncertain information in language instructions

and the methodologies for dealing the uncertain information in language instruc-

tions have not been covered in the scope of those work. Uncertain information

is often included in voice instructions, responses and suggestions involuntarily

in interactions as explained in chapter 1. The core contribution of this study is

to investigate the methodologies used in robotic systems in order to understand

the uncertain terms in language communication. Therefore, a comprehensive

exploration of those systems is given in section 2.2.

2.2 Current Status: Robots Dealing with Uncertain Information in

Language Instructions

As explained earlier in chapter 1, meanings of uncertain terms depend on sev-

eral factors. The existing methods are capable of adapting the perception of robot

about uncertain information based on different entities such as environment, ex-

perience and context. Thereby, the existing methods for understanding uncertain

information are categorized primarily based on the adaptation entities in order

to critically examine them.

2.2.1 Early Developments and Approaches

There have been many psychophysical studies of the perception of distance and

related cognitive issues [50–52]. These studies have revealed the characteristic of

the distances related cognition of human beings such as knowledge of relative
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location, asymmetry of cognitive distances and sources of distance knowledge.

However, these concepts are limited to cognitive science and the studies have

been mainly utilized to understand concept such as cognitive distances in urban

environments.

Dutta [53] proposed a concept to represent spatial constraints between a set of

objects given imprecise, incomplete and possibly conflicting information regarding

them. Furthermore, Clementini et al. [54] developed a qualitative model for

representing the positions of objects and for performing spatial reasoning as a

qualitative replacement of quantitative vector algebra. However, those concepts

do not directly deal with interpreting uncertain information and mostly concepts

are limited to understanding of simple qualitative representations such as if object

A is back of B, then B is in front of A. In adition, the concept has not been

implemented on real systems and has been limited to mathematical modelling.

2.2.2 Systems with Predetermined or Fixed Interpretations

A method for communicating between robot and human using spatial language

have been developed [55]. The system is capable of generating linguistic spatial

description about the surrounding environment. For example, it can generate the

dialogue, “The box is behind me. The object is far.” Those dialogues include

distance related uncertain terms such as “close” and “far” and direction related

uncertain terms. The system can perceive the environment through range sensors

and generate spatial descriptions related to distance and direction by using the

method proposed in [56]. The direction descriptors are generated categorizing

the space around the robot in to 16 sub directions. The distance descriptors are

generated based on the distance to the object from the robot and the distance

categorization is carried out as given in Fig. 2.1. Therefore, categorization of the

direction and distances are fixed with hard boundaries and the system does not

possess the ability to consider the fuzziness, inherited by linguist descriptors that

will eventually degrade the performance of the system.
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very far

far

close

very close

Robot

S The distance to the object 

is categorized as

“very close” if S ∈ 0,25
“close” if S ∈ (25,50]
“far” if S ∈ (50,75]
“very far” if S ∈ (75,100]

Figure 2.1: This explains the distance categorization done in the systems proposed
in [55,56] in order to generate linguistic spatial descriptors about the surrounding
objects.

Methodologies for controlling of a robot using information rich natural spoken

user utterance have been studied with the intention of handling natural language

voice instructions with fuzzy implications related to velocity of the robot while ig-

noring the redundant words in natural language expression [57,58]. For instance,

the command “Robot, please go very fast” can be considered. In the example

command the words, “Robot” and “please” are senseless within the operation do-

main of the robot, and only the words “go” and “very fast” are associated with

the functions of the robot. The concepts are capable of ignoring the redundant

words as well as interpreting fuzzy implications in natural language voice com-

mands in order to respond appropriately. However, the concepts are not capable

of identifying the context grammar and hence the systems cannot differentiate

the commands, “Robot go very fast” and “Robot, do not go very fast”. Crisp

output values for fuzzy implications such as “very fast” are generated by a fuzzy

neural network. The output of fuzzy linguistic information is defined as a lin-

ear modification factor based on the current state of the robot (i.e. the current

velocity of the robot) as shown in Fig. 2.2. The desired velocity is calculated

as Desired V elocity = V elocity Factor × Current V elocity by obtaining the

corresponding velocity factor at the current speed from the graph illustrated in

Fig. 2.2. The linear modification factors have been defined based on the argu-

ment that the phrases like “very fast” has a low significance when the machine
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Figure 2.2: This shows the linear modification factors for obtaining the desired
velocity by interpreting uncertain velocity instruction in the work proposed in
[57]. Reprinted with permission c©IEEE 2004

comes close to the maximum velocity and vice versa for a phrase like “very slow”.

Furthermore, the linear modification factors are fixed. Hence, the output of the

system is predetermined for a particular state.

A robotic aid system, which consists with a fuzzy command interpreter, has

been developed for feeding the physically handicapped [59]. This system is ca-

pable of interpreting crisp values for fuzzy linguistic terms in user commands

according to the current context. A fuzzy inference system is utilized and it

generates a crisp output by evaluating the difference between the robot’s posi-

tion and the user’s position as explained in Fig. 2.3. The difference between the

user’s position and the robot’s position is calculated based on the coordinates

with respect to the reference frame. The calculated position difference and the

uncertain descriptor are fed into the fuzzy inference system in order to generate

the crisp coordinates of the destination position. The system has been designed

based on the insight that when the distance between the robot and the user is

high, the command, “move closer” will move robot by a large distance towards

the user to get it to a closer position and if the distance difference is small, then

the movement will be a small distance because the robot is already in a closer po-

sition. This system enables the users to have much friendlier interface to instruct

the robot. Even though the system evaluates the current context, the output is

predetermined because the membership functions of the fuzzy inference system
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are defined as fixed entities. Furthermore, details of the fuzzy inference system

in the proposed interpreter is not revealed.

2.2.3 Robotic Systems that Adapt the Perception According to the

Environment

Uncertain information related to the spatial information such as sizes of ob-

jects and distances is often used in typical assistive tasks in domestic environment.

The meanings of such uncertain terms obviously depend on the environmental fac-

tors. Therefore, concepts have been introduced in order to adapt the perception

of robots about uncertain information based on the spatial information of the

environment of interest.

A method has been introduced in order to effectively evaluate the fuzzy lin-

guistic information in manipulation related user instructions such as “move red

box little left” based on visual attention [60]. The system is capable of inter-

preting the quantitative distance value for the distance related fuzzy implication

in a particular user command. The corresponding object in a user instruction

is identified from directly mapping the lexical symbol with the object memory

Linguistic 

Command

User 

position

Robot 

Current 

position

Difference

Fuzzy 

inference 

system

Robot 

destination 

position

Crisp values for 

position coordinates

Uncertain linguistic 

term, “closer”

Crisp values for 

position coordinates

Figure 2.3: This explains the arrangement of the fuzzy command interpreter
purposed in [59]. The figure is based on [59]
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which considers the Hu moments [61] and RGB values as the feature set similar

to the method explain in [62]. However, the object identification and movement

direction related uncertain information are not handled by the system and the

possible user instructions are bounded by a strict grammar model that cannot

learn new patterns of user instruction. Through the visual attention, the system

can perceive the working environment in order to assess the spatial arrangement

of the objects in the working environment. A fuzzy inference system is used to

generate the crisp distance value for the fuzzy implication by considering the

average distance of the objects in the attentive vision field. In order to calcu-

late the average distance (davg), the attentive vision field is divided into regions

based on the four principle directions as shown in Fig. 2.4. Subsequently, the

average distances to the surrounding object in each neighborhood are calculated.

Thereafter davg is calculated by considering a higher priority for the region in the

target moving direction than the other directions. Then the parameters obtained

from the visual attention system are fed into the fuzzy inference system shown

in Fig. 2.5. In order to evaluate the performance of the concept, variations of

the evaluated distances of different fuzzy implications with the arrangements of

the objects in the vision field are given as experimental results. These, results

clearly indicate the ability of the system in adapting the perception according to

the spatial arrangement. However, the results have not been validated against

the compliance of the user. The system is only capable of interpreting fuzzy

implications related to motional information and it cannot evaluate uncertain

information related to positional information. As an example, it cannot evaluate

the command “move blue box near to the red box” since it cannot evaluate the

positional information related uncertain term “near”. This is one of the major

limitation of the proposed system. Furthermore, the system uses an overhead

camera to perceive the environment, hence the attentive vision field is not human

like.

Schiffer et al. [64, 65] proposed a method that can be used by a service robot

for qualitative spatial reasoning of positional information in user instruction. The
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Backward

Forward

RightLeft

Object to be moved

Other surrounding 

objects

Figure 2.4: The parameter evaluation of the visual attention system proposed
in [59] is explained here. The neighbourhood region of each principal direction
is indicated in the shaded area. Only the objects in the neighbourhood areas
are considered for evaluating the average distance by omitting other surrounding
objects. The figure is based on [60].

Figure 2.5: This shows the membership functions of the fuzzy inference system
used in the system proposed in [60]. (a) shows the input membership function for
the average distance of the surrounding objects and the fuzzy sets are adjusted
according to D, which is the distance to the farthest object from all. (b) shows
the output membership function of the system and the fuzzy sets in the output
membership function are adjusted according to X which is the distance to the
nearest object in the target moving direction. It should be noted that the fuzzy
predicates that can be identified from the system (i.e. “very little”, “little”,
“medium” and “far” according to the grammar model) are fed to the system
through an input membership function with singleton fuzzy sets. The figure is
extracted from [63]. Reprinted with permission c©2009 IEEE
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proposed concept has been combined with a logic program language known as

GOLOG [66] and a framework for reasoning about actions and changes known

as situation calculus [65]. This enables the reasoning of fuzzy fluent related to

the positional information in a robot operated inside a domestic environment.

The basis of the reasoning method is that the fuzzy information associated to

positional information in domestic environment depends on the associated frame

or the point of view. The assignment of frames in an example situation is illus-

trated in Fig. 2.6. As an example, “far” with respect to a large room such as a

living room has a higher quantitative meaning than “far” with respect to a small

room such as a bedroom and “far” with respect to a table in the living room

has a much smaller quantitative meaning than the previous two cases. Therefore,

the meanings of fuzzy terms are scaled according to the frame size, which is the

size of the respective room or object such as a table. Therefore, the concept is

capable of adapting the perception based on the environment. However, experi-

mental results for variations of the interpreted quantitative values for qualitative

information have not been gathered and analyzed. The adaptation entirely de-

pends on the size of the frame and other environmental factors that influence the

interpretation such as free space and object arrangements are not accounted for

the adaptation. Those are the main drawbacks of their work.

2.2.4 Robotic Systems that Adapt the Perception According to Expe-

rience

Humans build up their knowledge base by acquiring knowledge through the

experience. This knowledge base can be used to get an idea about the working

environment, user expectations and the context. Furthermore, such knowledge

acquisition enhances the capability of interpreting fuzzy linguistic information

according to the current environmental context and the expectations of the user.

Therefore, experience is also an important factor in adapting the perception of

robot about uncertain information and systems have been developed in order to
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Figure 2.6: This explains the concept of frames used in [64, 65]. Each room or
object has its own reference frame.

adapt the perception based on the robot’s experience.

The meaning of an uncertain term depends on the immediate previous state.

For example, a situation of driving a car by two persons can be considered. A

person who drove the car 100 km may think driving another 10 km is a short

distance while a person who drove a car 15 km may think driving another 10 km

is a long distance. Based on this phenomena, the method proposed in [67, 68]

assumes that the quantitative meaning of an uncertain term depends on the im-

mediate previous movement of the robot. The proposed concept is known as

fuzzy coach player system and it can be used for teaching the behaviors for robot

using natural language instructions. The quantitative values for uncertain terms

are interpreted by a fuzzy inference system that considers the immediate previous

moment of the robot as an input. The end effector movements and single joint

movements of a manipulator have been considered in [68] and [67] respectively for

the implementation. The inputs and output membership functions of the fuzzy

inference system used in [68] is shown in Fig. 2.7. The fuzzy sets in the member-

ship functions are fixed and defined based on expert knowledge. Therefore, the

adaptivity of the system for different conditions is hindered which is one of the
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(a) (b)

(c)

Figure 2.7: The membership functions of the fuzzy inference system used in
[68] is shown here. (a) shows the input membership function for the action
modifier (i.e. the uncertain term in a particular user instruction). (b) shows
the input membership function for the previous movement. (c) shows the output
membership function. The figure is based on [69].

major drawback of this method.

However, there are situation where merely the immediate previous state mis-

represent the experience. As an example, a situation where a person has driven

a car 80 km, 100 km, 70km, 90 km and 2 km for consecutive 5 times can be

considered. If only the immediate pervious state is considered (i.e. only the 2km

travel), his experience is not represented correctly. Therefore, a set of previous

states should be accounted in order to get an enhanced assessment of the situa-

tion. Based on this, the method proposed in [70] interprets uncertain information

by considering the previous set of movements of the robot. The method used the

concept of internal rehearsal [71] that is an internal simulation, which simulate

the ability of humans in internally perceiving and manipulating the environment,

and forecasting the future [72]. The functional overview of the system is depicted
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in Fig. 2.8. Mainly the system consists of two sections; the fuzzy inference sys-

tem and the internal rehearsal system. The functionality of the fuzzy inference

system is almost similar to the fuzzy inference system used in [68] (i.e. the fuzzy

inference system depicted in Fig. 2.7) even though it has been implemented as

a fuzzy neural network. The fuzzy inference system is responsible for evaluat-

ing the quantitative meaning of the uncertain term in a particular instruction

by considering the previous movement as similar to [68]. However, the internal

rehearsal system suggests the corresponding previous movement. The internal

rehearsal system consists of the Rehearsal Memory (RM), Previous Movement

memory (PM) and the Rehearsal Counter. RM stores the internally simulated

output value provided by the fuzzy inference system (i.e. sr) for the suggested

previous movement (PMr). Likewise, the process will continues from r = 1 state

to r = Nrh state where r is the count of internal rehearsals and Nrh is the de-

fined threshold limit (This indicates how many previous movements have to be

accounted as the experience.) without performing any real movement. There-

after, the simulated outputs (sr) in the RM are integrated as given in (2.1) in

order to decide the required quantified output (Y ) for the movement where pr is

a constant that represents the probability of relevancy of rth internal rehearsal

for the final outcome. Therefore, pr is defined in such a way that the proba-

bility of relevance decades with the time (i.e. value of pr exponentials decades

from r = 2....Nrh) as similar to human memory. Moreover, the recent previous

states have a higher effect to the final output than the past states. Variations

of the interpreted quantitative values for fuzzy linguist information with num-

ber of internal rehearsals have been analyzed in order to assess the performance

of the proposed concept. The proposed concept has been implemented for end

effector and posture controlling of a fixed manipulator. However, the system is

only capable of handling a predefined set of uncertain terms and the possible user

commands are bounded by a strict grammar model.
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Figure 2.8: This explains the core functionality of the internal rehearsal system
proposed in [70]. The figure is based on [70].

Y =

∑Nrh
r=1 srpr∑Nrh
r=1 pr

(2.1)

An adaptive fuzzy command acquisition network, which processes fuzzy lin-

guistic information in spoken language commands, has been proposed [73]. The

proposed concept is capable of acquiring the knowledge about fuzzy linguistic

information based on the user critics. The concept has been implemented with

a neural network in such a way that the system is capable of learning new user

commands and on line learning. Hence, the possible user instructions are not

restricted and it can acquire new knowledge while operating. However, accord-

ing to its implementation, network nodes/size increases exponentially with the

vocabulary size. The abilities of the system in acquiring the knowledge of fuzzy

command have been verified with the experimental results. However, the ability

of the system in interpreting quantitative values for the fuzzy linguistic informa-

tion has not been assessed experimentally. It requires a large data set for initial

training of the network and the users cannot give natural language user critics
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to the system. Those are the main drawbacks of the proposed concept. Fur-

thermore, the proposed system has not been implemented on a robotic system

and the concept can be applied for voice controlled robot, on-line information

retrieval systems etc.

Jayasekara et al. [74] proposed a method to adapt the perception of fuzzy lin-

guistic information based on the user feedbacks. The proposed concept has been

implemented with a fuzzy neural network. The important segments and layers

of the fuzzy neural network is shown in Fig. 2.9. The first layer has two types

of node to acquire the inputs, the uncertain term and the previous movement.

The second layer act as the fuzzification layer and the same input membership

functions used in [68] and [70] are used in here also with slightly modified fuzzy

sets. The third layer represents the rules by taking the algebraic product between

the outputs of second layer as T-norm and the output of ith node in this layer

represent the firing strength of ith rule (µi). The fourth layer links the fuzzy

antecedent part to the consequent part and any node, i represents a triangular

fuzzy set with center ai and width bi. The parameters in this layer (i.e. ai and bi)

are initialized with the values slightly similar to the output membership function

(However, a uniform distribution of fuzzy sets over the universe of discourse is

considered here) of the fuzzy inference system presented in [68] and [70]. The

fifth layer is the defuzzification layer and the defuzzfied output (A) is obtained

from (2.2) using sum-product composition for Mamdani fuzzy systems [75] where

NR is the number of rules.

A =

∑i=NR
i=1 aibiµi∑i=NR
i=1 biµi

(2.2)

The connection weights of the fifth layer of the network are adjusted based

on the user feedbacks ((i.e. ai and bi)).This enables a more natural communica-

tion and eventually it enhances the interaction between the user and the robot.

In order to evaluate quantitative values for the feedback terms, a module called

25
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Uncertain 

term
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movement

Figure 2.9: The structure of the fuzzy neural network used in [74] for interpret-
ing the uncertain information is shown here. It should be noted that only the
important segments in interpretation process are included here and hence the
numbering of the layers is different from the original publication. The figure is
adapted from [76].

vocal cue evaluation system has been deployed. This module has been devel-

oped with a fuzzy inference system that assumes that the quantitative meaning

of feedback terms depends on the immediate previous state of the robot. The

connection weights are modified though backpropagation based on the quantified

error identified from the feedback of the user.

The performance of the system has been further improved by considering the

willingness of the user [76] that can be used as a parameter to identify the motiva-

tion of the user to change the perception of the robot about a particular uncertain

term. This parameter is evaluated by considering a series of user feedbacks. The

performance improvement of the system due to the consideration of the willing-

ness of the user for the adaptation has been analyzed experimentally by defining

a performance index called user satisfactory level. The satisfactory level is the

ratio between the number of feedbacks received as “good” and the total number

of feedbacks. The proposed system is capable of adapting the perception of the

robot about the uncertain information towards the perception of the user. The

26



system has been implemented for controlling the end effector of a fixed robotic

manipulator. The possible user commands and the feedback terms are bounded

by a strict rule set. Furthermore, the system cannot evaluate the unintentional

body movements of the user that can be used as feedback such as facial expression

and the feedbacks have to be given explicitly in order to adapt the perception,

which is an overhead duty.

All the systems mentioned in this section cannot perceive the environment

through sensors, hence the systems cannot adapt the perception according to the

changes in the environment. Therefore, the systems are not suitable for dynamic

environment or mobile tasks since the experience is only effective for a particular

environment. This is the major limitation of the systems that adapt based solely

on the experience.

2.2.5 Robotic Systems that Adapt According to the Influential User

Instruction

The attention can be altered based on an external stimulus such as a voice

command [77] and hence attentive instructions such as “move carefully” influence

the quantitative meaning of fuzzy implications in user commands. Therefore, [63]

and [78] proposed a factor called attentive modification factor that can be used in

order to modify the perception of fuzzy linguistic information when an attentive

instruction is given. The proposed concept has been utilized with the uncertain

information evaluation method proposed in [60, 74]. The users can use a set of

predefined attentive instructions in order to influence the perception by varying

the attentive modification factor. The attentive modification factor is a linear

function (as shown in Fig. 2.10) that relies on different attentive instructions

such as “move more carefully” and “move carefully” and the function is defined

in a way such that it can exhibits the natural human behaviors such as fading

away of the effects of an attentive instruction with the successive operation.

27



Figure 2.10: This shows the linear functions used in [63,78] to modify the atten-
tion level. Reprinted with permission c©2009 IEEE

2.3 Limitations of the Existing Systems and the Possible Improve-

ments

The existing systems have limitations and the performances of the existing

system for understanding uncertain information are far below compared to the

abilities of humans. Hence, the existing methods should be improved in order to

enhance the human-robot interaction abilities. The limitations of the exiting un-

certain information understanding methods have been analyzed and the possible

improvements are suggested based on the following three aspects; scope, interac-

tion and adaptation. Uncertain information links with different entities such as

spatial information, time, counts etc. and such linking entities are considered as

the scope. The way that the interactions between the users and the robots are

taken place and the way that the perception of uncertain information is adapted

are considered as the interaction and adaption respectively in the analysis. The

current status of the method used for understanding uncertain information and

the possible improvements are summarized taxonomically in Table 2.1.
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Table 2.1: Summary of the current status of the methods used for understanding uncertain information and the possible improve-
ments

Current status1 Possible Improvements2

Scope

⊗ Understanding is limited to uncertain information related to
• Distances in environment (e.g., [59, 60,65,68],

[70, 74])
• Speed of movements (e.g., [57] and [73])
• Directional notions (e.g., [55])
• Object sizes,(e.g., [62] and [79])
• Joint angle (e.g., [67] and [70])

⊗ Extend the capabilities to understand uncertain information
related to other aspect such as time, counts and process/task
related information

Interaction

⊗ All the system are only capable of interacting using only
voice communication between the robot and the user.

⊗ Very few work tried to synthesize uncertain information
in vocal responses of the robot. (e.g., [55] and [79])

⊗ All other the work focuses on addressing the issue in
interpreting the uncertain information in user instructions

⊗ Extend the capabilities to evaluate the information conveyed
non-verbally to adapt the perception of uncertain information

⊗ Developing methods to synthesize uncertain information in
vocal responses of the robot in an adaptive manner.

Adaptation

⊗ Systems are capable of adapting the perception of uncertain
information based on
• Environment
◦ Frame size (e.g., [65])
◦ Average distance between objects (e.g., [60])
• Experience
◦ Immediate previous movement (e.g., [67] and [68])
◦ Set of previous movement (e.g., [70] )
◦ User critics (e.g., [73] and [74])
• Influential user command (e.g., [63] and [78])

⊗ Fuzzy logic (type I) and fuzzy neural networks are often
used.
• Fuzzy logic (e.g., [60, 67,79] and [59])
• Fuzzy neural networks (e.g., [70, 73] and [76])

⊗ Performance evaluation done through user studies
• User satisfactory level (e.g., [76])
• Response of the humans (e.g., [79])

⊗ Consider multiple entities to concurrently adapt the perception. e.g.,
• Experience and Environment
• Environment and User critics
• Environment and contextual knowledge of different

objects and tasks
⊗ Consider more environmental factors for adapting

the perception. e.g.,
• Available free space
• Arrangement of obstacles

⊗ Perceive the environment in a human like manner
for improving the perceiving effectiveness. e.g.,
• Use human like vision system instead of overhead cameras
• Consider the human attention focusing to extract/identify

the key environment parameters
⊗ Adapt the perception considering the specify knowledge of

a particular context. e.g.,
• Common properties of an arrangement of a lunch table
• Danger of hot item or flames

⊗ Investigate the possibility of using fuzzy type II systems
for interpreting the uncertain information

⊗ Introduce an objective performance measurement index

1 It should be noted that only the key publications are given as the examples.
2 Most of the possible improvements are synthesized here. However, it should be noted that the all the possible improvements listed in here are not
addressed within the scope of this thesis.
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2.3.1 Scope

Uncertain terms related to many different entities are involuntarily included

in voice instructions and suggestions. However, most of the existing systems are

limited to handling uncertain information related to distances in environment

[65, 68, 74], speed of movements [57, 73], directions of objects [55], object sizes

[62,79], and joint angles of the manipulators [67, 70]. Uncertain terms related to

the other aspect such as time, counts, and processing tasks are not addressed.

Therefore, it would be interesting to extend the capabilities of the existing systems

to incorporate the ability to understand uncertain information related to such

entities. However, it would be a challenging task since the factors, which effect

the meaning of such uncertain information have to be identified since previous

studies have not revealed those information.

2.3.2 Interaction

The present systems developed for interpreting uncertain information are only

capable of interacting with humans using only voice communication. Hence the

interactions are unimodal and the systems are not capable of grabbing informa-

tion conveyed through interaction modalities such as hand gestures, facial expres-

sions, and body movements. The information conveyed through these modalities

other than voice can be used as supportive aid for enhancing the understanding

of uncertain information included in voice instructions. Furthermore, facial ex-

pressions and sub conscious body movements can be used as substitute for voice

feedback in the systems that adapt based on the user critics such as in [74]. This

will eventually reduce the overhead work of the user and hence interaction will

be improved.

Inclusions of uncertain terms in vocal responses of robots will enhance the

human like communications abilities in the robots. However, most of the present

systems are only capable of interpreting uncertain information in user instructions
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and only limited numbers of studies have been carried out to generate uncertain

terms in vocal responses of the robot. The system proposed in [55] has fixed

meanings for uncertain terms in responses and the method proposed in [79] is

capable of synthesizing uncertain terms related to sizes of objects by adapting the

perception based on the visual attention. Therefore, capabilities of the existing

system are not sufficient in this regard and studies should be carried out in order

to develop methods to generate uncertain terms in vocal responses of the robots

effectively.

2.3.3 Adaptation

According to the analysis of existing literature, different methods have been

used by the existing system to adapt the perception of uncertain information.

These methods used different entities and different Artificial Intelligence (AI)

techniques in order to adapt the perception. Therefore, limitation of the ex-

isting systems and the possible improvements in the adaptation methods are

analyzed separately considering the adaptation entities and artificial intelligence

techniques. Furthermore, the performance evaluation methods used in the exist-

ing approaches are also discussed.

Adaptation Entities

Existing methods are capable of adapting the perception based on different

entities that affect the meaning of uncertain information. As examples methods

proposed in [60, 65] are capable of adapting the perception based on the envi-

ronment; methods proposed in [68,70,74] are capable of adapting the perception

based on the experience.

The systems that adapt the perception based on the environment are capable

of adapting the perception based on the spatial factors of the environment. For

instance, method proposed in [65] uses room size; method proposed in [60] uses
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average distance between the objects. The vision feedback is used only in the

system proposed in [60]. However, it does not possess the stereoscopic vision

and the system uses an overhead camera that has a completely different view

of the environment compared to that of a human. Therefore, the system has

drawbacks in interpreting uncertain information since the environment perceiving

ability is limited and not human like. In order to improve the effectiveness of the

uncertain information understanding capabilities of the robot, human-like vision

attentive mechanism should be incorporated into the robot. Furthermore, other

environmental factors that influence the meaning of uncertain information are

not utilized by the existing methods. However, studies have not been also carried

out to identify the influence of the environmental factors that alter the meaning

of uncertain terms. Therefore, investigations need to be carried out in order to

identify the influential environment factors and those effective factors should be

used in order to adapt the perception of robot on the uncertain information.

AI Techniques

Most of the systems that can understand the uncertain terms in user commands

utilize fuzzy inference systems in order to interpret quantitative values for the

uncertain terms (e.g., [60], [65] and [59]). In order to provide learning ability,

fuzzy neural networks are utilized in systems that can adapt the perception of

uncertain terms based on the user critics (e.g., [73], [76] and [74] ). The fuzzy logic

systems are used more often in here due to their ability in effective modelling of

the knowledge of humans beings in robotic systems without the knowledge of the

underlying dynamics [75, 80] and most of the behaviors related to human-robot

interaction domain [81,82].

The fuzzy inference systems that utilized in these systems are fuzzy type I

systems. However, Mendel [83] showed that interval type II fuzzy sets could better

represent the linguistic uncertainties since the membership grade of an interval

type II fuzzy set is an interval instead of a crisp value. Therefore, interval type II
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fuzzy sets can be used to improve the understanding of the uncertain information

of the robots. Furthermore, there is a possibility of using general fuzzy type II for

improved performance since the recent development of computationally effective

algorithms for implementation type II fuzzy inference systems [84]. Therefore,

it would be interesting to model the systems using general type II fuzzy sets or

interval type II fuzz sets in order to identify the performance gain despite of the

implementation and computational complexity.

As explained in section 2.3.3, the perception of uncertain information should

be adapted according to the context. In order to identify the context, fuzzy Naive

Bayesian network could be used as explained in [6]. For fusing multimodal inter-

actions, there is a possibility of using Bayesian networks similar to the methods

explained in [46]. Therefore, such methods could be adopted as supportive aids

for the interpretation process of uncertain information.

Performance evaluation

Few methods that can be used in order to evaluate the performance of the

systems can be found from the available literature. An index called user sat-

isfactory level [74] is used in comparing the adaptation capability of the robot

towards the perception of the user. The user satisfactory level is calculated based

on the agreement of the user about the responses of the robot in successive user

instructions. Actually, the user satisfactory level is the ratio between the number

of cases accepted by the user and the number of cases considered. In [79], a

human study has been conducted by asking the participants to rate the sizes of

objects using a linguistic term in different scenarios and the results of the human

study have been compared against the linguistic terms synthesized by the robotic

system. However, user studies that can be conducted in order to evaluate the

human-robot interaction are highly subjective due to the subjectivity of human

participants. Therefore, the human studies should be carried out in a way that

experimental results can provide a basis for generalizability and recommendations
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for designing, planning and executing human studies for HRI can be found in [85].

Convergence ability of the learning function is also analyzed in method proposed

in [70] in order to evaluate the performance and variations of such parameters of

the intelligent systems can also be good choices.

2.4 Summary

The chapter presented a review on service robots dealing with uncertain infor-

mation in language instructions and responses. Service robots are being devel-

oped in order to cater the demand in emerging areas of robotic applications such

as health-care, education, rehabilitation and assistance and service robots with

human like interaction capabilities are preferred for such applications.

Voice is one of the predominant interaction modalities used in order to convey

information between peers. Hence, service robots with human like voice com-

munication abilities could provide a better service. However, the natural voice

instructions do not convey precise quantitative information and humans mostly

prefer using uncertain terms, lexical symbols and notions rather than more pre-

cise quantitative values. Hence, the ability to interpret uncertain information is

mandatory for a human friendly service robot.

Quantitative meanings of uncertain terms depend on several factors such as en-

vironment, experience and context. Therefore, the robotic systems should have

ability to adapt the perception of uncertain information based on these enti-

ties. The existing robotic systems have been critically investigated taxonomically

based on the adaptation entity.

Fuzzy logic and fuzzy neural networks are often used in order to interpret the

uncertain information in voice instructions by most of the existing methodologies

due to their ability in modelling natural tendencies of humans. The fuzzy infer-

ence systems and fuzzy neural networks are capable of effectively interpreting the
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uncertain information to a greater extent. However, there are limitations in the

existing systems in interpreting uncertain information in human like manner.

The limitations of the existing systems have been identified and the possible

future improvements are synthesized in this chapter as contributions. In sum-

mary, capabilities of the existing systems are far below compared to the cognitive

abilities of human beings in understanding the uncertain information. Further-

more, it was found that minimal research had been done in this special research

area and there is a wide research gap to fill out.
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Chapter 3

SYSTEM OVERVIEW

3.1 Physical Overview

Moratuwa Intelligent Robot (MIRob) has been developed as a domestic service

robot. The base of the MIRob consists with a Pioneer 3DX mobile robot platform

developed by Adept MobileRobots1. It is a differential drive mobile robot with

500-tick encoders. The robot has two sonar sensor arrays one in the front and

one in the back. Each sonar sensor array consists with eight sonar sensors, which

have sensitivity range from 10 cm to 5 m. The base can reach maximum speed of

1.2 ms-1 and carry a payload of up to 17 kg. In addition to that, it has an inbuilt

gyroscope for error correction in navigation. A mobile robot especially when

operating in human populated environments, needs to avoid possible damages to

furniture or humans because of collisions and has to be safe in this regard. As a

further safety measure, it is fixed with front and rear facing bumpers to detect

collisions. An aluminum structure has been placed on top of the base to increase

the height of the robot to a match the height of human beings. Total height

of the MIRob is 110 cm. Cyton Gamma 300 manipulator developed by Robai2

is installed on the robot to handle objects. The manipulator has 7- DOFs and

1 DOF gripper. It can handle a maximal payload of 300 g. Full reach of the

manipulator is 53.4 cm and the maximum opening of the gripper is 3.5 cm. On

the very top of the robot, a Kinect version 2 motion sensor 3 is mounted with a

1www.mobilerobots.com
2www.robai.com
3www.wikipedia.org/wiki/Kinect
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Flir-E464 pan-tilt unit. The pan tilt unit facilitates gaze changes of the robot.

The MIRob is shown in Fig. 3.1.

The embedded motion controller of the robot automatically performs velocity

control of the robot and provides robot state and control information includ-

ing a position estimate of the robot in space, battery charge data, sonar range

sensing data etc. An embedded computer with 2GB RAM and Intel R© CoreTM 2

Duo 2.26 GHz processor is integrated into the robot base for performing high

level processing and controlling task such as, image processing, voice recognition

and understanding, tasks planning and decision making. For communication, a

WLAN adapter capable of using IEEE 802.11a/b/g is installed. In addition to

that, the robot consists with stereo speakers and microphones5 to play sound and

voice recognition. The robot is powered by three hot-swappable 9Ah sealed led

acid batteries and the battery power lasts for approximately 3 hours of continuous

operation at full charge.

3.2 Functional Overview

Overall functionality of the system is depicted in Fig. 3.2. The system is capa-

ble of interacting with the user through voice communication and the actions of

the robot. Voice commands are recognized and analyzed by the Voice Recognition

and Understanding Module6. Voice recognition is implemented using the Speech

Recognition 3.1 7 library. Voice responses are generated by the Voice Response

Generation Module, which is a text-to-speech converter implemented using the

Microsoft Speech API 8. Basic dialogue and grammar patterns, keywords, and

lexical symbols are stored in the language memory.

4www.flir.com
5A wireless microphone is used to improve the accuracy of the voice recognition.
6In situations where the voice recognition accuracy is poor, a wizard is used to convert the

voice into text.
7www.github.com/Uberi/speech recognition
8www.en.wikipedia.org/wiki/Microsoft Speech API

37

http://www.flir.com
https://github.com/Uberi/speech_recognition
https://en.wikipedia.org/wiki/Microsoft_Speech_API


Kinect v2 motion sensor

Pan-tilt unit 

Cyton Gamma 300 

manipulator 

Speakers

Pioneer 3DX

mobile robot base

Figure 3.1: Moratuwa Intelligent Robot (MIRob).
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work proposed in this thesis and are merely applications of existing methods.
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The Gesture Evaluation Module (GEM) is deployed for identifying the non-

verbal instructions accompanied with voice instructions by analyzing the skele-

ton of the user returned by the Kinect motion sensor attached to the robot.

The interactions between the robot and the user are managed by the Interaction

Management Module (IMM) in accordance with information retrieved from the

Robot Experience Model (REM). In order to facilitates these behaviors, the IMM

is implemented with a finite state intention module. The required set of actions

for a particular interaction is determined by the IMM. Then, this required set of

actions is executed by the Action Planning Module with the aid of the Action

Knowledge Base and the Navigation Controller. The REM is a layered architec-

ture that organizes the knowledge of the robot about its environment, actions,

and context. In addition, the Action Knowledge Base and the Language Memory

are managed by the REM.

The uncertain information in navigation instructions is interpreted by the In-

telligent System for Understanding Uncertain Information (IUUI). This module

consists with various submodules and specific details about those modules will

be discussed in the succeeding chapters. The knowledge of the REM is used by

the IUUI during the inferencing of uncertain information.

The low-level control functionalities of the robot are handled by the Navigation

Controller. It is capable of navigating and path planning from an initial position

to a goal position while avoiding obstacles in the environment. The required

navigation maps are created using the Mapper3 application 9. The maximum

limits of motion error coefficients of the navigation controller are configured as

follows for localization and path planing actions. When the robot moves linearly,

the error in the distance is 0.05 mm per 1 mm distance traveled. When the robot

rotates, the error in the rotational angle is 0.05 degrees per 1 degrees angle turned.

When the robot moves linearly, it can also affect its orientation. This drift is

0.0025 degrees per 1 mm distance travelled. The Sensory Input Handling Module

9www.mobilerobots.com/Software/Mapper3.aspx
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(SIHM) is used to retrieve information from the robot’s built-in sensors, such

as range sensors. The Spatial Information Extraction Module (SIEM) perceives

spatial information about the environment by extracting information from the

navigational maps and from the information retrieved by the SIHM. Then, the

perceived spatial information is sent to the REM.

3.2.1 Command and robot action identification

Ability to use flexible user commands enhances the interaction between the

robot and the user. Hence, the possible structures of the navigation user com-

mands have been identified in order to develop a method to understand flexible

user commands. Mainly navigation user commands can be classified into two main

categories, motional commands and positional commands. A motional command

is can be used to move the robot some distance from its initial position inside a

room and it does not reveal information related to a position. In this kind of a

command, the required distance value for the movement needs to be measured

from the robot. As an example, “move far forward” can be considered. A posi-

tional command can be used to move a robot to a position, which is mentioned

with respect to a reference. In this kind of a command, the required distance

value needs to be measured from the reference. As an example, “move close to

the table in the kitchen” can be considered.

The motion direction of a motional navigation command can be given directly

with respect to the robot or with respect to a reference point in the surroundings.

For simplicity of the implementation of the command identification process, it is

assumed that motional commands can be classified into two types based on the

manner in which the direction is given. If the direction is given directly with

respect to the robot, the possible directions are assumed to be “left”, “right”,

“forward” and “backward”. Commands 1 and 2 in Table 3.1 are examples of

such commands. In commands of this type, the distance that must be traveled

by the robot is expressed by means of an uncertain term such as “little” or “far”.
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Table 3.1: Example User Commands and Corresponding Robot Actions

User Command
Command
Description

Required
Robot Action(s)

1. Move a little forward
2. Go far to the right

Motional Type I

3. Move a little toward
the TV

4. Move a little in the
direction of the table

Motional Type II

5. Go near to the TV
6. Move near to the

table in the kitchen
Positional

If same room,
Type III;
Otherwise,
Types IV & III

7. Go to the office Positional Type IV
8. Go near to the

bed in the office
(no bed in the office)

Erroneous
or

Ambiguous

Type V
(voice response)

9. Too little
(after action I or II)

10. Too close
(after action III)

Feedback
Type VI
(learning)

The robot needs to assign a quantitative value to this uncertain term and then

move the corresponding quantitative distance in the given direction. Robot ac-

tion type I is defined for the execution of commands of this kind. For a direction

that is given with respect to a reference point, such as the location of an object

in the surrounding environment, it is assumed that such commands will contain

direction-related keywords such as “toward” and “direction of”. Commands 3

and 4 in Table 3.1 are examples of such commands. To satisfy a command of this

type, the robot first needs to identify the reference object. The environmental

knowledge layer of the REM is used to identify the reference object and its lo-

cation (see section 3.2.2). Subsequently, the robot needs to assign a quantitative

distance to the uncertain term in the command and then move the corresponding

distance. Robot action type II is defined for the execution of such tasks.

When executing a positional command, the robot first needs to identify the

reference object and its location. Commands 5 and 6 in Table 3.1 are examples
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of commands of this kind. In this scenario, the robot needs to move to a position

that is uncertain because of the uncertainty in interpreting terms such as “near”

and “close”. Therefore, the robot needs to assign a reasonable quantitative value

to the uncertain term and then move to a position at the corresponding distance

from the reference point. Robot action type III is defined for executing such tasks.

However, there are situations in which the reference object is in another room and

the robot needs to move from the current room to that of the reference object.

Robot action type IV is defined for room-to-room navigation. Thus, the robot

needs to first perform a type IV action to move to the room where the reference

object is located and then perform a type III action. Positional commands also

encompass room-to-room navigation commands (e.g., command 7), in which case

it is assumed that there are no uncertain terms to interpret; the robot simply

moves from the current room to the stated room. Robot action type IV is used

for this task.

A user command may be erroneous or ambiguous depending on the arrange-

ment of the environment or the situation. In such a case, the robot uses voice

responses to ask for further information or notify the user about the situation.

Robot action type V is defined for actions in which only voice interactions are

involved. User responses such as “too little”, “too far” and “too close” are treated

as user feedback; if such feedback is received, then the robot performs a type VI

action to adapt its perception (see chapter 6). Examples of user commands and

the corresponding robot actions for the possible cases are given in Table 3.1.

User commands are identified by analyzing the received voice commands using

the keywords, basic grammar components and lexical symbols that are available

in the language memory. Subsequently, the required actions for a particular com-

mand are identified based on the knowledge of the REM. This approach allows

the user to issue commands that are not bounded by a strict grammar model.

However, assumptions have been made in implementing the command identifica-

tion process; this usage of assumptions is considered to be valid since the main
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contribution of the research is the development of novel methods of interpreting

uncertain information in language instructions. The grammar structures used

to identify the user commands are given below in JSpeech Grammar Format

(JSGF) [86]10. Furthermore, the system is capable of mapping the synonyms

with the initial tokens of the grammar model as explained in section 3.2.3.

<MotionalCommand> = <action> <distanceM> <directionM>;

<directionM>= [<helping word>]<directionK> |<helping word><Reference>;

<PositionalCommand> = <action> <distanceP> [<directionK>]<Reference>;

<actionn> = (go | move);

<distanceM> = (far | medium | little);

<distanceP> = (near | close);

<helping word> =(direction | toward);

<directionK> = (forward | backward | left | right | <sub dir>);

<sub dir> = (front | back) (left | right);

3.2.2 Robot Experience Model (REM)

The Robot Experience Model (REM) is used to organize the robot’s knowledge

of its environment, actions and context. It is separated into three layers for

knowledge representation, namely, the environment layer, the robot action layer

and the context layer. The context layer of the REM is intended for future

developments; it is currently inactive.

The knowledge of the robot about its working environment is stored in the

environment layer in a hierarchical tree structure, as shown in Fig. 3.3.

10Redundant words such as articles that may be included in user commands are filtered
out before parsing them. Therefore, the grammar structures are given without considering the
possible inclusion of redundant words.
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Figure 3.3: Hierarchical tree structure of the environment layer of the REM.

This enables the robot to organize its knowledge about heterogeneous domes-

tic domains in a constructive manner such that it can be utilized for high-level

decision-making. Knowledge about the rooms in the domestic environment is

represented in the top sublayer. The next sublayer contains knowledge about the

primary objects located inside the rooms represented in the top layer. The bottom

sublayer contains knowledge about secondary objects that are often located on

top of primary objects. The knowledge stored in the environment layer is used to

identify the object of interest referenced in a particular user command. The char-

acteristics of the object of interest and the room of interest can be retrieved from

this layer to interpret uncertain information. In addition, this enables the IMM

module to detect inaccurate user commands that do not comply with the envi-

ronment and to subsequently generate responses to them. The environment layer

of the REM is updated in accordance with navigational maps, sensory inputs and

knowledge acquired through interactive discussions as described in section 3.2.3.
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The robot action layer represents the robot’s knowledge of its actions. The

knowledge in this layer is used to identify the required set of actions for satisfying

a particular user command based on the information in the environment layer.

Five action types have been defined to fulfill the requirements of navigational

commands as explained in section 3.2.1. In addition, the knowledge stored in the

robot action layer is used to retrieve information on previously performed actions

during execution of an interaction with a user.

For this research, the context layer of the REM is inactive and it is proposed for

future developments. The language memory and the action knowledge base are

also managed by the REM. The REM is updated according to the navigational

maps and the sensory information received from the robot.

3.2.3 Interaction Management Module (IMM)

The proposed system is capable of acquiring knowledge through the interactive

communication with the user while handling the uncertain information. In order

to facilitate this the IMM has been implemented as a finite state intention module

[1]. Functional overview of the IMM is shown in Fig. 3.4 as a finite state acceptor

diagram.

The default intention state is set as “Waiting”. In this state robot is waiting

for a user instruction to perform an action. If the received user instructions is

compliance with a robot action of type I or II or III or IV. Then the state is

changed to “Action planning”. In the “Action planning” state, the sequence of

the required robot actions is decided. When the action going to be performed is

a robot action type IV action then the state is changed to “Perform” state. In

the “Perform” state robot perform an action of robot actions type I-IV. When

the required action is an action of robot action type I or II or III then the state

is changed to “Uncertainties interpretation” state. In this state robot interprets

quantitative values for the uncertain terms in the user commands. After the
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Figure 3.4: Finite state acceptor diagram of the system. It is possible to change
the state to “Maintenance” from any other available states if there is a require-
ment of a maintenance work of the robot such as low battery condition.

interpretation process is finished then the state is changed to “Perform” state.

After performing a robot action, the state is changed back to “Action planning”.

If an update of the REM is available then the state is changed to “Updating

REM”. After finishing the updating, the state is changed back to the “Action

Planning” state. After finishing the required sequence of the robot actions, the

state is changed back to “Waiting”.

If the user command is erroneous or ambiguous according to the existing knowl-

edge of the robot, the state is changed to “Clarification” state. In this state, the

robot seeks the help of the user to clarify the ambiguity of the command or fur-

ther enquire about the possible yet unknown changes in the environment. If the

user intention is not to give clarification, the state is changed back to “Wait-
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ing”. After successfully clarifying the ambiguity, the state is changed to “Action

planing” state. If an unknown change in the environment is identified during

the clarification, the state is changed to “Updating REM”. After finishing the

updating, state is changed to “Action planning” to plan the required sequence of

actions.

If there is an unknown token in the user instruction, the state is changed to

“Lexical symbol learning”. In this state the robot seeks the help of the user

to learn the unknown token. If the user give up the learning process then the

state is changed back to “Waiting”. After the unknown token is learned, the

state is changed to “Action planning” if the command is compliance with an

action of type I-IV. If the command is erroneous of ambiguous, state is changed

to “Clarification” for further clarifications.

A set of predefined dialogue flows and patterns are used in order to acquire the

knowledge while maintaining a smooth interaction with the user. The predefined

dialogue flows of the “Lexical symbol learning” and “Clarification” states are

given in the Fig. 3.5 and Fig. 3.6 respectively. The dialogues of the robot are

given as a letter code in the diagrams and the corresponding dialogues for the

letter codes are given in the Table 3.2. During the listening process, if no voice is

recognized within 300 seconds or if the same listening process consecutively runs

more than 5 times, the state is changed to “Waiting” with the voice response ‘M’

or ‘C’ respectively.

The state is changed to “Maintenance” if there is a requirement of a mainte-

nance work of the robot such as recharging or hardware failure. It is possible to

change the state to “Maintenance” from any other available states. During this

transition robot gives speech output ‘N’.
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Similar word is 
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Action Type
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Figure 3.5: The dialogue flow of the “Lexical symbol learning” state. The voice
responses of the robot is given as letter code and corresponding voice outputs are
given in Table 3.2. During the listening process, if no voice is heard within 300
seconds or if the same listening process consecutively runs more than 5 times,
the state is changed to “Waiting” while robot gives the voice response ‘M’ or ‘C’
respectively.

3.3 Results and Discussion

Experiments have been conducted in an artificially created domestic envi-

ronment inside the laboratory facility for verification of the capabilities of the

Moratuwa Intelligent Robot (MIRob). As the experiment, a series of user com-

mands has been given to the robot and the responses of the robot have been

recorded for the analysis. A selected segment of dialogues between the robot and

the user during the experiment is given below.

1. User: Move near to the tv
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2. Robot: According to my knowledge, there is no tv here. Is there any

change?

3. User: Yes

4. Robot: Where is it?

5. User: On the office table

6. Robot: OK. I will do it

7. User: Move near to the sink

8. Robot: I will do it

9. User: Move close to the table

10. Robot: I haven’t heard the word close before. Can you give a similar word

for close?

11. User: Yes. Near

12. Robot: I will do it

13. User: Move little left

14. Robot: I will do it

15. User: Move close to the tv

16. Robot: I will do it

Variation of the states of the robot during the execution of this command

sequence is illustrated in Fig. 3.7. The positions of the robot during execution

of the command sequence is marked on the map shown in Fig. 3.8. Initially the

robot was at the location marked as ‘0’ on the map and the state of the robot

was “Waiting” as illustrated in Fig. 3.7. The user issued the command “Move

near to the tv”. Environment layer of the robot at that time is shown in Fig. 3.3.
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Table 3.2: Defined dialogues of the robot
Code Speech output

A
I haven’t heard the word < unknown token > before.
Can you give a similar word for < unknown token > ?

B What can I do ?

C
I am sorry I couldn’t understand your requirement.
Do you need any other help?

D
Sorry, I don’t know that one also.
So can you give me another similar word for < unknown token > ?

E I will do it.

F
There are more than one < object > in < location > .
Can you help me to select the correct one?

G OK
H Can you give me another clue?

I
According to my knowledge, there is no < object > here.
Is there any change ?

J Where is it?
K Can you provide more information ?

L
According to my knowledge, there is no < object > in < location > .
Is there any change?

M
Sorry I couldn’t hear anything.
Do you need any other help?

N < Hardware status > I require maintenance work.

According to the knowledge of the robot at that time, there was no TV in the

home. Therefore, the robot considered that the user command was erroneous and

the state was changed to “Clarification”. Then the robot responded with dialogue

2 to clarify that from the user. Then the user responded with the dialogue 3 that

there had been a change of the environment which the robot had not known yet.

Then the robot asked the possible location of the TV by using dialogue 4. Then

the user replied with the dialogue 5. Then the robot replied with dialogue 6

and the state was changed to “Updating REM” to update the REM according

to the newly acquired knowledge. The updated REM is shown in Fig. 3.9. After

finishing the updating, the state was changed to “Action planning”. At this stage,

the current room and the room of the reference object were different. Therefore,

first the robot had to perform an action of robot action type IV for fulfill the

requirements, the state was changed to “Perform”. After finishing it, the state
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Figure 3.6: The dialogue flow of the “Clarification” state. The voice responses
of the robot is given as letter code and corresponding voice outputs are given in
Table 3.2. During the listening process, if no voice is heard within 300 seconds
or if the same listening process consecutively runs more than 5 times, the state is
changed to “Waiting” while robot gives the voice response ‘M’ or ‘C’ respectively.

was changed back to “Action planning”. Then the robot had to perform type

III action and then the state was changed to “Uncertainties interpretation” state

to interpret a quantitative value for the uncertain term “near”. After finishing

the interpretation, the state was changed to “Perform”. After performing the

action, state was changed back to “Action planning”. All the required sequence

of actions had been already completed at this stage to fulfill the command issued

by the user in dialogue 1 and because of that, the state was changed to “Waiting”

and the robot was waiting for a new instruction from the user. At this stage robot

settled at the location ‘1’. Captured snapshots of the robot while executing the

command sequence up to this point are shown in Fig. 3.10.

In dialogue 7, the user asked the robot to move near to the sink. Then robot
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Figure 3.7: Variations of the dialogues, states of the robot and the position of the
robot during the execution of the command sequence. It should be noted that
the time axis is not drawn to a scale and states which involve only computation
such as “Action planing” and “Updating REM” may take less than a fraction of
a second.
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Figure 3.8: Positions of the robot during the execution of the command sequence
is marked here. The map is drawn to a scale. However, the markers do not
represent the actual size of the robot.

moved to the position ‘2’. In dialogue 9, the user asked the robot to go close

to the sink. At this stage, the robot was not aware of the meaning of the token

“Close”. In order to learn the meaning of this lexical symbol, the state was

changed to “Lexical symbol learning” and the robot asked a similar word for

“close” in dialogue 10. Then the user gave a similar word in dialogue 11. Then

robot learned that the meaning of the unknown token “close is similar to “near.

Then it moved to position ‘3’. The robot moved from position ‘3’ to ‘4’ to obey

the user instruction given in dialogue 13. In dialogue 15, the user asked the robot

to move close to the TV set. At this instance, the robot had already known that

there is a TV set on the office table as well as the meaning of the word “close”
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Figure 3.9: Environment layer of the REM after acquiring the knowledge about
the TV set. ‘S-007’ has been added to the secondary object layer.

is similar to “near”. Therefore, it moved to the position ‘5’. This validates

the ability of the robot in acquiring the knowledge about the environment and

learning of unknown lexical symbols. An explanatory video of this segment of

the experiment is available in the supplementary multimedia attachment 111.

3.4 Summary

This chapter explained the functional and physical overview of an intelligent

service robot named Moratuwa intelligent Robot (MIRob) that has also been de-

veloped as a part of this research. The auxiliary modules that are required for

fulfilling the requirements of navigation instructions have been discussed. More-

over, the work presented in this chapter explains the supportive modules used in

11Available in the attached CD and www.youtube.com/watch?v=MtIA-vc09wA

55

https://www.youtube.com/watch?v=MtIA-vc09wA


the work presented in succeeding chapters. The developments of the Interaction

Management Module (IMM) and the Robot Experience Model (REM) are the

main contributions presented in this chapter.

Interaction between the robot and the user is managed by the IMM that has

been implemented with a finite state intention module. A set of states have been

defined in order to acquire the knowledge from the user using a set of predefined

dialogue patterns.

The REM has been introduced to facilitate the command understanding and

the uncertain information evaluation. The user commands are not restricted by

a strict grammar rule base and the system enables the users to have flexibility in

issuing user commands. Hence, the flow of the interaction between the user and

the robot has been improved.

Experiments have been carried out in an artificially created domestic envi-

ronment in order to validate the performance of the system and the obtained

results show that the system is capable of learning unknown lexical symbols and

acquiring knowledge about the working environment. Furthermore, the concept

is capable of updating the REM according to the acquired knowledge and the

changes due to the performed actions of the robot. This has been demonstrated

and validated from the experimental results.
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(a) (b) (c)

(d) (e) (f)

Figure 3.10: Captured snapshots of the robot until the dialogue no 7. (a) has been captured when the user and the robot was
having the conversation (dialogues 1-6). In (b), MIRob started to move. (c) shows the passing of the MIRob through the door
way of the kitchen. Approaching of the MIRob towards the doorway of the office room is shown in (d). (e) shows the moving of
the robot inside the office room. (f) has been captured after settling the robot near the TV set.
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Chapter 4

ADAPTING ROBOT’S PERCEPTION OF DISTANCE

NOTIONS BASED ON ENVIRONMENT

According to the outcomes of the literature survey presented in chapter 2 , the

existing systems use limited number of environmental factors for adapting the

perception of uncertain information. For instance, method proposed in [65] uses

room size for scaling the meaning of positional information such as “close” and

“far”. However, depending only on the size of the room is not enough for effective

interpretation of uncertain information in navigational commands such as “move

little forward” since inside the same room there may be different arrangements of

the objects that affect the meaning of uncertain information such as available free

space. The movement constraints caused due to the arrangement of the environ-

ment play a major role in modifying the meaning of distance related uncertain

information in navigational commands. This can be explained with the aid of

the scenarios illustrated in Fig. 4.1. In both scenarios, the person is instructed

to move little forward inside the same room with different initial position for the

person. In the scenario shown in Fig. 4.1(a), the person is standing in front of a

wall with 50 cm gap between the wall and him. Therefore, the distance meant

by the term, “little” may be approximately 15-20 cm. However, the person is

standing 150 cm away from the wall in the situation shown in Fig. 4.1(b) and the

distance meant by “little” in this situation may be 50-60 cm. Furthermore, the

availability of free space is also influential for the mobility of people. In addition

to that, the meaning of positional information given with respect to a landmark

or an object depends on the saliency of the landmark [40]. For example, the
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Figure 4.1: This explains the main motivation of the work proposed in this chap-
ter. The person in both the situation is commanded to move little forward. The
person is standing 50 cm and 100 cm away from the wall in scenario (a) and (b)
respectively.

distance meant by “near” in the command, “go near to the pond” is larger than

that of “go near to the flower pot” since the size of the land mark (i.e., size of

the pond in this case) is higher than that of the flower pot. Therefore, the size

of the object plays a major role in modifying the perception of distance related

positional information given with respect to a reference object. Hence, the size

of the reference object is used for adapting the perception of positional distance

information by the system. Therefore, the Distance Interpreter (DisI) of the Un-

certain Information Understanding Module (UIUM) is proposed in this chapter

in order to adapt the robot’s perception of uncertain information related to dis-

tances. The proposed DisI of the UIUM utilizes environmental factors; room size,

available free space, size of the reference object and the movement restrictions

caused due to obstacles in order to adapt the perception of uncertain information

based on the spatial arrangement of the environment.

4.1 The DisI of the UIUM

The DisI of the UIUM is deployed as the Intelligent System for Understanding

Uncertain Information (ISUUI) briefed in chapter 3 to interpret quantitative dis-
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tance values for the uncertain terms in navigational user commands such “little”,

“far”, “close” and “near”. The structure of the ISUUI with the proposed DisI of

the UIUM is depicted in Fig. 4.2. The DisI of the UIUM consists with two sub

module for interpretation of uncertain information in motional commands and

positioning commands respectively. The suitable submodule is chosen according

to the action type. For action type I and II, sub module 1 is chosen and for type

III, submodule 2 is chosen. In here, the action type IV is assumed that it is just

a navigation from a room to a predefined point in another room and it does not

contain uncertain information for interpretation. The action type is identified

based on the action layer of the Robot Experience Model (REM) as explained in

section 3.2.1.

4.1.1 Module 1

Module 1 is used to interpret uncertain information in motional commands that

is action type I and II actions. Commands “move far forward” and “move little

towards the table” can be considered as example commands for action type I and

type II respectively. In here, there is an uncertainty in interpreting quantitative
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Figure 4.2: Structure of the ISUUI with the proposed DisI of the UIUM.
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values for term “far” and “little” but direction of the movement is certain either a

fixed direction such as forward or a direction with respect to a reference. Hence,

this fuzzy inference system is used to interpret a quantitative distance value for

the movement of the robot from its current position to destination position. It

has two inputs; uncertain distance descriptor (i.e., < distanceM >) of the user

command and the free space of the current room. Initially as the < distanceM

>, “little”,“medium” and “far” have been defined. Other uncertain terms, which

may present in user commands need to be mapped in to one of these categories as

explained in 3.2.3. The output of the fuzzy inference system is the quantitative

distance value estimated to the uncertain term. Centre of area method is used

for the defuzzification of the output. The membership functions for the inputs

and the output are shown in the Fig. 4.3.

The input membership function for the free space is adjusted based on the

room size (S). The room size and the free space are retrieved from the environment

layer of the REM. The output membership function is scaled according to the

perceptive distance, D such that D = Dr − d0 where d0 is the safety clearance

of the robot and the Dr is the distance to the nearest obstacle in the moving

direction. This is illustrated in Fig. 4.4. The rule base of the fuzzy system is

shown in Table 4.1.

Table 4.1: Rule Base of the Fuzzy Module 1

Input Memberships
Free space
S M L

Action modifier
Little VS S M
Medium S M L
Far M L VL
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Figure 4.3: (a) and (b) represent the input membership functions of the module 1. (c) represents the output membership function
of the module 1. (d) and (e) represent the input membership functions of the module 2. (f) represents the output membership
function of the module 2 and only the part which is in the range [d0,D/2] is considered for the defuzzification. The fuzzy labels
are defined as S: small, M: medium, L: large, VS: very small, S: small, M: medium, L: large and VL: very large.
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𝐷𝑟

𝐷𝑜𝑏𝑗

Moving direction

Figure 4.4: Dr and Dobj are explained in this figure. The robot is to move in
the direction indicated by the white arrow. The distance from the robot to the
nearest obstacle or the object of interest is denoted by Dr. The distance between
the object of interest and the closest nearby object in the approach direction is
denoted by Dobj.

4.1.2 Module 2

Module 2 is used to interpret a quantitative distance value for uncertain infor-

mation in a command when performing action type III. As an example command,

“move near to the table in living room” can be considered. In here, the robot

should move to a position where it can maintain a quantitative distance value

meant by “near” from the reference object. This quantitative value for the term

“near” is measured from the reference. The meaning of the uncertain terms such

as “near” and “close” are assumed to be same and all the similar kind of uncertain

terms are treated equally. The meaning of the positional information given with

respect to a reference object depends on the saliency of the objects [40]. There-

fore, it is assumed that the quantitative meaning of an uncertain term such as

“close” and “near” depends on the available free space of the room and the size of

the reference object. Therefore, the fuzzy inference system in the module 2 takes
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Table 4.2: The Rule Base of the Fuzzy Module 2

Input Memberships
Free space
S M L

Object size
S VS S M
M S M L
L M L VL

free space and the size of the reference object as the inputs. The output of the

fuzzy inference system is the quantitative distance value estimated and it needs

to be measured from the reference object not from the robot. The membership

functions for the inputs and the output are shown in the Fig. 4.3. The rule base

of the system is given in Table 4.2. Centre of area method is used for the defuzzi-

fication of the output. The input membership functions for the free space and the

size of the reference object are adjusted according to the size of the room (S). The

output membership function is adjusted according to either the distance between

the robot and the object (Dr) or the distance between the reference object and

another object, which is in the approaching direction of the robot (Dobj). This

is illustrated in Fig 4.4. The smallest value is selected as the perceptive distance

(i.e., D) to adjust the membership function (D = min(Dr, Dobj)). In order to

maintain a safety clearance between the robot and the objects, the output range

is considered as [d0, D/2] in the defuzzification stage. Required inputs for the

module 2 are also retrieved from the REM.

4.2 Results and Discussion

4.2.1 Research platform and the experiment

The proposed concept has been implemented on MIRob platform. The ex-

periments have been carried out in an artificially created domestic environment

inside the laboratory. The user was asked to issue commands to navigate the

robot inside the environment and the responses of the robot have been recorded.
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Two sets of experiments have been carried out to analyze the usefulness of the

REM for the interpretation of uncertain notions and the behavior of the DisI.

4.2.2 Usefulness of the REM for the interpretation of uncertain infor-

mation

As the first experiment, a sequence of user commands was given to the robot

and the responses of the robot have been analyzed to verify the usefulness of

the REM in interpretation process done by the DisI. The positions of the robot

during the experiment are marked on the map shown in Fig. 4.5. The issued

user commands and the relevant responses of the robot are given in Table 4.3.

Initially, the robot was in the position ‘0’ that is inside the corridor (‘R 002’).

Then the command 1, “Move near to the table in the kitchen” was issued. This

is a positioning command. The object of interest and the room of interest were

changed to ‘P 001’ and ‘R 001’ respectively. Hence, the system was able to identify

the correct object and the room. The room of the reference object and the current

room were different and therefore robot first performed action IV for going to the

required room. When the current room was changed to ‘R 001’, action III was

performed and the robot moved to the position ‘1’. Then the command 2, “go

near to the sink” was issued to the robot. The object of interest was changed

to ‘P 002” and the room of interest remained unchanged. Then action III was

performed by the robot and the robot moved to position ‘2’. The parameters

such as the room of interest, the object of interest, current room and the action

type are retrieved based on the knowledge of the REM. The variation of those

parameters during the execution of the full command sequence is illustrated in

the Fig. 4.6. An explanatory video of this segment of the experiment can be

found in the multimedia attachment 21.

1Available in the attached CD and www.youtube.com/watch?v=bkjxfRI00iI
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Figure 4.5: Positions of the robot recorded during the experiment I. The map
is drawn to a scale and this can be used to visualize the arrangement of the
environment.

Table 4.3: Issued user commands and the responses of the robot
User Command Response of the robot
move near to the table in
the kitchen

movement from 0 to 1

go near to the sink movement from 1 to 2

go to the kitchen
voice response:
”I am already there”

move little towards the table movement from 2 to 3
move near to the sink in
the corridor

voice response:
”There is no sink in the corridor”

move to the office movement from 3 to 4
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Figure 4.6: Variation of the current room, the room of interest, the object of
interest and the action type with the command execution

4.2.3 The behavior of the DisI

In order to analyze the behavior of the DisI, the robot was randomly placed

at different positions and the user was asked to issue commands to navigate it.

The user was also asked to rate the movement of the robot with respect to his

expectation. The possible set of ratings was “too small”, “too large” and “ok”

for simple motional commands and “too far”, “too close” and “ok” for direct

positioning command. The corresponding initial and the final positions of the

robot for a given user command are marked in the map shown in Fig. 4.7 using

numbered markers. The issued user commands, initial and final positions of the

robot, inputs of the fuzzy systems and the interpreted distance values are given

in Table 4.4. The robot positions are given in (X cm, Y cm, heading in degrees)

format with respect to the marked origins of the map. It should be noted that

according to the active submodule of the UIUM either the <distanceM> or the

object size is used as an input. Hence, both are shown in the same column. If

the command is a direct positioning command, the interpreted distance value

is measured from the reference and the robot is moved to the closest position

where it can maintain that distance from the object. If the command is a simple

motional command, then the output distance value is the distance travelled by

the robot.
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Table 4.4: Results of the Experiment II

User command
Initial position
(X,Y,Heading)

Uncertain
term

Fuzzy
controller

<distanceM>
or
object size (m2)

Free
space
(m2)

Room
size
(m2)

D
(cm)

Interpreted
distance
Dout(cm)

Final position
(X,Y,Heading)

User
rating

1 go near to the sink (303,155,0) near 2 0.379 12.95 15.08 130 38 (332,497,31) ok

2
go near to the table
in the kitchen

(40,48,-86) near 2 1.62 12.95 15.08 137 43 (52,347,111) ok

3
go near to the switch
panel in the kitchen

(40,48,-86) near 2 0.138 12.95 15.08 332 79 (309,352,-4) ok

4 go near to the table (364,443,174) near 2 1,62 12.95 15.08 242 67 (166,491,173) ok
5 go near to the table (221,496,176) near 2 1.62 12.95 15.08 130 42 (141,489,177) ok

6
go near to the office
table

(-220,63,156) near 2 1.562 9.27 11.5 175 52 (-150,-140,-33) ok

7
go close to
the cupboard

(240,138,-8) close 2 0.652 9.27 11.5 94 36 (-126,-272,-59) too close

8
move near to the
table in the corridor

(-204,-146,-57) near 2 0.84 16.33 18.85 310 79 (17,50,-40) too far

9
move near to
the table

(562,95,-21) near 2 0.84 16.33 18.55 183 50 (479,51,-135) ok

10
move little towards
the table

(-262,-241,-123) little 1 little 9.27 11.5 151 60 (-212,-215,21) too small

11 move little forward (-232,-73,-92) little 1 little 9.27 11.5 255 102 (-232,-169,-89) ok
12 go little left (203,465,90) little 1 little 12.95 15.08 85 36 (175,473,-179) ok
13 move far forward (303,290,139) far 1 far 12.95 15.08 280 228 (143,429,142) too large
14 move forward (264,352,-96) - 1 medium 16.33 18.85 355 291 (256,284,-90) ok
15 move far left (58,158,-88) far 1 far 12.95 15.08 116 78 (344,167,5) ok
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Figure 4.7: Initial and the final position of the robot during the experiment II
are marked with correspondence user command number.

The following key features of the system can be pointed out by analyzing the

results of the system for positioning commands.

• Interpreted quantitative value of an uncertain term varies with the reference

object even though the room is unchanged. Command 1, 2 and 3 can be

considered as example cases and interpreted distance values are 38 cm, 43

cm and 79 cm respectively.

• Interpretation depends on the approaching direction even though both the

room and the reference are the same. Command 2 and 4 can be considered

as example cases.

• Even though the approaching direction, the reference object and the room
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are the same, interpretation depends on the robot initial position inside

that room. Command 4 and 5 exhibit this phenomena.

• Interpretation adapts according to the environment or the room. For the

same kind of reference objects, system outputs are different when the rooms

are different. This is clearly showed by command 2 and 6.

For motional commands, following key features can be identified from the

obtained results.

• The system adapts according to the environmental changes and the quan-

titative values for an uncertain term differ according to the environment

where the action is being performed. Command 11 and 12 can be used to

validate this.

• Interpretation depends on the arrangement of the space such as possible

movement restrictions and interpreted distances are different for an uncer-

tain term even though the room is the same. Command 10 and 11 can be

considered as example cases.

Therefore, the system is capable of adapting the perception on uncertain terms

based on the current environmental conditions and the previously acquired knowl-

edge of the robot. In 11 test cases out of 15, the user has accepted the movement

of the robot. However, in some cases the user expectation was different. Other

factors, which were not considered in this study, may affect the interpretations.

As an example, in case 7, user rated that the movement was too close to the ob-

ject. In here, the reference object was a cupboard, which has quite high height.

Therefore, the user was able to visualize actual size of it. However, the robot is

not capable of analyzing the height of the objects to get an idea about the size

of it. The limitations of the system such as navigational errors, noises in sonar

sensor readings, accuracy of the navigational maps and safety limitations also

effect the outcomes of the system.
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4.3 Further improving the ability of perceiving the environment for

adapting the perception

4.3.1 Rationale behind analyzing the arrangement of the environment

in an informative manner

The three scenarios shown in Fig. 4.8 are considered in order to explain the

rationale behind the requirement of analyzing the arrangement of the environment

in a more informative manner. As an example, in the scenario (a) the robot

is commanded, “move little left” and “move little right”. In this scenario, the

arrangements of the environment in the moving directions are different. In the left

side, there are two chairs and the right side is an open space. If the system analyze

only the free space, room size and the distance to the nearest obstacle (distance

to the nearest obstacle is indicated as “l” in Fig. 4.8(a)) in the moving direction

, then in both cases the interpreted distance value for the term “little” by the

system will be the same. However, the responses of the humans are different due

to their ability to perceive and analyze the arrangement of the environment in the

moving direction. Therefore, the system should be capable analyzing the effects

(a) (b) (c)

l l L L

Figure 4.8: Example situations where the robot needs to analyze the arrangement
of the environment in an informative manner. In situation (a), the robot is
commanded, “move little left” and “move little right”. In situation (b) and (c)
the robot is commanded, “move forward”.
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Figure 4.9: Structure of the ISUUI with the introduced OD analyzer

of nearby objects in the moving direction for effective evaluation of uncertain

information.

In the scenarios shown in Fig. 4.8 (b) and (c), the robot is commanded, “move

forward”. In scenario (b), the robot is initially in a position where it is tightly

pack with two surrounding chairs compared to the scenario (c). The humans

act differently in those two cases because of their ability to adapt the perception

based on the spatial arrangement. Therefore, the robot also needs to analyze the

spatial arrangement of the initial location of the robot to adapt the perception.

In order to resolve the above-mentioned issues of the system, the Occupied

Density (OD) analyzer is embedded to the submodule 1 of the DisI of the UIUM

as shown in Fig. 4.9. The OD analyzer is capable of perceiving the arrangement

of the environment in a more informative manner and subsequently modifying

the robot’s perception of fuzzy distance notions. This is realized by modifying

the perceptive distance (i.e., D), which adapts the output membership function,

by considering the arrangement of the environment and natural tendencies of

humans.
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4.3.2 Determination of the perceptive distance (D)

The following key features related to the mobility of the humans can be out-

lined by observing the natural tendencies of the human beings, .

1. Mobility decreases when moving towards an area where the occupied density

is high.

2. Effects of close proximity objects are high compared to the faraway objects

in the moving path.

3. Effects of the objects in different distance fields depend on the intended

moving distance.

4. Mobility increases when moving to a low occupied density area from an

initial position located at a high occupied density area.

Therefore, the robotic system should also have the ability to exhibit the above

mentioned phenomena in order to enhance ability of evaluating uncertain infor-

mation in relation to distances. The OD analyzer is used to analyze the occupied

density of the surrounding environment and adapt the perception based on the

distribution of the occupied density. Occupied density is the ratio between the

area of the objects in a particular region and the total area of the region. The oc-

cupied density of the environment in a particular scenario is analyzed by dividing

the space into regions based on the moving direction and the position of the robot.

The surrounding area is divided into zones A, B, C, D and E as shown in Fig. 4.10.

A field angle of 90◦ is considered for the region of the moving direction. Then

this region is divided into 3 equal size zones in order to assign different priorities

based on the proximity to the moving path. Then each of those three regions are

again divided into two by the mid-point of Dr; where Dr is the distance to the

nearest obstacle in the moving direction (illustrated in Fig. 4.4. Zones A, B, C

and D are used to analyze the occupied density of the moving direction. Zone
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E represents the occupied density around the current position of the robot. A

function has been defined in order to replicate the natural tendencies of humans

based on the distribution of the occupied density in each zone.

According to the fact 2 of the natural human tendencies mentioned in the

above, zones A and B have low priority than the zones D and C respectively

because the zones D and C are in closer proximity to the moving path than

the zones A and B. It is considered that the priority is in 2:1 ratio. Therefore,

the combined occupied density of the zones A and D, OD{A,D} can be obtained

from (4.1) where OD{A} and OD{D} are the occupied densities of zones A and D

respectively. The combined occupied density of zones B and C, OD{B,C} can be

obtained from (4.2) where OD{B} and OD{C} are occupied densities of zones B

and C respectively.

A

B

A

BC

D

E

Dr/2

Dr/2

Figure 4.10: Defined zones for analyzing the occupied density is illustrated. The
position of the robot is marked by the blue circle and the moving direction is
marked by the arrow. Dr is the distance to the nearest obstacle in the moving
direction.
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OD{A,D} = 0.66×OD{D} + 0.33×OD{A} (4.1)

OD{B,C} = 0.66×OD{C} + 0.33×OD{B} (4.2)

The combined occupied density of the moving zones (i.e. zone A, B, C and D),

OD{A,B,C,D} can be obtained from (4.3) where δAD and δBC are scalar constant

defined based on the priority. Based on the fact 3 mentioned above, the priority

between the OD{A,D} and OD{BC} is defined based on the <distanceM> of the

command. If the <distanceM> is “far” then higher priority is given to the zone A

and D over the zone B and C. If the <distanceM> is “medium” then the priority

is considered as equal. If the <distanceM> is “little” then higher priority is given

to the zones B and C. Values of the δAD and δBC are given in Table 4.5 for each

action modifier.

OD{A,B,C,D} = δADOD{A,D} + δBCOD{B,C} (4.3)

According to the fact 1, when the occupied density of the moving zone increases

the mobility decreases. Therefore, when OD{A,B,C,D} increases, D should be

decreased in order to decrease the travelling distance. According to the fact 4,

the system should produce higher output when the occupied density of the zone

E (DO{E}) increases. In order to satisfy these two conditions, the perceptive

distance (D) is adjusted as given in (4.4) where Dr is the distance to the nearest

obstacle in the moving direction (Dr is illustrated in Fig. 4.10) and δABCD and

δE are scalar constant used to tune the system.

Table 4.5: Priority constant variation with the action modifier
little medium far

δAD 0.33 0.5 0.66
δBC 0.66 0.5 0.33
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D = Dr[1− δABCDOD{A,B,C,D} + δEOD{E}] (4.4)

The obtained D is fed into the submodule 1 of the DisI to adjust the out-

put memberships function. Then, the interpreted distance value (Dout) can be

obtained from (4.5) where D́ is the defuzzified output of the system.

Interpreted distance, Dout =

D́ if D́ < Dr

Dr otherwise

(4.5)

4.3.3 Results and Discussion

The proposed concept has been implemented on the MIRob platform. The

experiments have been carried out in an artificially created environment inside

the laboratory facility. MIRob during few of these experimental scenarios are

shown in Fig. 4.11. The scalar constants were experimentally chosen as δABCD =

0.4 and δE = 0.3 by observing the performance of the system.

(a) (b)

Figure 4.11: MIRob being operated through a joystick by a user during the user
study is shown in (a). (b) shows a snapshot taken during the 2nd experiment.
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Validating behaviors of the OD analyzer

In order to adapt the perception of uncertain terms, the perceptive distance

(D) is adjusted based on the results obtained from the OD analyzer. Therefore,

experiments have been carried out to validate behaviors of the OD analyzer. An

example situation during the experiment is considered for explaining the behav-

iors of the OD analyzer. The actual arrangement of the environment in that case

is shown in Fig. 4.12 (a) for better visualization of the situation. The surround-

ing environment is divided into zones and then the occupied density of the each

zone is estimated by the OD analyzer. In this situation, Dr was 286 cm and the

zones are defined based on this value. The divided zones are illustrated with the

navigation map of the robot in Fig. 4.12 (b). First, the robot was commanded

“move far forward” and the parameters of the OD analyzer have been recorded.

Then robot was again placed at the same location and the robot was commanded

“move little forward”. The variations of the parameters of the OD analyzer in

these two situations are given in Table 4.6.

The robot was commanded to move toward a highly occupied area. Therefore,

there is a reduction of the perceptive distance (D) in both cases as expected. This

validates the ability of the OD analyzer in satisfying the fact 1 of the human

natural tendencies explained in the section 4.3.2. Occupied density of the far

distance field is high compared to the occupied density in the near distance field

(OD{A,D} > OD{B,C}). In the case 1, the robot was commanded “move far

forward”. Therefore, the intended moving distance is high compared to the case

2 where the command was “move little forward”. Therefore, according to the fact

3 of the human tendencies explained in the section 4.3.2, there should be a higher

reduction of the perceptive distance (D) in the case 1 compared to the case 2.

Table 4.6: Variation of the parameters of the OD analyzer
ODA ODB ODC ODD ODE ODA,D ODB,C ODA,B,C,D D (cm)

1 0.436 0.137 0.000 0.079 0.168 0.196 0.045 0.144 275
2 0.436 0.137 0.000 0.079 0.168 0.196 0.045 0.095 283
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The values of D are 275 and 283 for the case 1 and 2 respectively. Therefore, the

results validate the ability of the system to perform the same phenomena.

Even though the occupied density of the zone A is 0.436, i.e. almost half of

that zone is occupied by the objects. However, the reduction of the perceptive

distance (D) is not very significant. This is because the ability of the OD analyzer

in deprioritizing the effects due to the faraway objects from the moving path.

This phenomenon is similar to the fact 2 of the human tendencies. There are few

objects near the initial position of the robot as a results of that there should be

a boosting of D. However, that boosting is attenuated by the effects that are

caused due to the objects in other regions. According to the obtained results, the

OD analyzer is capable of behaving similar to the natural tendencies of humans

(a)

(b)

Figure 4.12: (a) shows the actual arrangement of the environment for better
visualization of the situation. (b) shows the divided zones in the navigation map.
The position of the robot is represented by the triangle
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explained in section 4.3.2.

performance of uncertain information evaluation capability

In order to evaluate the performance of the proposed system, three sets of

experiments have been carried out by rearranging the spatial arrangement of the

environment in different conditions. The spatial arrangements of the experimental

scenarios are shown in the Fig. 4.13.

The first set of experiments has been carried out without deploying the OD

analyzer (i.e in this scenario, D = Dr). During this set of experiments the

capabilities of the robot is similar to the system explained in earlier section.

The second set of experiments has been carried out with the system proposed in

this section (i.e., with the OD analyzer). During these two sets of experiments,

the robot was placed in the scenarios shown in Fig. 4.13 and the robot was

commanded by voice instructions. The responses of the robot along with other

key parameters have been recorded. The user command, initial and final position

of the robot and other parameters related to the system during execution of user

commands are given in Table 4.7. Occupied density variation of each zone during

the second set of experiments is given in Table 4.8. The initial and final positions

of the robot during the execution of each command are also marked on the maps

shown in Fig. 4.13 with the corresponding number.

A user study has also been carried out in order to compare the behaviors of

the system with the natural human tendencies. During the user study the robot

was placed in the same locations of the environment similar to the first and the

second set of experiments. Then the human participant were given a joystick and

they were asked to move the robot according to the command issued to them.

The same set of user commands has been issued and the movements of the robot

have been recorded for the analysis purposes. The quantitative values interpreted

by the users have variations. Therefore, only the minimum and the maximum
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interpreted values are give in the Table 4.7. These distance ranges identified from

the user study are also marked on the maps shown in Fig. 4.13 for comparison

and the better clarity.

The arrangement of the environment during the case 1 and 2 is shown in

Fig. 4.13(a). The initial position of the robot was the same and the robot was

commanded to move to opposite directions. In the case 1, the robot was com-

manded to move towards the area occupied with obstacles. In the case 2, the

robot was commanded to move into an open area. According to the natural ten-

dencies of humans, in these two cases, the interpreted distance values should be

different and this can be verified from the results of the user study (71-77 cm for

case 1 and 81-97 cm for case 2). However, the system without the OD analyzer

has interpreted almost the same quantitative distance (79 cm for case 1 and 81 cm

for case 2) for the two commands because of the inability of the system to analyze

the spatial arrangement. The system proposed in this section (system with the

OD analyzer) has interpreted 73 and 83 cm for case 1 and 2 respectively because

the system is capable of analyzing the spatial arrangement in a more informative

way. Therefore, the system is capable of adapting the perception based on the

spatial arrangement of the moving zone. A explanatory video of this segment of

the experiment (i.e. case 1 and 2) can be found in the supplementary multimedia

attachment 32.

2Available in the attached CD and www.youtube.com/watch?v=-c07yec-VIw
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- Objects in the environment

- Initial position of the robot

- Final position of the robot
during the 1st experiment

- Movement range identified 
from the user study

- Final position of the robot
during the 2nd experiment

(a) (b)

(d)(c)

(e)

1

2

3

4
5

6

Figure 4.13: Arrangement of the environments during the experimental scenarios
are shown. The initial position and the final position of the robot are also marked
with corresponding case number. The gray color shaded area represents the
movement range obtained from the user study. These maps are drawn to a scale.
However, it should be noted that the markers are not drawn to the scale and the
size of the markers do not reflects the actual size of the robot. The diagrams
may not visualize the actual distance variations of the final positions due to the
scaling of the map.
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Table 4.7: Results of the experiments

User command
Initial position
(X,Y,Heading)

Free
space
(m2)

Room
size
(m2)

Without OD analyzer With OD analyzer
Distance
moved by
user

Dr
(cm)

D
(cm)

Output
(cm)

Final position
(X,Y,Heading)

Dr
(cm)

D
(cm)

Output
(cm)

Final position
(X,Y,Heading)

min max

1 move left (112,151,-2) 5.88 6.3 119 119 79 (112,230,94) 118 113 73 (109,226,92) 71 77
2 move right (112,151,-2) 5.88 6.3 122 122 81 (115,70,-92) 121 129 83 (104,69,-94) 81 97
3 move far forward (113,212,-89) 5.88 6.3 190 190 162 (108,50,-92) 187 195 167 (110,51,-91) 166 170
4 move far forward (113,212,-89) 5.88 6.3 186 186 159 (117,53,-88) 185 189 162 (111,51,-91) 158 164
5 move little forward (129,130,-143) 5.88 6.3 103 103 47 (100,93,-134) 101 99 45 (92,99,-142) 38 52
6 move left (112,151,-2) 5.88 6.3 118 118 83 (110,234,91) 114 203 83 (109,236,92) 81 84
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Table 4.8: Occupied density variation during the experiment 2
Case
No

Zone
A B C D E

1 0.3148 0.2155 0.0000 0.0494 0.0083
2 0.0062 0.0000 0.0000 0.0000 0.2155
3 0.2126 0.0000 0.0000 0.0000 0.1242
4 0.2126 0.0000 0.0000 0.0000 0.1242
5 0.3205 0.0000 0.0000 0.0754 0.0000
6 0.0466 0.0000 0.0000 0.0000 0.0000

In the case 3, the robot was placed in a tightly occupied position as shown in

Fig. 4.13 (b) and it was commanded to move far forward. In the case 4, the robot

was placed in the same position similar to the case 3. However, the arrangement

of the surrounding environment was different. In this case, the location of the

robot was not tightly occupied compared to the case 3. The only difference in

these two scenarios was the arrangement of the environment around the initial

position of the robot. Typically, humans prefer to move towards open spaces from

tightly occupied areas. Therefore, the robot should move higher distance in the

case 3 compared to the case 4. However, the capabilities of the system without

the OD analyzer were not enough for correctly identifying the differences in the

arrangement of the environment. Therefore, the interpreted distance value of the

case 3 is not within the range identified from the user study. In the experiment

2 (i.e. with the OD analyzer), the interpreted distances were 167 cm and 162 cm

for case 3 and 4 respectively. These values are within the range identified from

the user study. Therefore, these results verify the capability of the system to

adapt the perception based on the arrangement of the environment around the

initial position of the robot.

In the case 5, the robot was moved towards a corner. The system with the

OD analyzer is capable of analyzing the effects occurred due to the narrowness

in the corner. Therefore, the moved distance in the experiment 2 (i.e. with the

OD analyzer) is less than the moved distance in the experiment 1 (i.e. without

the OD analyzer). In the case 6, the robot was moved from an open area to
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an area where there were few far away objects. However, the system neglected

the effects of those objects when interpreting the uncertain information because

those objects were not in close proximity to the moving path. Therefore, the

interpreted distance values during the experiment 1 and 2 are the same. This

validates the capability of the OD analyzer in properly recognizing the priority

regions.

4.4 Summary

Methods of adapting the robot’s perception of fuzzy distance information in

navigation commands based on the environment are presented in this chapter.

The proposed DisI is capable of adapting the perception of uncertain distance

notions based on the current environmental condition, the knowledge of the robot,

and the action that is being performed. According to the experimental results,

the system is capable of adapting the perception with the room, reference object,

approaching direction and the initial position of the robot.

The effectiveness of interpretation of motional commands has been further

improved by deploying the OD analyzer that is capable of perceiving the envi-

ronment in a more informative manner for adapting the robot’s perception of

uncertain distance notions based on the environment in such a way that the per-

ception adaptation replicates the natural human tendencies to a greater extent.

The proposed DisI enables the user to navigate a mobile service robot in a hu-

man friendly manner and the system is capable of interpreting uncertain informa-

tion in the user commands more effectively compared to the existing approaches

since the perception is adapted according to the environment.
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Chapter 5

ADAPTING ROBOT’S DIRECTIONAL PERCEPTION

BASED ON ENVIRONMENT

5.1 Fuzziness of Directional Information

In the work presented in chapter 4 assumes that the meaning of direction-

related lexical symbols are fixed entities. The example situations illustrated in

Fig. 5.1 are used for the explanation of the interpretation of directions in a fixed

manner. Fig. 5.1(a) shows an instance where the directions are defined with

respect to the robot and this definition is used when the robot is commanded with

a motional command. In this situation, that system assumes that the direction

meant by “forward” is exactly similar to the current heading angle, θ. The

direction meant by “left”, “right” and “backward” are fixed as θ + 90◦, θ − 90◦

and θ + 180◦ respectively. Fig. 5.1(b) shows an instance where fixed directions

are defined with respect to a reference object and this definition is used when the

robot is commanded with a positional command such as “move near to the left of

Obj A”. However, typically the directional linguistic terms are not fixed entities

like this and they are fuzzy in nature [65,87]. Therefore, the Direction Interpreter

(DirI) is proposed in this chapter for embedding into the Uncertain Information

Understanding Module (UIUM) to evaluate the directional notions in navigation

commands considering the fuzziness associated with them. The structure of the

Intelligent System for Understanding Uncertain Information (ISUUI) with the

proposed DirI of the UIUM is depicted in Fig. 5.2.
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𝜃

forwardleft
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backward

𝜃

frontright
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backrobot

Obj A

Obj B

(a) (b)

robot

Figure 5.1: This illustrates how the directional notions are defined in the work
proposed in chapter 4. The shaded color areas represent the objects in the envi-
ronment. (a) represents a situation where the directions are defined with respect
to the robot. In here, θ is the heading angle of the robot. (b) represents a situa-
tion where the directions are defined with respect to a reference object. In here,
the direction of the front with the X-axis is annotated as θ. The orientation frame
is considered based on the point of view of the robot for this kind of instance.
More details related to the assignment of the absolute front of the objects can be
found in chapter 7

Intelligent System for Understanding

Uncertain Information

Distance Interpreter

Module 1

Module 2

Uncertain Information 

Understanding

OD 

analyzer

Intelligent System for Understanding

Uncertain Information

Distance Interpreter

Module 1

Module 2

Uncertain Information 

Understanding

Direction Interpreter

Figure 5.2: The structure of the ISUUI with the proposed DirI of the UIUM
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5.2 Adapting the perception of directional notions

According to the work proposed in [87], the directional spatial descriptors are

fuzzy and it proposed a method to evaluate the spatial descriptors in static situ-

ations. However, the method cannot be used in order to plan a moving direction

by interpreting directional information other than evaluating natural language

spatial descriptors for identifying a reference. According to [65], the linguistic

directions can be modelled with fuzzy membership functions with overlapping

boundaries as similar to the model shown in Fig. 5.3(b). However, the output

of the system would be pre-determined if it were used for interpreting a quanti-

fied heading angle since the membership functions are predefined fixed entities.

Moreover, the interpretation is not adapted according to the arrangement of the

environment even though the characteristics of movements heavily depend on the

arrangement of the environment (see section 4.3.2. Therefore, the proposed Di-

rection Interpreter considers the natural tendencies related to mobility of humans

in order to interpret the directional information based on the arrangement of the

environment.

The directional linguistic term in a command (i.e., <directionK>) is the input

of the system and the input membership function has singleton sets in order to

represent the linguistic directional terms as shown in Fig. 5.3(a). The meaning

of directional terms “left” and “right” has to be interchanged for motional and

positional commands. Therefore, the indexes of the input sets are separately

defined for motional and positional commands. The input sets and output sets

are directly mapped to each other yielding to a single input single output fuzzy

system. The default output membership function has been designed as shown in

Fig. 5.3(b) based on the work presented in [65]. It has 8 triangular shape sets for

basic Direction Sets (DS) and the sets have overlapping boundaries. If the user

command is a motional command, the output is the required change of the head-

ing angle of the robot. If the command is a positional command, the output is
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the angle to the destination position measured from the absolute front of the ref-

erence object. According to the natural tendencies given in section 4.3.2 related

to the mobility of humans, humans prefer to move towards an area where the free

space is high. Moreover, the robot should decide the direction based on the avail-

ability of free space around it instead of a predetermined direction. However, this

sort of behavior cannot be achieved directly by using a fixed output membership

function that is not adapted according to the surrounding environment.

Therefore, the output membership functions should be modified in such a way

that the robot tends to move towards the free area. This can be achieved from

weighting the base membership function with the available free space around

the robot (for a motional command) or the reference object (for a positional

command).

The weighted activation degree of the ith Direction Set (DSi) for angle α

is defined as ωDSi(α) and it can be obtained from (5.1), where µDSi(α) is the

activation degree of DSi for the angle, α. dα is the distance to the nearest obstacle

in the direction that creates α angle with the current heading of the robot (for

motional command) or the absolute front of the reference object (for positional

command). The ways to obtained dα is explained in Fig. 5.4(a) and Fig. 5.4(b) for

motional and positional commands respectively. (DSi)L and (DSi)U are the lower

and upper bound of DSi and are defined as in (5.2), where β is a scalar constant.

The center of the ith Directional Set, (DSi)C is defined as in (5.3). The scalar

constant, β is taken as 45◦ in order to have the default directional perception of

the system similar to the directional perception of the system explained in [65].

ωDSi(α) =µDSi(α) · dα

∀αε[(DSi)L, (DSi)U ]
(5.1)
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Figure 5.3: (a) shows the input membership function of the Direction Interpreter (DirI). It has singleton sets to represents the
direction keywords (<directionK>). For motional commands and positional commands the indexes have to be interchanged for
“left” and “right”. Therefore, the keywords and index are linked differently as shown. (b) shows the output membership function.
The ith direction keyword in the input membership function is directly mapped to the ith set of the output membership function
yielding to a single input single output fuzzy system. It should be noted that the output membership function is a continues one
and the ends represented by DS−4 are physically at the same position (-180◦ and 180◦ are physically the same).
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Figure 5.4: This explains the ways to obtain dα in order to modify the output
membership function of the Direction Interpreter (DirI). (a) shows an instance
where dα is obtained for a motional command. For motional commands, free
space around the robot is considered for the weighting. Hence, dα is the distance
to the nearest obstacle/object from the robot in the direction that creates angle
of α with the current heading of the robot. (b) shows an instance where dα is
obtained for a position command. For positional commands, free space around
the reference object indicated by <Ref> is considered for the weighting. Hence,
dα is the distance to the nearest obstacle/object from the reference object in the
direction that creates angle of α with the absolute front of the reference object.
The absolute front of the reference object is defined based on the point of view
of the robot.

(DSi)L = (DSi)C − β

(DSi)U = (DSi)C + β
(5.2)

(DSi)C = iβ (5.3)

The, ωDSi(α) is normalized for each i to have the variation in between [0,1].

The normalized weighted activation degree of the ith Direction Set, ω̂DSi(α) is

obtained from (5.4). The defuzzified output of the fuzzy inference system, ψ

can be obtained from the Center of Area (COA) method as given in (5.5), where
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µdirK (i) is the activation degree of the ith set of input membership function for the

direction keyword (i.e., <directionK>). The output of the Distance Interpreter,

φ can be obtained as given in (5.6) and the meaning of φ depends on the type of

the corresponding user command. If the user command is a motional command,

then φ is the interpreted moving direction for the robot and it is achieved by

changing the heading angle of the robot to φ. If the user command is a positional

command, then φ is the angle to the destination position of the robot measured

around the center of the reference object from the X-axis.

ω̂DSi(α) =
ωDSi(α)

max(ωDSi(α)) (5.4)

ψ =

∑3
i=−4

∑(DSi)U
α=(DSi)L

ω̂DSi(α).α.µdirK (i)∑3
i=−4

∑(DSi)U
α=(DSi)L

ω̂DSi(α).µdirK (i)
(5.5)

φ = θ + ψ (5.6)

In order to improve the computation efficiency and also to simplify the imple-

mentation complexity, only 6 distinct values are considered for α within the given

range when weighting the default membership function with the distances as given

in (5.1). Therefore, in implementation of the weighting of membership functions,

α for the ith DC set is defined as, α = {α1 = (DSi)L, α2 = (DSi)C − 30◦, α3 =

(DSi)C − 10◦, α4 = (DSi)C + 10◦, α5 = (DSi)C + 30◦, α6 = (DSi)U} and other

intermediate steps are interpolated linearly in order to generate a continuous set.

The defuzzified output is generated by calculating the Center of Area (COA) of

this modified membership function.
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5.3 Results and Discussion

5.3.1 Experimental setup

The proposed DirI has been integrated to MIRob and experiments have been

conducted in two phases for the evaluation of the behavior and performance.

The first phase of the experiment has been conducted for the preliminary ver-

ification of the direction interpretation ability of the proposed DirI. According

to the results of the preliminary verification process, the deployment of the DirI

to the system sometimes affect the distance interpretation ability of the system.

Therefore, the overall functionality of the system (considering both distance and

direction interpretation abilities as a one action) has been evaluated in the next

phase of the experiments. In both phase of the experiments, the behavior and

performance of the proposed system (i.e. the system with the adaptable direc-

tional perception) has been evaluated against a system with a fixed directional

perception (i.e. system without the proposed DirI). The evaluations have been

conducted with the aid of user studies and due attention has been paid to the

guidelines and recommendation given in [85] for designing and performing human

studies for human robot interaction experiments since the user studies are highly

subjective in nature.

5.3.2 Preliminary Verification of Direction Interpretation Ability

Three sets of experiments have been carried out in an artificially created indoor

environment (Size = 11.47 m2 and free space = 9.47 m2) in order to verify the

direction interpretation ability of the DirI. A few snapshots of MIROb taken

during the experiments are shown in Fig. 5.5. The first set of experiments has

been carried out by disabling the abilities of the proposed DirI (in this case,

abilities of the system are almost similar to the system explained in chapter 4).

The second set of experiments has been carried out with the system enabled with
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(a) (b) (c)

Figure 5.5: (a) shows the MIRob during an experimental scenario. (b) and (c)
show the robot being operated through a joystick by the users during the user
study.

the proposed DirI. During these two sets of experiments, the robot was initially

positioned in the locations marked on the map shown in Fig. 5.6 and the robot

was commanded with voice instructions. The responses of the robot and the

vital variables of the system that have been recorded during the experiments are

given in Table 5.1 for each user instruction. The modified output membership

functions during the corresponding cases are shown in Fig. 5.7 along with the

default membership function for the comparison. As the third set of experiments,

a user study has been carried out with participation of 10 persons whose ages are

in between 24-54 years (M = 31.4, SD = 11.96) in order to compare the abilities

of the two systems. During the user study, the users were given a joystick that

can be used in order to operate the robot and the users were asked to move

the robot according to the command issued to them. The robot was placed on

the same initial positions as similar to the first two sets of experiments and the

corresponding user commands were issued to them. The users were participated

one by one for the study and all the participants were given one trial for each

case. The movements of the robot have been recorded and the moved heading

angles have been obtained. The mean value and the standard deviation of the

obtained heading angle of the each case during the user study are also given in

Table 5.1.
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Table 5.1: Results of the experiments: Preliminary verification of the DirI

User command
without Direction Interpreter with Direction Interpreter User study φ◦

Initial position
(X cm,Y cm,θ◦)

φ◦
Destination

(X cm,Y cm,θ◦)
dα (cm)1

ψ◦ φ◦
Destination

(X cm,Y cm,θ◦)
Mean

Standard
deviationdα2 dα3 dα4 dα5

1 move medium forward (212,204,-90) -90 (211,180,-90) 218 184 48 57 -9 -99 (198,94,-98) -98 5.96
2 move medium right (50,121,-40) -130 (35,101,-129) 28 42 83 94 -83 -123 (36,92,-123) -120 5.82
3 move little left (274,199,-2) 88 (282,255,88) 51 141 143 158 93 91 (272,255,90) 91.6 1.96
4 move far right (197,283,-90) -180 (132,283,-179) 79 69 73 92 -89 -179 (134,279,-179) -180 2.98
5 move far forward (163,112,0) 0 (185,112,0) 149 29 30 151 0 0 (186,112,0) 2.9 26.12
6 move far forward (212,204,-90) -90 (211,170,-90) 195 171 40 50 -9 -99 (195,66,-98) -100.6 5.64

1 There is no effect for the system from dα1 and dα6 since µDCi
(α1) and µDCi

(α6) are zero. Therefore, those two values are not given here.

94



-5000 0 5000
-5000

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

5000

372 cm

319 cm

-5000 0 5000
-5000

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

5000

 

 data1

data2

data3

data4

data5

data6

data7

data8

data9

data10

data11

data12

data13

data14

data15

data16

data17

data18-5000 0 5000
-5000

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

5000

 

 data1

data2

data3

data4

data5

data6

data7

data8

data9

data10

data11

data12

data13

data14

data15

data16

data17

data18

-5000 0 5000
-5000

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

5000

 

 data1

data2

data3

data4

data5

data6

data7

data8

data9

data10

data11

data12

data13

data14

data15

data16

data17

data18

- Initial position

- Destination position 
without Dir. Interpreter

- Destination position 
with Dir. Interpreter

1

2

1

1

2

2

3

3

34

4 4

5 55

6

6

6

o

Y
X

Figure 5.6: The initial and destination positions of the robot during the experi-
ments are marked on the map with corresponding case numbers given in Table 5.1.
The map is drawn to a scale. However, it should be noted that the markers do
not represent the size of the robot. The obstacle/objects in the environment are
marked as shaded areas.

In the case 1, the robot was commanded, “move medium forward”. The robot

without the DirI moved with a heading angle of -90◦ since the meaning of “for-

ward” was fixed as the current heading. The distance meant by “medium” was

quantified by the Distance Interpreter(DisI) as 23 cm and subsequently the robot

moved to the destination location marked on the map (also the coordinates are

given in Table 5.1). The system with the DirI interpreted the direction meant

by the linguistic term “forward” as -99◦ by considering the environment based

fuzziness associated with directional linguistic terms. The quantified distance in

this case was 118 cm and the robot moved to the destination position. The out-

put membership function modified by weighting the base membership function

with the distances around the robot in this scenario is shown in Fig. 5.7(a). In

this scenario, only the 0th set is effective since the effects of other sets are null

due to µdirectionK (i) = 0 for i = {−4,−3,−2,−1, 1, 2, 3}. The COA of this is
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the defuzzified output, ψ and it was −9◦ which is different from the COA of the

default membership function. Therefore, this validates the modification of the

output membership function according to the environment and subsequently the

modification of the robot’s directional perception. The mean value of the heading

angle obtained from the user study is -98◦. According to t-test, the heading angle

of the system without the DirI and the value obtained from the user study has

a statistically significant difference (P < 0.05). Therefore, the system without

the DirI is not capable of interpreting the directional information in human like

manner. There is no statistically significant difference between the heading angle

of the system with the DirI and the mean of the user study (P = 0.61). Therefore,

the performance of the proposed DirI is acceptable in this case.

In case 2, the mean value of the heading angle obtained from user study is

-120◦. The moved heading angle of the system without the DirI is -130◦ and

this is different from the value obtained from the user study with a statistically

significant margin (P < 0.05). Therefore, the performance of the system without

the DirI is not effective in this case too. The heading angle of the system with the

DirI is -123◦ and the difference is not statistically significant (P = 0.14). Similarly,

case 3 exhibits a similar behavior by rejecting the heading angle decided by the

system without the DirI with a statistically significant margin (P < 0.05) while

confirming a statistically non-significant difference with the mean of user study

and heading decided by the DirI (P = 0.36). Therefore, this validates the ability

of the system in replicating the natural directional perception of humans.
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Figure 5.7: The output membership function after weighting with distances around the robot during the given experimental cases
are shown here along with the base output membership function ((a) case1, (b) case 2, (c) case 3, (d) case 4, (e) case 5 and (f)
case 6). Only the effective set of a particular case is given in each sub diagrams and effects of other sets are null for that case
due to µdirectionK (i) = 0. Circles represent the points where the weighting is done (i.e. α1−6). The center of areas of the both
membership functions are also annotated for the each case for the comparison.

97



In case 4, the differences between the mean of the user study and the heading

angle decided by the two systems are not statistically significant (P = 0.32 and

P = 1 respectively). Therefore, in this case performance of the both systems are

acceptable. In this scenario, the environment in the frontal direction is almost

constant in whole region. Therefore, the directional perception modification is not

significant and the responses of the system without the DirI are also acceptable for

such situations. Furthermore, the modified output membership function is almost

similar to the default output function (shown in Fig. 5.7(d)) and its distribution is

symmetrical around the center of the default function. Therefore, the COA of the

modified function is almost similar to the base case (There is only 1◦ difference

due to the small deviations of the sensory readings). This validates that the DirI

is capable of effectively evaluating this kind of scenarios also.

In case 5, the differences between the heading angles generated by the systems

and the mean of user study are not statistically significant. However, the standard

deviation of the heading angle decided by the users is comparatively large (SD

= 26.12). Therefore, the results and the arrangement of the scenario have been

further investigated in order to make a conclusion. In this situation, frontal region

is almost symmetric in both right (i.e., in −θ direction) and left side (i.e., in +θ

direction) directions . However, there is an obstacle just confront with the current

heading angle. Therefore, the modified membership function shown in Fig. 5.7(e)

is almost symmetrical around the center of the default function. Therefore, the

COA is the same as the default case. Three different clusters of users can be

seen from the results of the user study; a cluster of users who drove the robot

toward free area by changing the heading towards the right, another set of users

who drove the robot toward the free area by changing the heading toward the

left, and a cluster of users who just drove the robot without changing the heading

angle. Therefore, in this kind of situation, directional perception of humans also

varies significantly. However, there may have been a possibility in deciding the

direction by the users based on the parameters other than the environment such

as information conveyed through gestures of the command issuer and context.
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Therefore, effects of such parameters should be analyzed for future improvement

of directional information interpretation ability of robots.

In case 6, the robot was placed exactly at the same initial position of the case

1. However, in this case the robot was commanded “move far forward”. In this

case, the deviation of the mean of the user study from the current heading is

comparatively higher than the case 1 (case 1, φ = -98◦ and case 6, φ = −100.6◦).

This may be due to the difference of the intended moving distance (in case 1,

distance is “medium” and in case 6, distance is “far”). However, the system

with the DirI moved with the same heading as in the case 1 since the system

is not capable of modifying the perception according to other parameters than

free space distribution of the surrounding that was almost the same as case 1 in

here too. The modified output membership functions are almost the same in the

both cases (shown in Fig 5.7 (a) and (f)). The ability of the proposed system is

acceptable since the difference between the mean of user study and the heading

decided by the system is not statistically significant. However, there is very very

slight trend toward the statistically significant difference compared to the case 1

(in case 1, P = 0.61 but in here P = 0.39). The reason for the very slight trend

of significant difference in case 2 (the reason for the lower P value, P = 0. 14)

may be due to this issue. Therefore, it would be beneficial to investigate the

effects caused by the distance descriptors toward the directional perception for

improving the ability of interpreting directional notions by robots.

In most of the cases discussed in here, the direction decided by the system

without the DirI (i.e., with fixed meanings for directional notions) is significantly

different from the natural directional perception of humans identified from the

user study. Therefore, such fixed interpretation is not effective. The proposed

DirI has produced results that are not significantly different from the natural

directional perception of the human users. However, the effectiveness can be

further improved by considering the other factors that influence the directional

perception for the adaptation of perception as explained above.
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The deployment of the DirI has improved the robot’s direction perception to

replicate the directional perception of humans. However, the distance notions

quantified by the system is significantly affected in some cases as a results of the

modification of the perceptive distance (i.e., D). As an example, in the case 1,

the distance moved by the robot were 23 cm and 118 cm for the system with the

DirI run and without the DirI run respectively. Therefore, in order to analyze

the overall performance, the overall action of the robot has been evaluated in the

second phase of the experiment discussed in section 5.3.3

5.3.3 Overall Performance Comparison

The arrangement of the experimental environment is given in the map shown in

Fig. 5.8. It had 3 different rooms with heterogeneous characteristics. At the start,

the robot was initialized with an updated navigation map of the environment

and the Robot Experience Model. Therefore, the robot was well aware of the

arrangement and the characteristics of the environment during the experiments.

The user study has been conducted with participation of 12 users whose mean

and standard deviation of age are 26.8 and 4.1 years respectively. The users were

taken one by one to the experiment and they were advised about the structures

of the user commands that can be understood by the robot. Each user has given

6 occasions to interact with the robot for each of the two systems (i.e., system

with fixed directional perception and adaptable directional perception). These

instances were chosen randomly deciding the initial position of the robot. The

users were given the freedom to decide the user instructions. However, the users

were asked to include 3 motional commands and 3 positional commands for those

6 instances and the same 6 instances were repeated to the other system. In order

to minimize the subjectivity, the users were not informed about the system (either

with fixed directional perception or with adaptable directional perception) that

they are interacting in a particular run. After each run, the user was asked to

rate the action of the robot in the scale 0-100 similar to the evaluation approach
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used in [3], where 100 indicates the perfect agreement and 0 indicates the null

agreement. The User Rating (UR) given by the user depends on the final position

of the robot. Therefore, it reflects the assessment of both direction and distance

interpreted by the robot.

The results obtained from the 1st user for 6 runs using both systems are given

in Table 5.2 as sample results. The parameters related to the DisI for the cor-

responding cases are given in Table 5.3. The initial and final positions of the

robot during these experimental runs are marked on the map shown in Fig. 5.6

with corresponding indexes given in Table 5.2. The modified output membership

functions of the DirI due to the weighting with the free space in these cases are

shown in Fig. 5.9.

In case 1, the robot was initially placed on the location ‘I1’ and the robot was

commanded “move far to the left” by the user 1. This is a motional command,

and <disM> and <dirK> were “far” and “left” respectively. Therefore, in order

to fulfill the user command the robot had to interpret the distance meant by “far”

and the direction meant by “left”. In the run of the system with fixed directional

perception (i.e., the system with the DirI), the direction interpreted by the robot

for “left” was fixed as current heading (i.e., θ) + 90◦ as explained in section 5.1.

Therefore, the heading angle for the movement was decided by the robot as 85◦.

The distance meant by <disM> was quantified by the Distance Interpreter (DisI)

as 28 cm based on the perceptive distance (D = 34 cm), room size (= 15.08 m2),

and the free space (= 12.95 m2). As a result of this interpreted distance and

direction, the robot moved to location ‘F1’. The action of the robot in this run

has been rated by the user 1 by giving a User Rating (UR) of 24. In the system

with adaptable directional perception case (i.e., the system with the purposed

DirI), the robot was initially placed on the same location and issued the same

user command. In this run, the direction interpreted by the system was a change

of 101◦ from the current heading yielding to the heading of the movement to 97◦.

101



Table 5.2: Sample results of the experiment: parameters related to the interpretation of directional notions by the DirI

User command
Initial position
(X cm,Y cm,θ◦)

with fixed directional perception with adaptable directional perception

φ◦
Destination1

(X cm,Y cm,θ◦)
UR

dα (cm)2

ψ◦ φ◦
Destination1

(X cm,Y cm,θ◦)
UR

dα2 dα3 dα4 dα5

1
move far to
the left

I1(369,259,-4) 85 F1(378,290,85) 24 10 45 187 105 101 97 F ′1(346,455,96) 84

2
move a
little left

I2(186,392,90) 180 F2(162,392,180) 67 28 53 122 60 96 -175 F ′2(161,388,-175) 70

3
move far
forward

I3(-188,-64,-64) -64 F3(-150,-121.-63) 50 89 184 110 29 -6 -69 F ′3(114,-235,-67) 84

4
move near to
the front of
the sink

I4(274,134,176) -90 F4(371,491,90) 64 140 289 227 60 -5 -94 F ′4(367,492,90) 72

5
move near to
the left of
the switch board

I5(-224,130,0) 90 F5(382,440,-90) 71 5 33 138 99 -77 103 F ′5(364,439,-90) 72

6
go near to
the front of
the cupboard

I6(-169,-65,-73) 90 F6(-122,-279,-90) 66 42 128 268 128 6 96 F ′6(-128,-279,-90) 78

1 The destination positions are decided based on the outputs of both DisI and DirI. The parameters related to the DisI in interpreting the distance notions in the corresponding
cases are given in Table 5.3.
2 It should be noted that the effects to the interpretation from dα1 and dα6 are null since µDSi

(α1) and µDSi
(α6) are zero. Therefore, those two values are not displayed here.
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Figure 5.8: The initial and final positions of the robot during the execution of
the cases given in Table 5.2 are marked on the map with corresponding letter
indexes. This map is drawn to a scale in order to visualize the characteristics of
the experimental environment. However, it should be noted that the markers do
not represent the actual size of the robot.

Table 5.3: Parameters related to the interpretation of distance notions by the
DisI

Case
Room
size
(m2)

Free
space
(m2)

with fixed
directional perception

with adaptable
directional perception

D
(cm)

Dout

(cm)
D

(cm)
Dout

(cm)
1 15.08 12.95 34 28 243 198
2 15.08 12.95 60 25 65 27
3 11.50 9.27 108 86 234 186
4 15.08 12.95 100 38 100 38
5 15.08 12.95 130 37 130 37
6 11.50 9.27 94 36 94 36
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Figure 5.9: The output membership functions plotted here show the adaptation of the perception of directional notions after
weighting the default perception with the available free space for the cases given in Table 5.2. (a), (b), (c), (d), (e), and (f)
represent case 1, 2, 3, 4, 5, and 6 respectively. It should be noted that only the effective Direction Sets (DS) are plotted here for
a particular instance and non-effective DSi due to µdirK (i) = 0 are not shown.
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The modified membership function due to the arrangement of the environment

is shown in Fig. 5.9 (a). In this instance, only DS2 was effective since the effects

of other sets are null due to µdirK (i) = 0 for i = {−4,−3,−2,−1, 0, 1, 3}. As

a result of adapting the directional perception according to the environment,

the defuzzified output of the system was different from the COA of the default

perception. This exhibits the directional perception adaptation based on the

environment setting. Because of this interpreted direction, the perceptive distance

(D) was significantly different from the previous case (i.e., system with fixed

directional perception). Therefore, the distance interpreted by the system was

198 cm (D = 243 cm, free space and room size were the same as previous run)

and the robot’s destination position was ‘F ′1’. The action of the robot has been

rated as 84 by the user. The increase of the UR shows an enhancement of the user

agreement for the system with adaptable directional perception (i.e., the system

with the DirI) than the system with fixed directional perception in this case.

In case 2, the initial position of the robot was ‘I2’ and the robot was com-

manded with the motional command “move a little left”. The system with fixed

directional perception run, the heading angle decided by the system was 180◦ and

the robot moved 25 cm resulting the destination at location ‘F2’. The UR for

this run was 67. The system with adaptable directional perception run, the head-

ing angle for the movement was -175◦ and the robot moved 27 cm resulting the

destination at location ‘F ′2’. The UR for this run was 70. The URs for the two

systems were not significantly different since the resulted destination positions

had only a slight difference.

In case 3, the robot was commanded with the motional command, “move far

forward”. In the system with fixed directional case the robot moved to location

‘F3’ by considering the direction meant by forward as the current heading (i.e.,

−64◦) while in the system with adaptable directional perception case, the robot

moved to location ‘F ′3’ by considering the direction meant by “forward” as heading

of −69◦. The corresponding URs were 50 and 84 respectively for the two runs.
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In case 4, the initial position of the robot was ‘I4’ and it was commanded

with the positional command “move near to the front of the sink”. In this case,

the robot had to quantify the distance meant by “near” and the direction meant

by “front” with respect to <Ref> (i.e., sink). The robot moved to location ‘F4’

in the run where the system had fixed directional perception. In the system

with adaptable direction perception run, the robot moved location ‘F ′4’, which is

slightly deviated towards the free area with respect to the final position of the

previous run. Therefore, the UR for the system with adaptable perception (UR

= 72) got a slightly higher value compared to the system with fixed directional

perception (UR = 64).

In case 5 and 6, the robot was commanded with positional commands. The

system with adaptable directional perception runs, the robot moved to locations

which are slightly deviated towards low congestions areas with respect to the

moved positions in the system with fixed directional perception runs. The system

with adaptable directional perception got higher UR with respect to the system

with fixed directional perception. However, in case 5, the URs for the two systems

were almost the same (71 and 72) even though the direction had a slightly large

deviation (deviation was 13◦). In system with the fixed directional perception

case, the robot was not exactly settled on the direction deicide by the system

since the robot cannot reach that position due to the limitation of the space for

the occupancy of the robot. Therefore, the location was already deviated toward

the free area due to that. This would be the reason for getting almost the same

user rating for the two systems.

Similarly, all the 12 participants were asked to operate the robot 6 runs for each

of the system (i.e., with the system with fixed directional perception and system

with adaptable directional perception). This yields to 72 effective cases for each

system. The mean value of the User Rating (UR) was calculated for both systems

based on the individual UR for each run. The calculated mean UR scores for the

two systems are given in Fig. 5.10(a) with error bars. The distributions of the UR
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1: system with fixed directional perception
2: system with adaptable directional perception
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Figure 5.10: (a) shows the mean values of the user ratings for the two systems
with error bars. The error bars represent the standard error. (b) shows the
distribution of user ratings as a boxplot. The box plot has the usual standard
notation; box: interquartile range, horizontal line: median, whiskers: minimum
and maximum, and plus sign: outliers

scores are given in Fig. 5.10(b) as a box plot for better visualization of the results.

The system with the proposed DirI got a mean user rating of 77.7 while the system

with fixed direction interpretation (i.e., system without the DirI) got mean UR of

56.2. The difference between the means of UR is statistically significant (P<0.05)

according to the t-test. Therefore, it can be concluded with 95% confidence that

the user agreement for the system with adaptable perception is par above the

user agreement for the system with fixed directional perception. Furthermore,

the performance improvement caused to the understanding of fuzzy notions due

to the addition of adaptable directional perception is noteworthy since Cohen’s

d value of greater than 0.7 can be observed from results of the user rating (since

Cohen’s d value greater than 0.7 is considered as a large effect [88]).
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5.4 Summary

A method has been proposed in this chapter for enhancing the interpretation

of the fuzzy notions in motional and positional navigation command by adapting

the robot’s directional perception based on the environmental setting. The major

improvement of the proposed system over the existing approaches is the system

is capable of interpreting the directional notions in motional and positional nav-

igation commands by considering the fuzziness associated with natural language

descriptors instead of fixed interpretations.

The directional notions in user instructions are interpreted by a fuzzy inference

system that has been designed in such a way that it can replicate the natural hu-

man behavior. The perception of the directional notions is adapted by modifying

the output membership function of the fuzzy inference system according to the

available free space around the robot or the reference object.

Experiments have been conducted in order to evaluate the performance im-

provement caused to the understanding of navigational commands by the robot

due to the deployment of the proposed method for adapting the robot’s directional

perception. The performance of the system with the adaptable directional per-

ception (i.e., system with the prposed DirI) has been compared against a system

with fixed direction perception through user studies. According to the obtained

experimental results, the fuzzy navigational command understanding ability of

the system with the adaptable directional perception surpasses the ability of the

system with fixed directional perception with a significant margin.
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Chapter 6

ADAPTING ROBOT’S PERCEPTION OF UNCERTAIN

INFORMATION BASED ON THE ENVIRONMENT AND

USER FEEDBACK

Notably, the perception of uncertain terms varies from person to person. In

real-world situations, peers mutually adapt to align with each other’s percep-

tions. Therefore, robots must also be capable of this behavior to increase user

satisfaction. However, the methods discussed in chapter 4 lack a means of adapt-

ing a robot’s perception toward user expectations based on corrective measures

received from the user.

This chapter proposes a novel method of interpreting uncertain terms con-

tained in navigational user commands based on the environment and prior cor-

rection measurements received from the user. The main advantage of the pro-

posed method over the existing systems is that the proposed system is capable

of concurrently adapting to the environment while learning from user feedback.

In order to realize this, the Distance Interpreter (DisI) of Uncertain Information

Understanding Module (UIUM) is reimplemented with fuzzy neural networks

that can provide the required learning and adapting abilities. As similar to the

work explained in chapter 4, the DisI of the UIUM is used to assign quantitative

values to distance-related uncertain terms such as “far”, “close” and “little” in

user commands. In addition to that, the Feedback Evaluation Module (FEM) is

integrated into the Intelligent System for Understanding Uncertain Information

(ISUUI) for evaluating the error of an action reflected by a feedback statement
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Uncertain Information 
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Figure 6.1: Structure of the ISUUI with the modified DisI

given by a user. The arrangement of the ISUUI with these modifications is shown

in Fig. 6.1.

6.1 Reimplementation of the DisI using fuzzy neural networks

The perception of uncertain terms strongly depends on the spatial informa-

tion of the surrounding environment. In addition, the perception of uncertain

terms varies with the expectations of the user. Therefore, the DirI must be im-

plemented such that it can learn from user feedback to adjust its perception to

match the expectations of the user in addition to adapting to knowledge about

the environment. Systems based on fuzzy logic and fuzzy neural networks are

often used to understand the meaning of natural language user commands [81].

However, the existing systems cannot concurrently adapt to both the spatial in-

formation about the environment perceived from sensory information and the

corrective feedback received from the user. Therefore, the DisI is reimplemented

with fuzzy neural networks that can perceive the environment by means of spatial

information inputs while concurrently learning from user feedback. Two indepen-

dent fuzzy neural networks have been developed for the separate interpretation

of uncertain terms related to motional and positional information. Submodule 1

is used to interpret distance-related uncertain terms in motional commands, i.e.,
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Figure 6.2: Structure of submodule 1 of the DisI. The fuzzy neural network con-
sists of 6 layers. The <distanceM> and the available free space are the inputs to
the network. The membership functions for the free space are adjusted according
to the room size (S). Therefore, the nodes that represent the free-space mem-
bership functions, which are bounded by a dotted line, take S as an input. The
activation transfer function f 1 depends on the perceptive distance D1.

when executing a robot action of type I or II. Submodule 2 is used to interpret

uncertainties related to positional information in user commands; therefore, it is

used when executing type III robot actions. The structures of submodules 1 and

2 are shown in Fig. 6.2 and Fig. 6.3, respectively.

Layer I of each submodule is the input layer, and it contains two types of

nodes for acquiring inputs: for the 1st submodule, these nodes correspond to the

<distanceM> in the user command and the free space available in the environ-

ment, and for the 2nd submodule, they correspond to the size of the object of

interest and the available free space. The neurons in this layer transmit external

input signals directly to layer II, which is the fuzzification layer. The neurons in
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Figure 6.3: Structure of submodule 2 of the DisI. The fuzzy neural network
consists of 6 layers. The size of the object of interest and the available free space
are the inputs to the network. The membership functions for the size of the object
of interest and the free space are both adjusted according to the room size (S).
Therefore, the nodes that represent the input membership functions, which are
bounded by a dotted line, take S as an input. The activation transfer function
f 2 is adjusted according to the perceptive distance D2.

this layer represent fuzzy sets used in the antecedents of fuzzy rules for the action

modifier and the free space. The membership functions for the free space and

size of the object of interest are adjusted according to the size of the occupied

room (S). The size of the room, the available free space and the size of the object

of interest can all be retrieved from the knowledge contained in the environment

layer of the Robot Experience Model (REM). Layer III is the fuzzy rule layer.

Each neuron in this layer corresponds to a single fuzzy rule. A fuzzy rule neuron

receives inputs from the fuzzification neurons that represent the fuzzy sets in the

antecedents of the corresponding rule. The algebraic product operator is used as

the T-norm fuzzy operator; hence, the output of a neuron in this layer is the alge-
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braic product of the incoming signals. Layer IV is the output membership layer.

The neurons in this layer represent the fuzzy sets used in the consequents of the

fuzzy rules, and an output membership neuron combines all of its inputs using

the fuzzy union operator. Any node Ck
i in the kth submodule, where i = 1, ..., 5,

represents a triangular membership function with a center of aki ε[(a
k
i )L, (a

k
i )H ]

and a width of bki ε[(b
k
i )L, (b

k
i )H ].

Layer V is the defuzzification layer. It takes the output fuzzy sets clipped

by the respective integrated firing strengths and combines them into a single

fuzzy set. The sum-product composition method can be used to simulate the

center-of-area method of defuzzification for a Mamdani fuzzy system [75], and

the defuzzification output is obtained from (6.1), where Ak is the output of layer

V of the kth submodule and µki is the integrated firing strength of the ith output

fuzzy set of the kth submodule.

Ak =

∑5
i=1 a

k
i b
k
i µ

k
i∑5

i=1 b
k
i µ

k
i

(6.1)

Layer VI of each submodule consists of an activation transfer function that

is used to scale the output. The transfer functions are given in (6.2), where Y k

is the output distance of the system, d0 is the clearance of the robot, and the

perceptive distance Dk is given in (6.3), where Dr is the distance from the robot

to the object of interest or the nearest obstacle in the direction of its motion and

Dobj is the distance between the object of interest and any other nearby object in

the approach direction of the robot (as explained in chapter 4). The free space,

the size of the object of interest, the room size, Dr and Dobj are all obtained from

the environment layer of the REM based on sonar sensor readings and navigation

maps.

Y k =

(Dk − d0)Ak if k = 1

(Dk − d0)Ak + d0 if k = 2

(6.2)
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Dk =

Dr if k = 1

1
2
[min(Dr, Dobj)] if k = 2

(6.3)

The initial membership functions for submodules 1 and 2 are defined similarly

to the membership functions for the system proposed in chapter 4 with slight

modifications and are shown in Fig. 6.4. The initial membership functions for

the output distance determine the initial connection weights of layer V, which

are then adjusted based on user feedback using a backpropagation algorithm.

The FEM is used to evaluate the normalized distance error (ê) of a particular

movement by evaluating the user feedback given immediately after the robot

performs an action of type I, II or III. The submodule that needs to be adjusted

is chosen based on the robot action executed immediately before the feedback is

received. If the previous action is an action of type I or II, then submodule 1

will be adjusted; if the previous action is a type III action, then submodule 2 will

be adjusted. The robot action layer of the REM is used to identify the previous

action. Then, membership parameter training (corresponding to network weight

training) is performed for the ith node of the kth submodule with the execution

of the (t + 1)th action, as given in (6.4) and (6.5), where the (t + 1)th action is

a learning action, i.e., a type VI robot action. Here, ηk is the learning rate, and

δka and δkb are scalar constants that are used to maintain the variations of the

parameters within the desirable ranges during the learning phase. If no feedback

is given, then the weights are not adjusted.

aki (t+ 1) =


aki (t) + ηkδka êµ

k
i if aki (t+ 1)

ε[(aki )L, (a
k
i )H ]

aki (t) otherwise

(6.4)
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Figure 6.4: (a) represents the input membership functions for the <distanceM>. It shows singleton membership functions labeled
as M1

1 , M1
2 and M1

3 for the <distanceM> “little”, “medium” and “far”, respectively. (b) represents the input membership functions
for the free space. It has triangular membership functions labeled as F 1

1 , F 1
2 and F 1

3 , which are adjusted according to the size of
the room (S). (c) represents the initial membership functions for the output of submodule 1. (d) represents the input membership
functions for the size of the object of interest. It has triangular membership functions labeled as O2

1, O2
2 and O2

3. (e) represents
the input membership functions for the free space. It has triangular membership functions labeled as F 2

1 , F 2
2 and F 2

3 . These input
membership functions are adjusted according to the size of the room (S). (f) represents the initial membership functions for the
output of submodule 2.
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bki (t+ 1) =


bki (t) + ηkδkb êµ

k
i if bki (t+ 1)

ε[(bki )L, (b
k
i )H ]

bki (t) otherwise

(6.5)

6.2 Feedback evaluation

Voice feedback includes directives from the user to modify the perception of the

robot concerning uncertain terms. As an example, suppose that immediately after

the robot has executed a type I action in response to a particular user command,

the user issues a feedback statement of “too little”. The user feedback “too little”

indicates that the distance moved by the robot in response to the corresponding

user command is less than the user expected. Furthermore, it conveys the intent

of the user to adapt the system to generate a greater output distance on similar

occasions in the future. Therefore, the robot should be able to extract the required

degree of adjustment to adapt its perception to the user’s expectation. However,

such feedback statements do not contain precise quantitative values. Therefore,

the quantitative meaning of a particular feedback statement must be evaluated

to judge the required adjustment.

The FEM is implemented using a fuzzy inference system to assign a quantita-

tive distance error (e) to a particular instance of feedback. It is assumed that the

quantitative meaning of a feedback term depends on the user’s observation, i.e.,

the immediately preceding action of the robot. Therefore, the previous output

and the user feedback term are used as the inputs to the system. The output

of the system is the evaluated distance error (e) corresponding to an instance of

feedback on a particular robot action. The input and output membership func-

tions of the system are shown in Fig. 6.5. The rule base of the system is shown

in Table 6.1. Three singleton fuzzy sets, namely, Positive Error (PE), Negative
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Previous output

𝜇𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑜𝑢𝑡𝑝𝑢𝑡

DF/2         DF

1
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(a) S    M       H    (b)

(c)

𝜇𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘

PE         G         NE        
Feedback category

1

0

𝜇𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑒𝑟𝑟𝑜𝑟

-DF/2  -2DF/6  -DF/6          0          DF/6      2DF/6     DF/2
Distance error (e)

1

NL     N          NS        NC         PS          P        PL 

Figure 6.5: (a) represents the input membership functions for the previous output.
It shows 3 triangular fuzzy sets, labeled as S: Small, M: Medium and H: High.
(b) represents the input membership functions for feedback terms. It shows 3
singleton fuzzy sets, labeled as PE: Positive Error, G: Good and NE: Negative
Error. (c) represents the output membership functions for the distance error.
It shows 7 triangular membership functions, labeled as NL: Negative Large, N:
Negative, NS: Negative Small, NC: No Change, PS: Positive Small, P: Positive
and PL: Positive Large. The membership functions for the previous output and
the distance error are adjusted according to DF .

Error (NE) and Good (G), are defined as the membership functions for the feed-

back term. It is assumed that the user feedback will take different forms when

feedback is given for different types of robot actions. For robot action types I and

II, the possible feedback statements are assumed to be “too little”, “too much”

and “good”, and for robot action type III, the possible feedback statements are

assumed to be “too close”, “too far” and “good”. The mapping between the ac-

tual voice feedback statements and the feedback terms in the input membership

functions is given in Table 6.2. The membership functions for the previous output

and the distance error are adjusted according to DF , where DF is the maximum

possible output for the particular robot action corresponding to the feedback.

DF is given in (6.6). The previous output (Y k(t)) and the corresponding Dk(t)

are obtained from the knowledge stored in the action layer of the REM when the

(t + 1)th action is the corresponding learning action (i.e., a robot action of type

VI). The normalized distance error (ê) can be obtained from (6.7).
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Table 6.1: Rule Base of the Fuzzy Inference System for Feedback Evaluation

Input Memberships
Previous output
S M H

Feedback term
PE PS P PL
G NC NC NC
NE NS N NL

Table 6.2: Mapping of user feedback terms
User feedback Mapped feedback

termFor a type I or II
robot action

For a type III
robot action

Too little Too close PE
Good Good G

Too much Too far NE

DF =



Dk(t)− d0 | k = 1 when the tth action is

a type I or II robot action

Dk(t) | k = 2 when the tth action is

a type III robot action

(6.6)

ê =
e

DF

(6.7)

6.3 Results and Discussion

6.3.1 Experimental setup

The proposed concept has been implemented on the MIRob platform, and a

user study has been conducted in an artificially created domestic environment

inside the research facility to validate the performance gain of the proposed

method over the existing systems. The experimental environment consisted of

three rooms, namely “Kitchen”, “Corridor” and “Office”. These three rooms dif-
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fered in their characteristics, such as room size, free space and object arrangement.

The room names and the objects present during the experiment are annotated

on the map shown in Fig. 6.6.

To evaluate the performance of the system, a parameter called the “satisfactory

level” [76] is used; the definition of the “satisfactory level” (SLNA) is given in (6.8),

where NFG is the number of feedback instances of “good” type received following

the execution of NA previous movement-related user instructions. It should be

noted that if feedback is not given for a particular action, it is assumed to be

“good”.

SLNA =
NFG

NA

(6.8)

During the experiment, the parameters related to learning were chosen to be

ηk = 0.1, δka = 5 and δkb = 3 for k = 1 and 2. The definitions of the lower

and upper bounds on the centers ((aki )L, (aki )H) and widths ((bki )L, (bki )H) of

the output membership functions are given in (6.9), (6.10), (6.11) and (6.12),

respectively.

(aki )L =

0 if i = 1

aki−1(0) otherwise

(6.9)

(aki )H =

a
k
i+1(0) if i = 1, 2, 3, 4

1.0 otherwise

(6.10)

(bki )L =
bki (0)

2
(6.11)

(bki )H =
3bki (0)

2
(6.12)

119



-600 -400 -200 0 200 400 600 800
-600

-400

-200

0

200

400

600

800

1

2

34

56

7

8

9

20
11

19

13

16

15

1

2
3

4

17

6

7

8

9

10 11

12
13

14 15

0

Y

Xo

- System without learning ability
- System with the learning ability
- Initial position of the robot

Kitchen
‘R 001’

Corridor
‘R 002’

Office
‘R 003’

Table
‘P 001’

Sink
‘P 002’

Switch panel
‘P 003’

Table
‘P 004’

Table
‘P 005’

Cupboard
‘P 006’

18

9.3 m

9.1 m

Figure 6.6: The positions of the robot after executing the user instructions listed
in Table 6.3 are marked on the map with the corresponding command numbers.
The map is drawn to scale. However, it should be noted that the markers are not
drawn to scale and do not reflect the actual size of the robot.

6.3.2 Experiment and results

Since user studies are highly subjective in nature, the user study performed

to validate the performance of the proposed method was designed and conducted

with due attention to the recommendations given in [85] for designing, planning

and executing human studies of human-robot interaction.

The user study was conducted with 24 participants (male = 15, female =

9) between 22 and 67 years of age (mean = 34.6, SD = 15.4). At the start of

the experiment, the subjects were instructed on the possible structures of the

navigation commands that could be understood by the robot. Subsequently,
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they were asked to freely navigate the robot such that the robot’s movements

would cover the entire environment. This decision was made since asking users

to navigate a robot using a predefined set of commands or along a predefined path

is highly restrictive for users, and consequently, the resulting behavior may not

reflect actual user desires. Furthermore, this approach ensures that the intentions

of the users are solely related to navigation, without any intent to perform any

other task (e.g., placing/picking up an object on a table), which may influence

the characteristics of the desired movement. The initial position of the robot was

not fixed; instead, the initial position was selected randomly for each run. The

users were also asked to follow the robot such that they could visually observe

the movements of the robot and the environment. A few snapshots taken during

the experiment are shown in Fig. 6.7. The users were advised to issue voice

feedback about the movements of the robot (considering only the quantitative

distances corresponding to the uncertain terms in the user commands) when it

was necessary. To increase the voice recognition accuracy, a wireless headset with

a microphone was provided to each user for issuing voice commands.

Humans have great adaptive capabilities, and during experiments, users may

adapt to the behavior of robots. Therefore, to rectify the bias due to this adap-

tation, the participants were divided into two groups, each comprising 12 partic-

ipants. In the first part of the experiment, the concept proposed in this chapter

was implemented in the robot. Each user in the first group was taken individually

to conduct the experiment. Subsequently, the learning ability of the system was

disabled, and the abilities of the system were modified to be similar to those of

the system explained in chapter 4. Then, the users in the second group were

taken in for the study. Afterward, the users in the first group were taken in to

conduct the study again using the system with no learning ability, since there

was a considerable time gap that should have allowed the adaptation of the users

toward the robot to fade. Finally, the users in the second group were taken in to

conduct the study again using the system with the learning ability.
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MIRob

Figure 6.7: Snapshots of MIRob taken during the experiment are shown here.

The number of interactions with the robot (navigation commands only) was

limited to 50 per user. This value was chosen because the satisfactory level

reaches saturation before that point. The robot’s movements and the parameters

related to the UIUM for the first 20 commands issued by a randomly chosen user

when interacting with the system with the learning ability are given in Table 6.3.

The corresponding positions of the robot after executing each user command

are annotated with the corresponding command numbers on the map shown in

Fig. 6.6.
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Table 6.3: Example results for the system with the learning ability

User command k
AM
or

OS (m2)

Room
size
(m2)

Free
space
(m2)

Dk

(cm)
Y k

(cm)

Destination
position Feedback

e
(cm)

SL10

X Y θ

1 Move a little forward 1 little 18.85 16.33 500 204 217 146 -178 too much -143 -

2
Move near to the table
in the kitchen

2 1.62 15.08 12.95 65 46 46 355 90 - - -

3 Move near to the sink 2 0.379 15.08 12.95 65 44 341 486 90 too far -22 -

4
Move a medium distance
toward the table

1 medium 15.08 12.95 250 145 205 479 -179 - - -

5 Move far to the left 1 far 15.08 12.95 294 223 245 268 -78 - - -
6 Move right 1 medium 15.08 12.95 236 136 106 270 -175 too much -70 -
7 Move near to the cupboard 2 0.652 11.5 9.27 47 36 -122 -279 -90 too close 17 -

8
Move near to the
switch panel

2 0.138 15.08 12.95 165 79 315 357 0 too far -53 -

9
Move a medium distance
to the right

1 medium 15.08 12.95 163 73 310 299 -93 - - -

10 Move near to the table 2 1.62 15.08 12.95 97 56 46 345 90 - - 0.5
11 Move a little right 1 little 15.08 12.95 347 95 146 337 -1 too much -83 0.5

12
Move near to the table
in the corridor

2 2.52 18.85 16.33 58 42 63 45 0 - - 0.5

13 Move far backward 1 far 18.85 16.33 370 274 -207 32 -177 too little 124 0.5
14 Move a little right 1 little 18.85 16.33 175 42 -212 76 92 - - 0.5
15 Move near to the table 2 2.52 18.85 16.33 160 87 18 45 0 too far -53 0.4
16 Move near to the sink 2 0.379 15.08 12.95 65 41 341 489 90 too far -22 0.4
17 Move near to the table 2 1.62 15.08 12.95 120 60 150 494 180 - - 0.5

18
Move a medium distance
to the left

1 medium 15.08 12.95 284 152 156 340 -89 - - 0.6

19
Move near to the office
table

2 1.56 11.5 9.27 85 48 -142 -148 0 too far -28 0.5

20 Move far to the right 1 far 11.5 9.27 158 103 -153 -256 -97 - - 0.5
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Table 6.4: Variations in the parameters of the output membership functions with the user instructions given in Table 6.3

Command number
k

(submodule)
ak1 ak2 ak3 ak4 ak5 bk1 bk2 bk3 bk4 bk5

Initial 1 and 2 0.0833 0.2500 0.5000 0.7500 0.9167 0.2500 0.5000 0.5000 0.5000 0.2500
1 1 0.0833 0.2093 0.3885 0.7500 0.9167 0.2500 0.4756 0.4331 0.5000 0.2500
3 2 0.0833 0.2017 0.3773 0.7414 0.9167 0.2500 0.4710 0.4264 0.4948 0.2500
6 1 0.0833 0.2093 0.3403 0.6277 0.9167 0.2500 0.4756 0.4042 0.4266 0.2500
7 2 0.0833 0.2702 0.4854 0.7614 0.9167 0.2500 0.5121 0.4912 0.5069 0.2500
8 2 0.0833 0.2247 0.3698 0.7585 0.9167 0.2500 0.4848 0.4219 0.5051 0.2500
11 1 0.0833 0.1722 0.3403 0.6277 0.9167 0.2500 0.4533 0.3476 0.4266 0.2500
13 1 0.0833 0.1722 0.3403 0.6763 0.9167 0.2500 0.4533 0.3476 0.4558 0.3299
15 2 0.0833 0.1801 0.3698 0.7139 0.9167 0.2500 0.4580 0.3486 0.4783 0.2500
16 2 0.0833 0.1324 0.3698 0.7054 0.9167 0.2500 0.4294 0.2759 0.4732 0.2500
19 2 0.0833 0.1324 0.2674 0.6600 0.9167 0.2500 0.3905 0.2759 0.4460 0.2500
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In this run, the robot was initially placed at location ‘0’ on the map (X = 421,

Y = 154, θ = −178). Then, the robot was commanded to “move a little forward”

by the user. This is a motional command, and the quantitative distance value

for the uncertain term “little” was interpreted to be 204 cm by submodule 1 of

the UIUM. Therefore, the robot moved to location ‘1’ by performing a type I

robot action to fulfill the user command. However, the distance moved (i.e., the

interpreted quantitative value for the term “little”) was larger than the distance

expected by the user, and therefore, the user gave the feedback “too much” to

the system. Therefore, the robot performed a type VI robot action to learn from

this feedback, and the FEM evaluated a quantitative error value for the feedback

term (i.e., e). As a result of this user critique, the parameters of the output

membership functions of submodule 1 of the UIUM were modified to the values

given in the 2nd row (command no. 1) of Table V. Then, as the 2nd user command,

the robot was commanded to “move near to the table in the kitchen”. This is a

positional command, and the quantitative distance value for the uncertain term

“near” was interpreted to be 46 cm by submodule 2 of the UIUM. Therefore, the

robot moved to location ‘2’, at the corresponding distance from the table in the

kitchen (‘P 001’), by performing a type IV action (to move to the kitchen, ‘R

001’) followed by a type III action. In this case, the distance interpreted by the

robot was accepted by the user, and therefore, no feedback was given to modify

the robot’s perception. Then, the robot was commanded to “move near to the

sink”. In this case, the distance assigned to the term “near” by the robot was 44

cm, and the robot moved to location ‘3’. The position reached by the robot was

deemed to be “too far” from the sink (‘P 002’) according to the user’s expectation.

Therefore, the parameters of the output membership functions of submodule 2 of

the UIUM were modified to the values given in the 3rd row (command no. 3) of

Table V by means of a type VI robot action. Similarly, a total of 50 navigation

commands were issued by the user, and the variations in the parameters of the

UIUM corresponding to the commands listed in Table IV are given in Table V.

The observed modification of the parameters of the output membership functions
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of the UIUM confirms that the system is capable of modifying its perception

of uncertain information based on user feedback. The satisfactory level (SL)

was calculated based on the 10 previous states, and the variation in the SL10

value is given for the 10th user command onward in Table IV. Another similar

experimental run was performed by the same user after the learning ability of

the system had been disabled (i.e., the system was similar to that described in

chapter 4). In this case, the parameters of the output membership functions

of the UIUM were not modified in response to the feedback from the user and

instead remained constant at their initial values.

Similar experimental runs were conducted using the system with the learning

ability (i.e., the system proposed in this chapter) and the system with no learning

ability (i.e., similar to the system described in chapter 4) by all 24 participants.

The variations in the SL10 values with the number of executed commands for

both systems were calculated for all users. The variations in the mean SL10

values with error bars are shown in Fig. 6.8. The error bars represent the 95%

confidence intervals (CIs) with respect to the mean values. The variations in

SL10 for all users are also shown as box plots in Fig. 6.9 for better visualization

of the results.

In the initial stage (after execution of the 10th user command), both systems

exhibit rather low mean satisfactory levels (0.5542 for the system with the learning

ability and 0.5125 for the system with no learning ability), and up to the 22nd user

command, the difference between the two means is not statistically significant

(P ≥ 0.05) according to the t-test. Furthermore, the differences between the

means for the two systems are very small, and in some situations, they overlap.

The variations of the medians also exhibit similar characteristics. Therefore, it

can be concluded that there was no initial prejudice in the users’ evaluations of

the two systems due to their adaptation toward the system in earlier runs.
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Figure 6.8: This plot shows the variations in the SL10 values of the system with the learning ability and the system with no
learning ability. The markers represent the mean values, and the error bars represent the 95% confidence intervals (CIs) for the
means based on a t-distribution.
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Figure 6.9: This figure shows box plots of the variations of the SL10 values with the number of executed commands for all users.
The results for the system with the learning ability are shown in blue, and the results for the system with no learning ability
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whiskers represent the maximum and minimum values of each distribution. However, the maximum length of the whiskers is
limited to 2.7σ; any outliers are marked with circles in the color of the corresponding data set.
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The satisfactory level of the system proposed in this chapter (i.e., the system

with the learning ability) increased gradually over time, and finally, the mean

of SL10 settled at approximately 0.9 (after the 46th command, SL10 = 0.9083;

after the 47th, SL10 = 0.9083; after the 48th, SL10 = 0.9042; after the 49th,

SL10 = 0.9125; and after the 50th, SL10 = 0.9000). Therefore, the learning

ability of the system facilitates the adaptation of its perception of uncertain

information to match the perception of the user. Hence, in this experiment, user

satisfaction increased with successive interactions. Meanwhile, the satisfactory

level of the system with no learning ability was also increased at the end of the

experiment compared with the initial stage (initially, after the 10th user command,

SL10 = 0.5125; after the 50th command, SL10 = 0.6917). This occurred because

humans have a great cognitive ability to adapt their perceptions in accordance

with the actions of their peers. Hence, the users adapted to the perception of the

robot during the experimental runs. Therefore, user satisfaction increased with

successive interactions even though the system did not adapt to their perceptions.

However, the SL of the system with no learning ability was lower than that of the

system with the learning ability; from the 22nd command onward, the differences

between the means are statistically significant at the 95% confidence level (P <

0.05). When the power values of the statistical analysis are considered, from

the 22nd command onward, the power values are also greater than 0.8 (according

to Cohen’s four-to-one weighting of the beta-to-alpha risk criterion [88], power

values greater than or equal to 0.8 can be considered as good). Therefore, it can

be concluded that the experimental results correctly indicate rejection of the null

hypothesis (i.e., H0: the mean SL values of the two systems are the same) when

the alternative hypothesis (i.e., H1: the mean SL value of the system with the

learning ability is greater than that of the system with no learning ability) is true

(from the 22nd command onward). Furthermore, from the 26th command onward,

Cohen’s d values of greater than 0.8 can be observed. This implies that there is a

large effect (values above 0.8 are considered to be large [88]). Therefore, it can be

concluded that there is a definite, noticeable effect on the SL due to the addition
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of the learning ability. Based on these statistical observations regarding user

satisfaction, it can be concluded that the experimental results confirm that the

performance enhancement of the system with the learning ability (i.e., the system

proposed in this chapter) over the system with no learning ability is significant

and reliable. Ultimately, with regard to user satisfaction, the system with the

learning ability (i.e., the system proposed in this chapter) surpasses the system

with no learning ability (i.e., similar to the system explained in chapter 4).

The medians of the SL scores also exhibit a phenomenon similar to that of the

means of SL, as seen from the box plots shown in Fig. 6.9. According to these

box plots, there are both positive and negative outliers for both systems. The

existence of outliers for a user study of this kind is natural, since there may be

users whose expectations and perceptions are significantly different from those

of others. Except for a single user, the individual variations in the SL outliers

are similar to the variations of the majority of the data, although the absolute

SL scores are above or below the others. Furthermore, the variations for the

older users were separately analyzed and were found to exhibit characteristics

similar to those of the overall results. Therefore, even though not all participants

were older or challenged users, this aspect of the study population showed no

significant effect on the evaluation of the performance of the system. Furthermore,

assistive robots can be used indirectly for assisting elderly/disabled people by

using them as support agents for human caregivers in care facilities such as nursing

homes [89], and hence, not all users of such systems will be older people.

The proposed method enables a robot to learn from user feedback while con-

currently adapting its perception of uncertain information according to the spatial

information of its current working environmental. Moreover, the proposed system

is capable of modifying the parameters of the output membership functions of the

system proposed in chapter 4. Therefore, the key characteristics of the scheme

for perception adaptation based on environmental factors that is presented in

chapter 4 are clearly well preserved in the method proposed in this chapter. By
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contrast, the methods proposed in [76,90] are capable of perception learning based

only on user feedback, and after the learning process is complete, the meanings of

uncertain terms are fixed. Systems that assign such fixed meanings to uncertain

information are suitable for use only in a fixed working environment and cannot

be used in dynamic working environments. The experiment performed in this

study was conducted in an environment that was static with respect to the global

frame. However, this environment was dynamic with respect to the robot’s frame

since the environmental parameters perceived by the robot varied with its current

position in the globally fixed environment. Therefore, the environment perceived

by the system was not a static one. Moreover, the working environment was also

dynamic due to the changing position of the robot during navigation. Therefore,

the proposed system is capable of adapting the perception of a robot toward that

of its user based on user feedback while concurrently adapting its perception in

accordance with its current environment. This is the major improvement of the

proposed method over existing methods.

6.4 Summary

This chapter proposed a method of effectively interpreting uncertain informa-

tion related to navigation commands by adapting a robot’s perception of uncer-

tain information based on both the environment and user critiques. The main

improvement of the proposed concept over existing systems is that the proposed

system is capable of concurrently adapting its perception based on the spatial

information of the environment while learning from user feedback.

The DisI has been reimplemented using fuzzy neural networks. These fuzzy

neural networks enable the system to learn from user feedback while simultane-

ously adapting its perception based on sensory information related to the envi-

ronment. The FEM has been deployed to evaluate the quantitative meanings of

feedback terms.
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Experiments were conducted to validate the performance enhancement achieved

by the system due to its learning ability. An index called the user “satisfactory

level” was used for the performance analysis. The experimental results confirm

the performance improvement of the proposed method over the existing methods.

The performance of the system with the learning ability surpasses that of a system

with no learning ability. Therefore, the proposed concept is capable of enhancing

user satisfaction by adapting a robot’s perception of uncertain information based

on the environment and user feedback.
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Chapter 7

INTERPRETING UNCERTAINTIES RELATED TO REL-

ATIVE REFERENCES

7.1 Relative References

As mentioned in chapter 3, the motional and positional navigational commands

may consist with a reference (i.e., <Reference>). This reference is useful in iden-

tifying the direction of the movement (for motional command) or the position

to be moved (for positional command only). Therefore, the robot must be capa-

ble of identifying the reference to fulfill a navigation task requested by the user.

However, this reference may be expressed as a phrase by using a combination of

other references. For instance, “table close to the vase” can be considered as an

example phrase. In here, the reference of interest is a table, which is in close

proximity to a vase (a second reference). Often uncertain information is included

in these sort of referential phrases and the uncertain information is expressed

with relative to any other aspect such as features of other objects in the envi-

ronment, and position and orientation of the user or the performer. Therefore,

the robot must be capable of effectively interpreting the uncertain information

associated with these sort of relative references. This chapter proposes the Rela-

tive Uncertainty Interpreter (RUI) to embedded into the Uncertain Information

Understanding Module (UIUM) for realizing the requirement. The arrangement

of the Intelligent System for Understanding Uncertain Information (ISUUI) with

the proposed RUI is shown in Fig. 7.1

133



Intelligent System for Understanding

Uncertain Information

Distance Interpreter

Module 1

Module 2

Uncertain Information 

Understanding
Feedback 

Evaluation

Intelligent System for Understanding

Uncertain Information

Distance Interpreter

Module 1

Module 2

Uncertain Information 

Understanding

Relative 

Uncertainties

Interpreter 

Figure 7.1: The ISUUI with the proposed RUI

7.1.1 Actions Related to Identification of Relative References

Voice commands that include relative references are often used in issuing nav-

igation instructions to the companions. In order to analyze the commands, the

navigational commands with relative references are categorized based on the num-

ber of referencing entities included in the command. As an example, the command

“move near to the large table” can be considered. In here, “large table” is the

reference and it is defined as Ref1. This type of referential phrases is defined

as Reference Phrase Type I (RP Type I). The robot needs to identify the refer-

ence by interpreting the uncertainties related to relative references if there are

uncertainties. The robot Decisive Action type I (DA-I) is defined for the Ref1

identification action. In some cases, there may be more than one references. As an

example “move near to the table close to the large cupboard”. In this command,

the robot needs to move near to the table that is close to the large cupboard.

“Table” is considered as the Ref1 and “large cupboard” is considered as the sec-

ond reference (Ref2). In order to interpret this kind of commands, first the Ref2

should be identified and then the Ref1 should be identified based on the Ref2.

The Decisive Action type II (DA-II) is defined for the process of identification of

the second reference (Ref2). Therefore, in this kind of commands, the robot first

needs to perform DA-II in order to identify the Ref2 and then DA-I action in
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Table 7.1: Example referential phrases and required sequence of decisive actions

Referential Phrase Available references Type
Required

decisive action1

1 the large table Ref1 = “large table” RP-I DA-I

2
the table close
to large cupboard

Ref2 = “large cupboard”
Ref1 = “table close to Ref2”

RP-II
DA-II
DA-I

3
the chair left of
the table close
to the sink

Ref3 = “sink”
Ref2 = “table close to Ref3”
Ref1 = “chair left of Ref2”

RP-III
DA-III
DA-II
DA-I

4 Ref1 ..... Refn

Refn
. . .
Ref1

RP-n
DA-n
. . .
DA-I

1 These decisive actions are named for the sake of clarity of explanation. In reality, these are merely processing
tasks of the robot.

order to identify Ref1. Similarly, if there is n number of references in a particular

command then it is categorized as Reference Phrase Type n (RP type n). If there

is n number of reference in a command then the robot needs to perform DA-n

to DA-1 successively in order to finally identify the Ref1 (DA-n for Refn then

DA-(n− 1) for Refn−1 ...... DA-II for Ref2 finally DA-I for Ref1 identification).

Example referential phrases and the corresponding sequence of required decisive

actions are summarized in Table 7.1

After identification of the Ref1 in a command if there is a Ref1, the robot

needs to execute robot actions (as explained in chapter 3) to move to the specified

position described by the uncertain information related to positional and motional

user commands.

7.2 Usage of Uncertain Information in Relation to Relative References

In order to identify the natural tendencies of human related to usage of relative

references, a study has been carried out with participation of 55 healthy people

(Age: M = 34.38 and SD = 16.1 years). The participants were asked to write

down 10 to 15 referential phrases that can be used in order to refer objects for

navigating a person/robot inside the given environment. Furthermore, they were
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asked to explicitly mention the referred object along with the phrases. For this,

the objects in the environment were labeled with distinct numbers. For the study

10 different domestic environment were used and 5-6 volunteers were taken for a

single environment. Altogether, 620 valid relative referential phrases have been

gathered. The gathered data have been analyzed in order to identify the natural

tendencies of humans associated with relative references1.

The first analysis has been conducted to investigate the inclusion of the un-

certain information in referential phrases. The percentage availability and non-

availability of the uncertain information in the phrases are shown in Fig. 7.2.

Approximately 46% of the gathered phrases contains the uncertain information

yielding to necessity of having a mechanism to interpret the uncertain informa-

tion in referential phrases for enhancing the navigation command understanding

of service robots. The number of references available in a phrase has also been

analyzed and the outcomes are presented in the plot shown in Fig. 7.3. More than

90% of the phrases contain either a single reference or two references and there

are only few cases where three references are available in a phrase. Moreover, RP

Type I and RP Type II are the noteworthy types.

The composition of the uncertain information has been analyzed based on

the entities related to the uncertain information such as “distance”, “size” and

“direction”. The percentage composition of the uncertain information in rela-

tion to different entities is given in the plot shown in Fig. 7.4. Most of the

uncertain information related to relative references can be classified into two cat-

egories; object saliency related uncertainties and position related uncertainties.

This classification is illustrated in Fig. 7.5 with examples. There are uncertain

information related to the features of objects and such information is categorized

as uncertainties related to saliency of objects. Object size (e.g., “large table”),

shape (e.g., “round table”) and color (e.g., “dark chair”) related uncertain terms

could be considered as examples. Position related uncertain information mainly

1It should be noted that all the analyses have been conducted manually based on human
knowledge.
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Figure 7.2: Percentage frequency of phrases vs. availability of uncertain informa-
tion

includes distance (e.g., “table near the door”), direction (e.g., “left of the table”)

and location (e.g., “corner of the kitchen”) related uncertainties. Furthermore,

there are few situations where the uncertain information is related to the age of

the reference objects (e.g., “old cupboard”) and those are categorized into the
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Figure 7.3: Percentage frequency of phrases vs. number of reference in a phrase
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Figure 7.4: Percentage frequency of uncertain terms vs. entity of uncertain in-
formation

other category in the plot.

According to the outcomes of this survey, size, distance and direction are the

mostly associated relative referencing entities in navigation (approximately 90%).

Therefore, only the relative referencing uncertain information related to relative

size, distance and direction is considered for this paper. Relative uncertainties

may associate with any of the references in a command. Therefore, the relative

uncertainties associated with them need to be interpreted by the robot in order

to identify them. ith and (i + 1)th references in a command are considered for

the explanation of the identification of the ith reference when there is n number

Uncertain information in 

relative references

Saliency of object Position

Eg. :
• Size – “large table”
• Shape – “round table”
• Color – “dark chair”

Eg. :
• Distance – “table near the door”
• Direction – “left of the table”
• Location – “corner of the room”

Figure 7.5: Classification of relative references

138



of references. Based on the outcomes of the study, it has been assumed that

the linkage between the ith and (i+ 1)th references (i.e Refi and Refi+1) can be

expressed in following format given in JSpeech Grammar Format [86].

<Refi>=[<Rsize>]<Refi>[(<Rdis>|<Rdir>)<Refi+1>]

It should be noted that the redundant words in the natural language referen-

tial phrases are omitted in the given structure and only the key information is

represented. In here, Rsize, Rdis and Rdir represent language descriptors related

to relative size, distance and direction respectively. The lexical symbol that rep-

resent the object type of the Refi is given by Refi. Relative size descriptors may

be included in ith reference and the descriptor is included before the object type

lexical symbol of the reference (i.e. Refi). If there is a Refi+1, then the Refi is

linked with the Refi+1 through a relative distance (Rdis) or a relative direction

(Rdir) descriptor that is included after Refi. Therefore, Refi+1 should be evalu-

ated first and then the Refi should be evaluated based on the selected Refi+1.

Moreover, the evaluation should be carried out from the nth reference to the 1st

reference (i = n, n− 1, ...., 2, 1 order) as explained earlier.

7.3 Interpretation of Relative References

Three separate algorithms have been implemented inside the RUI based on the

identified natural tendencies of humans in interpreting such uncertain informa-

tion. The required algorithm is selected based on the entity of the uncertainty.

Relevant entity of an uncertainty is identified based on the knowledge of the

language memory.
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7.3.1 Relative sizes

Size of an object is a relative entity based on the saliency of the considered

object type. As an example, “large table” means that the object is a table and

the size of it is relatively larger than the other tables in the environment. The

object size related uncertain information can be associated with any ith reference.

Therefore, the robot needs to interpret object size related uncertain information in

order to identify Refi if relative size related uncertain information is associated

with it. The algorithm 1 has been developed in order to interpret the object

size related uncertain information by considering the following natural human

tendencies.

• Object size related uncertain information such as “large” and “small” is

expressed relative to the similar type of other objects in the environment.

Most of the times there are few objects of the same type. e.g., two tables

in kitchen, three chairs in office.

• Predominantly two categories are used in order to distinguish the object

of interest from others based on the size. “large” and “small” are the two

most commonly used categories. In order to categorize into more, humans

prefer to use other relative references related entities such as “position” and

“directions” instead of size in such cases.

• “Large object” means the largest object among the similar types of objects

in a given room or the entire house. “Small object” means the vice versa

of this.

• When room related information is not included in the command, the se-

lection is done based on the objects in the current room if more than one

candidates are available in the current room. If there are no or only one

candidate then the entire house is considered for the selection. e.g., A sit-

uation where the current room is kitchen and there are two tables and a
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rack in it, is considered. In this situation, “large table” means one of the

table inside the kitchen. However, “large rack” may not be the rack in the

kitchen and this is evaluated considering the racks in the entire house.

In order to evaluate the algorithm, the required information of the objects such

as sizes of objects and relationships between objects and rooms is retrieved from

the environment layer of the Robot Experience Model(REM). The exceptions

of the algorithm is handled by the Interaction Management Module (IMM) by

changing the state of the robot to clarification state that can be used to get

clarifications from the user.

Algorithm 1 Refi selection based on relative size
INPUT: Uncertain category, object type
OUTPUT: Selected Refi
if room info available in command then

if no of object(object type) in the room ≥ 1 then
Search only in the room
return Selection(objects in given object type)

else
return Clarification state

end if
else

if no of object(object type)in RoomC > 1 then
Search only in RoomC

return Selection(objects in given object type)
else

Search entire house
return Selection(objects in given object type)

end if
end if

function Selection(possible candidate)
if Uncertain category = “large” then

return largest object among possible candidate
else if Uncertain category = “small” then

return smallest object among possible Candidate
else

return Clarification state
end if

end function
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7.3.2 Relative Distances

The uncertain information related to the relative distances is associated with

Refi only when there is a post reference to it (i.e. if Refi+1 exists). Hence,

this information is useful in identifying the Refi by evaluating the relative dis-

tances between candidates for the Refi and the Refi+1. However, every time the

Refi+1 may not be an object and it may be any other entity such as performer.

Algorithm 2 is used in order to identify the Refi by evaluating the uncertain

information associated with the relative distance of that from the Refi+1. The

algorithm has been developed in such a way that it can replicate the following

natural human tendencies.

• The distance information is expressed relative to the distances between the

possible candidates for Refi and the Refi+1.

• Possible candidates for the Refi are only in the room of Refi+1.

• Most of the times only two categories are used to distinguish the object

of interest from other possible candidates. If there is a requirement of

categorizing more than two, the humans tend to use others aspects.

• “Close” and “far” are the predominantly used uncertain categories and

“close” means the closest one and far means the furthest one from the

Refi+1. Synonyms are also used other than these two tokens. e.g., “near”

for “close”.

The information required for evaluation of the algorithm such as distance be-

tween the objects are retrieved from the environment layer of the REM. Language

memory is used to map the possible uncertain terms associated with the uncertain

term categories given in the algorithm.
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Algorithm 2 Refi selection based on relative distance with Refi+1

INPUT: Uncertain term category, object type, Refi+1

OUTPUT: Selected Refi
Search only in room of Refi+1

if no of object(object type) ≥ 1 then
if Uncertain term category = “close” then

return Refi candidate shortest distance to Refi+1

else if Uncertain term category = “far” then
return Refi candidate longest distance to Refi+1

else
return Clarification state

end if
else

return Clarification state
end if

7.3.3 Relative Directions

In order to distinguish the object of interest from the possible candidates for

Refi, the relative direction with the Refi+1 can be used. Therefore, navigational

commands often include relative direction related uncertain information. The

following natural human tendencies have been considered in order to develop

the method to select Refi by interpreting the uncertain information related to

relative directions.

• There are basic four directions and these directions depend on object char-

acteristic and the point of view. Those directions have overlapping bound-

aries.

• Objects that have a useful side most of the times have fixed direction with

them. As example objects; TV, Cupboard and Fan have a fixed front side

based on their usage. Other directions; back, left and right are also fixed

based on the front. This has the highest priority among other parameters

that decide the orientation.

• The directions depend on the point of view if the Refi+1 is not an object

with fixed directions. The direct pointing direction is the front side and
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Figure 7.6: Membership function for the evaluation of relative directions. The
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measurements are considered as positive.

other directions are given based on that. However, there are situations

where the point of views of the action performer and the commander are

different. According to [91], most of the times the point of view of the

performer is dominant and performer tends to consider the point of view of

himself in such scenarios. However, there is small probability of clarifying

it from the commander or considering the point of view of the commander

by the performer.

• If there is no Refi+1 in the command, most of the cases the Refi+1 will be

the performer when relative directional information is available.

The fuzzy membership function shown in Fig. 7.6 is used to evaluate the like-

lihood of possible candidates for Refi to be the correct Refi. The object that

has the highest activation degree in the considered direction is chosen as the Refi

among the possible candidates. The angle between the absolute front and the

vector ~Refi+1Refi, θ is given as the input of the membership function. The ab-

solute front is decided based on the context of objects or the point of view. If the

Refi+1 is an object with fixed directions then the absolute front is defined along

the exact front of that object. Context layer of the REM is used in order to re-

trieve the knowledge of such objects. In other cases, the absolute front is defined

along the point of view of the robot since the point of view of the performer is

dominant over the point of view of the commander.
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7.4 Results and Discussion

7.4.1 Experimental Setup

The proposed concept has been implemented on MIRob platform. At the

start, the robot was initialized with a updated REM and a navigation map of

the environment. Therefore, the robot is well aware of the arrangement and

the characteristics of the environment during the experiments. The experiments

have been conducted out in a simulated domestic environment inside the research

facility in order to validate the applicability of the proposed concept. A human

study has also been carried out to find out how the human participants execute

the same set of tasks. The snapshots taken during the experiments are shown

in the Fig. 7.7. Finally the experimental results of the developed robotic system

and the human study have been compared in order to validate the performance

of the proposed system.

(a)                                                           (b) 

1 2

Figure 7.7: (a) shows MIRob is being instructed by a user during the experiment.
(b) shows a snapshot taken during the user study. In here, 1 is issuing instructions
to 2 during the command no 11 of the user study. Details are in Table 7.3.
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7.4.2 Overall Behavior of the Proposed Concept

In order to analyze and verify the overall functionality of the proposed system,

a sequence of voice instructions has been issued to the robot and the responses

of the robot have been recorded as the experiment 1. An explanatory video of

this segment of the experiment can be found in the supplementary multimedia

attachment 42. The issued user instructions and the corresponding responses of

the robot are given in Table 7.2. The positions of the robot during the execution

of the commands in the experiment 1 are annotated on the map shown in Fig. 7.8.

Instruction 1: Initially the robot was at position ‘A’ and the instruction 1,

“move near to the small table in the kitchen” was issued to the robot. This

command contains only one reference (i.e. only the Ref1) and hence it is a RP

Type-I phrase. In order to fulfill this command, first the robot had to identify the

Ref1 and then move near to that. The room related information is available in

the command. Therefore, possible candidates for the Ref1 should be inside the

kitchen (‘R 001’). There are two tables in the kitchen (‘P 001’ and ‘P 003’), which

were the candidates for the Ref1, and the robot had to choose the correct table by

interpreting the relative uncertain information associated with the Ref1. In this

case, the Ref1 was associated with uncertain information related to the relative

Table 7.2: Issued commands and the responses of the robot
Instruction Response of the robot

1 “move near to the small table in the kitchen” movement from A to B
2 “move near to the sink” movement from B to C
3 “move far towards the table left of the sink” movement from C to D

4
“move near to the cupboard
close to the sink”

Voice response:
“there is no cupboard
close to the sink”

5
“move near to the table in
the corridor”

voice response:
“There are two tables in
there. Please clarify”

6 “move near to the table close to the vase” movement from D to E

2Available in the attached CD and www.youtube.com/watch?v=GIie6Zohelk
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Figure 7.8: Positions of the robot recorded during the experiment 1. The map is
drawn to a scale. However, the markers do not reflect the size of the robot.

size of the object (“small” is the uncertain term that distinguish the correct Ref1

from other table). Based on the developed algorithm for interpreting the object

size related relative referencing uncertain information (i.e. Algorithm 1), the

robot selected ‘P 003’ as the Ref1 by performing a DA-I action. The RoomC (i.e.

corridor) and the RoomRef1 (i.e. kitchen) were not the same. Therefore, first the

robot had to perform an action of RA-IV to move to the kitchen and then it had

to perform an action of RA-III in order to move near to the selected Ref1 (i.e.

‘P 003’). The quantitative value of the uncertain term “near” was interpreted

by the sub-module 2 of the UIUM. The interpreted quantitative value for the

term “near” was 65 cm and the robot moved to position ‘B’ where the distance
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between the robot and the ‘P 003’ is 65 cm.

Instruction 2: Then, the instruction 2, “move near to the sink” was issued. In

this command, the Ref1 can be identified directly since uncertain information is

not associated with the object of interest. Then the robot moved to position ‘C’

by performing a RA-III action.

Instruction 3: Then the instruction 3, “move far towards the table left of the

sink” was issued. Two references are included in the command (i.e, Ref1 and

Ref2). Hence, first the robot performed a DA-II in order to identify the Ref2.

Uncertain information is not associated with the Ref2 and hence the Ref2 can

be directly identified. After identifying the Ref2, the relative direction related

uncertain information associated with the Ref1 was interpreted by performing a

DA-I. The Ref2 in this case was an object with a useful side and hence it has

fixed directions. Therefore, the absolute front of the Ref1 was considered along

with the front of the sink. This information had been retrieved from the context

layer of the REM. The chosen Ref1 in this case was ‘P 001’. After the Ref1 was

decided, the robot moved to ‘D’ by performing a RA-II since the command was

a motional command.

Instruction 4: Then the instruction 4 was issued to the robot. In here, the Ref1

is a cupboard that is close to the sink. However, after interpreting the relative

uncertainties in command there was no possible candidate for this according to

the arrangement of the environment. Therefore, the robot responded with a voice

response in order to notify it to the user by utilizing RA-V.

Instruction 5: In the next command, the robot was instructed to move near

to the table in the corridor. According to the environment, there are two tables

inside the corridor (‘P 004’ and ‘P 007’). Since no information is included in the

command in order to distinguish the correct Ref1 from possible candidates, the

robot responded with a voice response that notifies it to the user.

Instruction 6: Finally, the robot was commanded to move near to the table
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close to the vase. First, the Ref2 in the command was identified as ‘P 008’ and

subsequently the Ref1 was identified as ‘P 004’ by utilizing the Algorithm 2.

Then the robot moved to position ‘E’ in order to fulfill the requirement of the

instruction.

7.4.3 Comparison between the Results of the Human Study and the

Proposed System

As the experiment 2, a human study has been conducted with 15 healthy

human participants (age: M = 24 and SD = 3.2 years) in order to validate

the performance of the proposed system. Before proceeding to the experiment,

the participants were familiarized with the environment in order to build up

the awareness about the experimental environment setting. During the human

survey, the persons were asked to be on the positions marked on the floor of the

environment. The persons were taken one by one to the study and each person

was issued the set of commands given in Table 7.3 after the person settled on the

given initial positions. The initial positions and the orientations of the human

performers are marked on the map shown in Fig. 7.9 with corresponding command

numbers. During the experiment, the person who issues the command was not in

the sight of the performer except case number 11 and 13. In the case 11 and 13,

the commander was directly in front of the performer. A snapshot taken when

issuing the command number 11 to a performer by the commander is shown in

Fig. 7.7 (b). The selected Ref1 for a particular command was identified based on

the action of the performer. Then, the same set of commands were issued to the

robot after placing it on the corresponding locations used for the human survey

and the selected Ref1 in each case has been identified. The selected Ref1 in each

case is given in the Table 7.3.

Relative size interpretation: Relative size related uncertain information is as-

sociated in commands 1, 3, 5, 9 and 14. In command no 1, the performer has to

select the correct table from the available two tables (P 001 and P 003) in the
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Figure 7.9: Initial and final positions of the robot and the initial positions of the
performers during the experiment are marked on the map with the corresponding
command numbers. It should be noted that the markers do not reflect the size
of the robot or the human performers.

kitchen since the room information is given in the command. ‘P 003’ is relative

smaller than the ‘P 001’ hence all the human performers and the robot have se-

lected ‘P 003’ as the Ref1 in the command. Command 14 is also similar to this.

However, in that case, ‘P 005’ is the only candidate and all the human performers

and the robot has selected it, as the Ref1. Room information is not available in

command 3, 5 and 9. In command 5, two candidates for the Ref1 are available

inside the current room of the performers (i.e. ‘P 004’ and ‘P 007’). Hence, the

performers have selected ‘P 004’, which is the relatively larger one. The robot has
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Table 7.3: Comparison between the Ref1 chosen by the human partici-
pants and the robot

command
Chosen Ref1

1

Humans Robot
1 move near to the small table in the kitchen P 003 P 003
2 move near to the table close to the cupboard P 005 P 005

3 move near to the large table
P 004 - 73%
P 005 - 27%

P 004

4 move near to the table left of the sink
P 001 - 93%
P 003 - 7%

P 001

5 move near to the large table P 004 P 004
6 move little towards the table in front of the sink P 003 P 003
7 move near to the table close to the vase P 004 P 004
8 move little towards the table on the right P 003 P 003
9 move near to the large cupboard P 006 P 006

10 move near to the cupboard close to the sink N/A N/A
11 move near to the table on the left P 001 P 001
12 move little towards the table on the front P 007 P 007

13 move little towards the table on the left
P 004 - 60%
P 007 - 20%
Rqst. - 20%

P 004

14 move near to the large table in the office P 005 P 005
15 move near to the sink in corridor N/A N/A
1 It should be noted that in the cases where the percentage values are not given the percentage is
100%. N/A means reply of non availability of an object to be selected as Ref1. Rqst. means request
of clarification.

also selected ‘P 004’. In command 3, the performers were inside the ‘R 003’ when

the command was issued. In this case, only one possible candidate was available

inside the current room. ‘P 004’ has been selected by 73% of human performers

and ‘P 004’ is not within ‘R 003’. Therefore, this shows that when there is only

one option for the section inside the current room the humans tends to search

entire house instead of selecting it from the current room. ‘P 005’ has also been

selected by 27% human performers. However, the proposed system has selected

‘P 004’ since the algorithm has been designed to follow only the dominant human

behavior.

Relative distance interpretation: Relative distance related uncertain informa-

tion is available in commands 2, 7 and 10. All the human performers and the

robot have selected ‘P 005’ and ‘P 004’ in command 2 and 7 respectively since
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those are the closest candidates from the Ref2 in each command. In command 10,

all the human performers and the robot have identified that there is no cupboard

close to the sink.

Relative direction interpretation: Relative direction related uncertain informa-

tion is included in command 4, 6, 8, 11, 12 and 13. In command 4, the performers

were asked to move near to the table left of the sink. ‘P 001’ has been selected

as the Ref1 by 93% of human performers. In here, the Ref2 is a sink and it is an

object with a useful side. The proposed concept has selected the same object by

defining the orientation frame based on the contextual knowledge of the objects.

One person has selected ‘P 003’ in this case and according to that performer,

the selection was done by considering the point of view from the sink. However,

the possibility of such selection is very low according to the obtained results of

the human study. The command 6 also verifies that the useful side of the sink

defines the orientation frame. In command 8 and 12, the human performers have

decided the orientation frame with respect to them when there is no Ref2 in the

command. In command 11, the commander was in front of the human performers

as shown in Fig. 7.7(b). However, the performers have decided the orientation

frame based on own orientation in this situation too. The commander was in

front of the performer in command 13 also. In this case, ‘P 004’ has been se-

lected by 60% of the performers by considering own orientation frame, ‘P 007’

has been selected by 20% and 20% have requested clarifications from the com-

mander. The orientation frame of the performer is dominant here too. In this

case, ‘P 004’ is not within the sight of the human performers that will be the

reason for requesting clarification or deciding the orientation frame based on the

commanders point of view. Furthermore, information that reveals the intention

of the commander may be conveyed through nonverbal communication such as

gestures and body movements of the commander. However, the proposed system

has been designed in a way that it can produce only the most likelihood results in

these situations. It would be interesting for future work to consider the informa-

tion conveyed through nonverbal communication for enhancing the interpretation

152



of relative references.

7.5 Summary

In this chapter, a method has been introduced to interpret uncertain infor-

mation associated with relative references. This enables the users to issue voice

instructions that include relative references related uncertain information in order

to navigate a mobile service robot inside heterogeneous domestic environments.

A module called Relative Uncertainty Interpreter (RUI) has been deployed into

the UIUM to evaluate the relative references related uncertain information. The

RUI has been designed in such a way that it can replicate the natural tendencies

of humans to a greater extent.

The main improvement of the concept proposed in this chapter over the exist-

ing approach is the system is capable of interpreting user instruction that include

uncertain information associated with the relative references in more human like

manner. Furthermore, this facilitates the users to issue instructions that involve

multiple uncertain terms in a single command. Hence, command understanding

ability of the robot has been improved and subsequently human friendliness of

the robot has been improved.
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Chapter 8

IMPROVING ROBOT’S PERCEPTION OF UNCERTAIN

INFORMATION BY EVALUATING INFLUENTIAL GES-

TURE NOTIONS

one of main downside of the existing approaches for dealing with uncertain in-

formation in language instructions is that the existing approaches are only capable

of interacting with the user through voice instructions. Therefore, those systems

are not capable of evaluating the information conveyed through nonverbal instruc-

tions for improving the understanding of language instructions similar to humans.

According to [46, 92] the understanding of voice instructions could be improved

by fusing the information conveyed from gestures with the language instructions.

However, the proposed systems are not capable of quantifying distance-related

uncertain information in user instructions. Hence, the proposed methods cannot

be adopted in order to improve the quantification ability of uncertain informa-

tion in voice instructions. Therefore, this chapter investigates a method to adapt

the perception of uncertain information in navigational commands such as “little”

and “far” based on the arrangement of the environment and the notions conveyed

through the pointing gestures of the user.
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8.1 Motivation and Insight behind the Fusing of Notions Symbolized

from the Gestures

The example situation shown in Fig. 8.1 is used to explain the main downside

of the work proposed in chapter 4. The adaptation of the perception of distance-

related uncertain information in the system proposed in chapter 4 is entirely

based on the environmental factors such as size of the room, free space and

the arrangement of the environment. The arrangement of the environment is

perceived by the robot though the perceptive distance, D (where D = Dr, Dr is

the distance to the nearest obstacles in the intended moving direction and it is

annotated as Dr in Fig. 8.1). In this scenario, if the robot is commanded; “move

little forward”, “move medium forward”, and “move far forward” it will move

to location ‘1’, ‘2’, and ‘3’ respectively. However, if the user wants to navigate

the robot to an intermediate location other than these three locations (e.g., in

between robot and ‘1’ and in between ‘1’ and ‘2’), it is not possible to navigate the

robot using a single instruction since the user cannot influence the interpretation

done by the robot. The robot would have to be issued a series of instructions

(e.g., first “move medium forward” then “move little backward”...) in order to

navigate to such a location; the user cannot alter the movement as required

since the entire interpretation process running on the robot considers only the

environment parameters that are fixed for a particular situation. Therefore, this

drawback has to be cleared in order to increase the effectiveness of quantification

of uncertain descriptors by the robot.

The notions conveyed through the pointing gestures of the user can be used

in order to enhance the understanding of voice instructions by the robot [28,46].

However, the exact meaning of the notions conveyed from gestures is highly im-

precise and solely the notions conveyed from the gestures are not sufficient for

identifying an exact location, position or object [28, 46]. Moreover, the notions

conveyed from the gestures are useful for improving the understanding of lan-
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guage instructions. Therefore, the influential notions conveyed from the pointing

gestures accompanied with the voice instructions are fused to the inferencing pro-

cess of the uncertain spatial descriptors. This will contribute towards resolving

the aforementioned drawback. The example situations shown in Fig. 8.2 are used

in order to explain the insight of the proposed fusing method. In this example

scenario, the person ‘A’ issues the command, “move little forward” to the person

‘B’ and the person ‘B’ has to quantify the meaning of the term “little”. The lan-

guage instruction may be accompanied by gesture instructions as shown in here.

If the locations pointed by the hand gesture in the cases are not the same, the

person ‘B’ tends to differently quantify the distance meant by “little” due to the

influence caused by the gesture. According to [93], the humans tend to shift the

perception of goal position towards the area indicated by the pointing gesture.

Moreover, when the gesture is pointed towards a location further away from the

person in the intended moving direction, it influences the person to move more

towards that direction and vice versa. Therefore, the person ‘B’ will move more

123

Robot

𝐷𝑟

𝐷𝑟

2
1

3

Figure 8.1: This illustrates an example scenario where the robot could be nav-
igated with the user instructions. The robot will travel to location ‘1’, ‘2’ and
‘3’ for commands “move little forward”, “move medium forward” and “move far
forward” respectively. It should be noted that the locations are annotated for the
purpose of explanation and they do not reflect the exact positions. The perceptive
distance, Dr is marked assuming the intended moving direction as forward.
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distance in the case shown in Fig. 8.2(a) than the case shown in Fig. 8.2(b), even

though the voice instructions and the environmental setting are the same. In case

shown in Fig. 8.2(c), the person will still move towards the forward direction even

though the gesture indicates a location in the back. However, the distance moved

will be lesser. Furthermore, the position indicated by the gestures may be on a

location where the navigation is not possible towards it (location is obstructed

by an object or a wall). Therefore, the location given by the gesture cannot be

solely used as the location meant by the person ‘A’ (experimental results are also

provided in section 8.4 in support of this). Therefore, the notions conveyed from

the pointing gestures are fused with the language instructions using a fuzzy infer-

ence system since fuzzy logic is infallible to such uncertainties and the approach

proposed in chapter 4 is implemented with fuzzy logic. The fuzzy inference sys-

tem has been designed in such a way that the system is capable of adapting the

perception based on the environment and the influential notions conveyed from

the gestures. This will clear up the aforementioned draw back of the system pro-

posed in chapter 4 since this enables the user to influence the meaning of “little”,

“medium” and “far” by modifying the perception through gestures.

In order to realize this a fuzzy inference system based module called Voice and

Gesture has been introduced into the Distance Interpreter (DisI) of the Intelligent

System for Understanding Uncertain Information (ISUUI). This module is used

when a valid gesture is identified by the system along with a voice instruction.

When only the voice instructions are available, then the Voice module is used for

the interpretation of uncertain information. The Voice module is almost similar

to the submodule 1 of the system explained in chapter 4. The structure of the

ISUUI with these two modules is shwon in Fig. 8.3.
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Figure 8.2: (a), (b) and (c) show three situations, where the notions convoyed
from the pointing gestures of person ‘A’ cause different influences to the distance
that will be moved by the person ‘B’. The elbow-wrist pointing vector is annotated
in dashed-line arrow.
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Figure 8.3: The structure of the ISUUI with the proposed Voice and Gesture
module

8.2 Pointing-Gesture Evaluation

Skeletal information that can be retrieved from the Kinect motion sensor at-

tached to the robot is used in order to identify the pointing gesture and to estimate

the pointing position. The elbow-wrist vector is considered as the pointing vector

(similar to the work in [46]) and it is extended until it crosses the floor plane. The

point where the floor plane is crossed by the elbow-wrist vector is considered as

the point that is referred by the user through the gesture (This point is calculated

as explained in [93]). The displacement to the point along the intended moving

direction (i.e. the direction indicated by the voice instruction) is calculated as

Dg. This is illustrated on Fig. 8.4(a) and Fig. 8.4(b) for two example situations,

where the direction of the movement is forward and left respectively. In order

to consider a hand posture of the user as a pointing gesture, the joint positions

should not be within the ranges defined for the rest positions and the elbow-wrist

vector should point towards the floor plane. Furthermore, the pointing direction

should be stable and the variation should be less than an experimentally decided

threshold in order to consider it as a valid pointing gesture (The method used
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bit to the  left 

𝐷𝑔

𝐷𝑔
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Figure 8.4: This illustrates the ways of obtaining of the parameter, Dg based
on the elbow-wrist pointing vector. In (a) and (b), the explanation is done
considering the indented moving direction as forward and left respectively. The
same criterion is applied for other directions. The elbow-wrist pointing vector is
annotated in dashed-lined arrow. It should be noted that the point referred by
the gesture may not be in the intended moving path and Dg is the projection of
the point on the intended moving direction.

in [93] is adopted for this). The capturing of Kinect sensor is triggered with

the voice instruction and 10 consecutive frames are analyzed in order to extract

the pointing gesture. It should be noted that the system has been designed and

developed for single user situations and the system is only capable of detecting

the gestures of a single person. If there are multiple people in the field of view of

the Kinect, the system considers only the closest person. In this stage, it would

be fine to consider only single user situations since the core contribution of the

work is to addresses issues in interpreting navigation commands with uncertain

information (interpreting phrases such as “move a little bit to the right” and

“go far left”) by incorporating user gestures and spatial information of the envi-

ronment. The situations with multi-users are not considered in the scope of the

work presented in thesis and methods for handling such situations are proposed

for future work.
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8.3 Voice and Gesture Module

The voice and gesture module has been introduced in order to quantify the

meaning of the uncertain spatial descriptor in a particular user instruction based

on the environmental setting and the influential notions conveyed from the point-

ing gestures. As similar to the module for voice only instructions, the uncertain

spatial descriptor in a particular command and the free space of the rooms are

also taken as inputs to this module. The input membership functions for those

two parameters are almost similar to the input membership functions of the voice

module. In addition to that, this inference system has another input that accounts

for adapting the perception based on the influential notions conveyed from the

gestures. Dg obtained from the pointing gesture is considered as this input and

the input membership function for Dg is modified according to the perceptive

distance (D). The universe of discourse of this membership function runs from

negative infinity to the positive infinity since Dg probably goes beyond D or the

origin. The output of the system is the quantified distance of the uncertain spatial

descriptor in a particular user instruction. The output membership function is

modified according to the perceptive distance, D as similar to the voice module.

The input and output membership functions of the voice and gesture module are

given in Fig. 8.5. The rule base has been defined in such a way that the system

can replicate the natural behavior of humans explained in section 8.1. The rule

base of the fuzzy inference system is given in Table 8.1.

Table 8.1: Rule Base of the Fuzzy Module: Voice and Gesture
Input
Memberships

Uncertain Descriptor
Little Medium Far

Free Space S M L S M L S M L

Dg

S VVS VS S S SS M M SL L
M VS S SS SS M SL SL L VL
L S SS M M SL L L VL VVL
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Figure 8.5: The input and output membership functions of the fuzzy inference
system used in voice and gesture module are shown here. The membership func-
tions (a), (b) and (c) are the inputs of voice and gesture module. It should be
noted that the fuzzy set L and S of the membership function for Dg runs to pos-
itive and negative infinity respectively. (e) is the output membership function of
the voice and gesture module.

8.4 Results and Discussion

8.4.1 Experimental setup

The proposed concept has been implemented on MIRob platform and exper-

iments have been carried out in an artificially created domestic environment in
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order to validate the performance of the proposed concept in adapting the per-

ception based on the environment and the influential notion symbolized from the

pointing gestures of the user. Due attention has been paid to the recommendation

given in [85] for designing and planning human studies for evaluating the human-

robot interaction. The MIRob platform in few experimental scenarios are shown

in Fig. 8.6. The arrangement of the environment used for the experiments can be

visualized from the map shown in Fig. 8.7. Mainly, the experiments have been

carried out in order to assess the performance improvement of the system due to

the ability of adapting the perception based on the influential notions symbolized

from the pointing gestures of the user. Therefore, the behavior of the proposed

system (i.e., the system with the ability to adapt the perception based on influ-

ential notions symbolized from the pointing gestures) has been analyzed against

the behavior of the system without the multimodal interaction ability (i.e., the

system discussed in chapter 4). The evaluation has been carried out with partic-

ipation of ten healthy persons who are in between 23-27 years (M = 25.4 years

and SD = 1.71 years).

The participants were asked to navigate the robot as much as closer to a given

target distance/position using only a one-step of instruction. At the start of the

each operation, the target distance was clearly shown to the participants by the

organizers of the experiment. Highly visible markers were not placed on the floor

since they could have distracted users. Furthermore, the users could have tended

to aim their hand gestures at the target, which would have detracted from the

spontaneity. The participants were also instructed to be within the field of view of

the robot when issuing the instructions to the robot. The same task was repeated

for the robot with the proposed voice and gesture module (i.e., the system pro-

posed in this chapter) and the system without voice and gesture module (i.e., the

system proposed in chapter 4) by each user in each experimental layout. Five lay-

out arrangements were considered for the evaluation process and each participant

was given the chance to operate the robot in all the five experimental layouts.

The behavior of the two systems and the internal parameters of the systems have
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(a)
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Third-person view View from Kinect

Figure 8.6: This shows the third person view and the view from Kinect sensor
during the experimental cases given in Table 8.2. (a): case A, (b): case B, (c):
case C, (d): case D and (e): case E
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been recorded in each case. The sample results obtained from the experiments

are given in Table 8.2. The initial and final locations of the robot and target

positions in the corresponding sample cases given in Table 8.2 are marked on the

map in Fig. 8.7. The corresponding third person view of the sample experimental

cases along with the view of the Kinect are shown in Fig. 8.6.

In order to evaluate the performance of the two systems, the error between

the given target distance and the quantified distance output of the two systems

has been calculated. Absolute value of the errors has been considered for the

analysis since a positive and a negative error may nullify the total error. The

error of the output of the voice module (named as ev) and the voice and gesture

module (named as evg) are given in (8.1) and (8.2). where, outv and outvg are the

quantified output of the voice module and voice and gesture module respectively.

Dt is the target distance. Furthermore, the distance indicated by the pointing

gesture (i.e., Dg) is also compared against the target distance by evaluating the

error between those two (named as eg) as given in (8.3) for analyzing the possi-

bility of using solely the distance referred from the gesture. The errors calculated

for each of the sample experimental cases are also given in Table 8.2. An ex-

planatory video of the experiment is included in the supplementary multimedia

attachment 51.

ev = |outv −Dt| (8.1)

evg = |outvg −Dt| (8.2)

eg = |Dg −Dt| (8.3)

1Available in the attached CD and www.youtube.com/watch?v=dUbSdOD24SQ
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Table 8.2: Sample Results of the Experiment

case Layout
Room
size
(m2)

Free
space
(m2)

Dt

(cm)
System with only voice module System with voice and gesture module

Vocal command
Dr

(cm)
outv
(cm)

Destination
position

ev
(cm)

Vocal command
Dr

(cm)
Dg

(cm)
outvg
(cm)

Destination
position

eg
(cm)

evg
(cm)

A 1 15.08 12.95 40 move little left 204 86 Av 46 move little left 203 20 51 Avg 20 11
B 2 15.08 12.95 150 move medium forward 278 186 Bv 36 move medium forward 278 122 156 Bvg 29 6
C 3 15.08 12.95 120 move far backward 129 105 Cv 15 move far backward 131 324 116 Cvg 204 4
D 4 18.85 16.33 100 move little forward 429 182 Dv 82 move little forward 429 -206 91 Dvg 306 9
E 5 11.50 9.27 150 move medium right 288 187 Ev 37 move medium right 277 231 179 Evg 81 29

In the execution of the system, the distance values are calculated in millimeters and the data given in here are rounded off to 1 cm. The parameters,
Room size, free space and Dt are common for both the systems.
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Figure 8.7: The initial and final positions of the robot during the experimental
cases given in Table 8.2 are marked on the map with the corresponding indexes
for both the systems. The map is drawn to a scale. However, it should be noted
that the markers do not represent the actual size of the robot or the users.

8.4.2 Analysis of the Performance and Behaviors

Case A represents the user 1 in layout arrangement 1. The robot was initially

placed on the location ‘AI ’ and the target distance (Dt) was 40 cm away from

the left side of the robot (marked as ‘AT ’). Then the user was asked to navigate

the robot to a position very much closer to the target distance. In the first case,

the interaction ability of the robot was limited to the voice interaction and it

cannot adapt the perception based on the influential notions conveyed through

the gestures. The user issued the command “move little left” in order to move it
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closer to the target location and the robot moved to location ‘Av’ by interpreting

86 cm as the distance meant by “little” based on the current environment setting

(i.e., room size = 15.08 m2, free space = 12.95 m2 and perceptive distance, D =

204 cm). The error between the target distance and the actual moment in this

case (i.e., ev) was 46 cm. Then, the robot was again placed at the same initial

position (i.e., ‘AI ’) with the activated gesture and voice module of the DisI and

again the user was asked to move the robot to the target. In this instance, the user

issued the same voice instruction as similar to the previous case and a valid hand

gesture was identified by the Gesture Evaluation Module (GEM). The distance

meant by the gesture (Dg) was 20 cm and the robot moved to location ‘Avg’ by

interpreting the quantitative meaning as 51 cm based on the environment and

the influential notions conveyed from the gesture (i.e., room size = 15.08 m2, free

space = 12.95 m2, D = 203 cm and Dg = 20 cm). The error between the distance

interpreted by the robot and the target distance in this situation (i.e., evg) is

11 cm. Therefore, the system with the voice and gesture has produced a less error

compared to the system with only voice interaction capabilities. Furthermore, the

error between the target and the distance directly indicated by the gesture (i.e.,

eg) was 20 cm that is higher than the distance quantified by the system based on

the voice and the gesture. The third person view and the image captured from

Kinect motion sensor in this instance are shown in Fig. 8.6(a).

The user 2 on layout arrangement 2 is given as case B. In this situation, the

initial position of the robot was B1 and the target position was 150 cm away from

the front of the robot (marked as ‘BI ’). In the situation, where only the voice

module of the DisI was being activated, the user commanded “move medium

forward” to the robot. The voice module of the DisI quantified the distance

meant by the user as 186 cm (outv) based on the environmental parameters (i.e.

room size = 15.08 m2, free space = 12.95 m2 and Dr = 278 cm) and moved

to the location ‘Bv’ which resulted 36 cm for ev. Then, the robot was again

placed at the same initial position (i.e. ‘BI ’) with the activated voice and gesture

module of the DisI. This time, the user again issued the same voice instruction
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similar to the previous situation. However, the distance moved by the robot was

156 cm in this situation since the system was capable of adapting the perception

of uncertain spatial descriptors based on the influential notion conveyed from the

gesture. This movement resulted an error of 6 cm with the target distance, which

was less than the system with voice only case. Furthermore, the distance meant

by the gesture (i.e., Dg) was 122 cm and if it had been alone considered for the

movement, it would have resulted an error of 29 cm that was quite higher than

the voice and gesture case but slightly less than the voice only case.

The user 3 on layout arrangement 3 is given as case C. In this layout arrange-

ment, the initial position of the robot was ‘CI ’ and the target position ‘CT ’ was

120 cm away from the backside of the robot. The system with only voice module

case, the robot was commanded, “move far backward” by the user and it moved

to location ‘Cv’ by resulting a movement distance of 105 cm. The error between

the target and the moved distance (in here ev) was 15 cm. The system with the

activated voice and gesture module case, the robot was commanded with the same

voice instructions with a gesture that influenced a higher movement by the user.

The distance indicated by the gesture (i.e. Dg) was 324 cm which was greater

than the perceptive distance (D = 131 cm). Moreover, the position meant by the

gesture was a location away from the obstructed wall and table. Furthermore, the

error between the target distance and the distance indicated solely by the gesture

(i.e., eg) was 204 cm. Therefore, if solely the gesture had been considered for the

movement, it would have resulted a movement that cannot be achieved due to the

possible obstructions. Furthermore, it would create a huge error if the movement

were possible. However, the distance quantified by the system was 116 cm since

it adapts the perception based on both environment setting and the influential

notions conveyed from the gesture. Therefore, in this situation the performance

of the system with voice and gesture module was par above the voice only case

and gesture only case (It should be noted that the system with the gesture only

case was not separately considered and the gesture notions evaluated in gesture

and voice situation was used for the analysis).
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Case D represents the situation where the user 4 operated the robot on layout

arrangement 4. In this layout arrangement, the initial position of the robot was

‘DI ’ and the target location was ‘DT ’, which is 100 cm away from the front of

the robot. In the situation where only the voice module was being activated, the

robot was commanded “move little forward” by the user and robot moved to the

location ‘Dv’ by quantifying the meaning of “little” as 182 cm. In this situation,

the error of the movement was 82 cm, which is quite high. In the situation where

the voice and gesture module was also being activated, the distance moved by

the robot was 91 cm and the error with the target distance was 9 cm, which is

very small with respect to the error in the previous situation (i.e., system with

only the voice module). The position indicated by the gesture was in behind

the robot (Hence, Dg got a negative value. Dg = -206 cm) even though it was

commanded to move towards front. This situation was similar to the situation

described in section 8.1 using Fig. 8.2(c). Therefore, if solely the notion conveyed

from the gesture accompanied with the voice instruction had been used to decide

the goal position, the robot would have moved to a location behind the robot

which is completely erroneous. Moreover, solely the notions conveyed from the

gesture accompanied with the voice instruction are not suitable for deciding the

destination for the movement.

The user 5 in the layout arrangement 5 is considered as the case E. In this

layout arrangement, the initial position of the robot was ‘EI ’ and the target

position was ‘ET ’, which is 150 cm away from the right side of the robot. The

robot moved 187 cm in the situation where only the voice module of the DisI was

being activated and the error between the target and the movement was 37 cm. In

the second phase (i.e. with both the modules of the USDI were being activated),

the distance moved by the robot was 179 cm and the error was 29 cm which is

less than the earlier situation. The distance meant by the gesture, (i.e., Dg) was

231 cm and if the gesture alone had been considered for the movement, it would

have caused an error of 81 cm, which is quite high.
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Similarly, all the users were given the chance to operate the robot in all the

layout arrangement and the data were gathered. The mean values of the calcu-

lated error values (i.e. means of ev, eg and evg) are plotted on the graph shown

in Fig. 8.8 along with the error bars, for each layout arrangement (i.e. for layout

arrangement 1 to 5).

In all the layouts except the layout 1, the error between the distance indicated

by the gesture and the target (i.e., eg) is the highest. It should be noted that

eg was calculated based on the position meant by the gesture accompanied with

the voice instructions and the users were not asked to navigate the robot using

solely gesture instructions since it may withdraw from the natural behavior. In

layout number 2, the arrangement of the user and the target position may have

influenced in order to have a less error for the distance meant by the gesture since

the users may easily aim their hand towards the target position by controlling

more degree of freedoms of the arm. However, the exact reasons for variation of

the position meant by gestures have not been investigated in this research since

the contribution of the work is to fuse the influential notions conveyed from the

gestures to adapt the perception of uncertain spatial descriptors related to the

navigation command for improved quantification of uncertain descriptors in voice

instructions. As explained in cases D and C above, if solely the position indicated

by the gesture had been used to decide the goal the robot would have moved to
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Figure 8.8: This visualizes the mean values of the error values (i.e. ev: Voice,
eg: Gesture and evg: Voice and Gesture) for the considered 5 layout arrangements
by all the 10 users. The error bars show the standard error.
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a completely wrong position or the goal position would be a non-achievable one.

Furthermore, as seen in the graph, eg has a high variance compared to others

and this implies that the distance indicated by the gesture has a high variation.

Therefore, solely the position indicated by a gesture is not feasible for deciding

the goal position when the pointing gesture is conveyed with a voice command.

In all the layout arrangements, the system with the voice and gesture has the

lowest error in each layout. The significance of the results have been analyzed

using multiple comparison tests for one-way ANOVA test. According to the test

statistics, the system with the activated voice and gesture module of the DisI has

a statistically significantly (P<0.05) lower error than the system with only the

voice module of the DisI in all the five layout arrangements. The error reduction

effected to the system due to the addition of the voice and gesture module is

remarkable since the Cohen’s d value greater than 0.8 can be seen (Cohen’d

value greater than 0.8 implies a large effect [88]). Furthermore, the powers of

the statistical tests are greater than 0.8 and it implies that the experimental

results genuinely validate that evg is less than ev (according to Cohen’s four-to-

one weighting of beta-to-alpha risk standard [88]). Based on these observations,

it can be concluded that the system with activated voice and gesture module

outperformed the system with only the voice module in quantifying the uncertain

spatial descriptors. Moreover, fusing of the notions conveyed from the gesture

for adapting the perception has improved the quantification ability of uncertain

spatial descriptors related to navigation instructions such as “little” and “far” by

the robot.

8.5 Summary

A method has been proposed in this chapter to adapt the perception of un-

certain spatial descriptors related to navigation instructions such as “little” and

“far” based on the current environment setting and the influential notions con-
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veyed from the pointing gestures accompanied with the voice instructions.

The voice and gesture sub-module has been introduced to the DisI in order to

quantify the meaning of uncertain spatial descriptors based on the environment

and the influential notions conveyed from the pointing gestures accompanied with

the voice instructions. This module has been implemented with fuzzy logic based

on the natural tendencies of humans. The quantified output of the fuzzy infer-

ence system varies with the degree of influence conveyed from the pointing gesture

in a particular environment setting. That is the main enhancement of the pro-

posed concept over the existing approaches for quantifying the distance-related

uncertain information in navigation commands.

According to the obtained experimental results, the proposed concept is capa-

ble of remarkably reducing the error of quantifying the uncertain spatial descrip-

tors than the existing approaches. Moreover, the quantification effectiveness of

uncertain spatial descriptors by the robot has been improved.
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Chapter 9

RESOLVING AMBIGUITIES IN NAVIGATION INSTRUC-

TION BASED ON MOTION INTENTION SWITCHING

BY IDENTIFYING THE ACTUAL INTENTION OF THE

USER

9.1 Rationale behind the Evaluation of Gestures Accompanied with

User Instructions for Resolving the Ambiguities Arisen due to the

Spatial Arrangement

The two example scenarios given in Fig. 9.1 are considered for investigating

the limitations of the system explained in chapter 4. In scenario (a), the user

issues the command, “move far forward”. In this situation the maximum quan-

tified output of the system explained in chapter 4 will be less than Dr since the

perceptive distance is limited to Dr. Therefore, the robot will move to position

‘B’. However, there are situations where the intention of the user is to move the

robot to a position similar to location ‘A’ since the user expects that the robot

can see beyond the obstacle. In situation (b), the user issues the command,

“move right”. In this situation the quantified output of the system proposed in

chapter 4 will result in a movement of the robot to location ‘B’. However, there

are situations where the intention of the user is to move the robot to a location

similar to the location ‘A’ since the user expects that the robot can consider the

nearby obstruction for adapting the perception. Therefore, the system proposed

in chapter 4 is not capable of understanding the intention of the user effectively
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Figure 9.1: (a) and (b) show two example situations that exhibit the limitations of
the work proposed in chapter 4. The position requested by the user may be either
positions ‘A’ or ‘B’. However, the existing system considers only position ‘B’. It
should be noted that the annotated positions and paths are not exactly those
generated from the systems and these are marked for the sake of explanation.

to resolve this ambiguity arisen due to the spatial arrangement.

As similar to the work proposed in chapter 8, the information conveyed from

pointing gestures is analyzed in order to identify the intention of the user ef-

fectively. The two example scenarios given in Fig. 9.2 are considered for the

explanation of the gesture-based user intention identification process that can be

used in order to resolve the above-mentioned ambiguity. In case (a), the user is

pointing to a location that is well beyond the default perceptive distance (i.e.,

Dr). Therefore, if the gesture is being pointed towards a location well beyond the

default perceptive distance it can be concluded that the intention of the user is

to navigate the robot beyond Dr (i.e., location ‘A’ instead of ‘B’ in Fig. 9.1(a)).

Similarly, in case (b), if the user is pointing to a location that is well within the

default perceptive distance (Dr), then it can be concluded that the intention of

the user is to move the robot to an alternative position ‘A’ instead of position

‘B’ in Fig. 9.1(b).

The Motion Intention Switcher (MIS) is proposed in this chapter to resolve the

above-mentioned ambiguity in navigation instructions. Based on the intention of
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Figure 9.2: (a) and (b) show two example scenarios that explain the possibility of
using pointing gestures in order to identify the intention of the user for switching
the perceptive distance. It should be noted that the annotated positions, paths
and vectors are not exactly those generated from the system and these are marked
for the sake of explanation.

the user identified from the gesture information, the required actions for fulfilling a

command may be switched by the MIS. Subsequently, the parameters required for

the quantification of the uncertain information by the submodule 1 of the Distance

Interpreter (DisI) (see chapter 4) will be modified by the MIS, if alterations are

required. The structure of the Intelligent System for Understanding Uncertain

Information (ISUUI) is depicted in Fig. 9.3.

Intelligent System for Understanding

Uncertain Information

Distance Interpreter

Module 1 

Uncertain Information 

Understanding
Motion Intention 

Switcher

Figure 9.3: The structure of the ISUUI with the proposed MIS.
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9.2 Motion Intention Switcher (MIS)

The desired position for the movement cannot be directly taken as the posi-

tion referred from the gesture since the point referred from the gesture is not very

accurate and typically it would not be the exact location that the user wants to

navigate the robot (see chapter 8). Moreover, the gesture instructions are often

useful in enhancing the meaning of vocal instructions in humanrobot interac-

tion [28,46]. Therefore, it is only used for altering the perceptive distance (D) to

an alternative perceptive distance (indicated as Da in Fig. 9.2) from the default

(i.e., Dr) by identifying the actual intention of the user. The assigning of alter-

native perceptive distance (Da) for the perceptive distance (D) is done by MIS

if required. The decision as to whether the perceptive distance has to be altered

to an alternative (Da) is decided based on a rule-based approach that evaluates

Dg and Dr.

The procedure of assigning the perceptive distance D, is given in Algorithm 3.

δmax and δmin are scalar constants used in order to avoid the false triggering of

the intention switching due to the less accurate Dg. The alternative perceptive

distance, Da, has two cases where the Da > Dr and Da < Dr. If Da > Dr,

then it is considered as Da,max and if Da < Dr, then it is considered as Da,min.

Moreover, the MIS shifts the perception of robot between the alternative and

default hypotheses based on the defined thresholds that depend on the pointing

gesture issued by the user and the layout of the surrounding environment.

9.2.1 Estimation of Alternative Perceptive Distance (Da)

The estimation of alternative perceptive distance, Da is illustrated in Fig. 9.4

considering the two possible cases where Dg > δmaxDr and Dg < δminDr. A field

angle of α in the intended moving direction is considered for estimating the Da.

The field angle, α, is considered as 30◦ since according to chapter 4, the objects in
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Algorithm 3 Assigning perceptive distance (D)
INPUT: Dr, Dg, Da

OUTPUT: D

if Dg > δmaxDr then

D = Da,max

else if Dg < δminDr then

D = Da,min

else

D = Dr

end if

that region have a higher impact for the human mobility. In case (a), Da should

be a value greater than Dr since Dg > δmaxDr. Therefore, Da,max exists and in

order to estimate that, a vector parallel to the direction of the intended moving

direction (i.e., the vector parallel to Dr) is extended until it reaches another

obstruction for the movement inside the considered field. The magnitude of this

vector is considered as Da,max in such cases (i.e., cases where Da,max is required

as a result of Dg > δmaxDr). In case (b), Da should be a value less than Dr since

Dg < δminDr. Therefore, Da,min is required. The distance along a path parallel

to the default intended moving path (i.e., parallel to Dr) to an obstacle within

in the considered field from the robot is taken as the Da,min in such cases. If

δmainDr ≤ Dg ≤ δmaxDr or a valid gesture is not detected (i.e., Dg = null) ,

the default perceptive distance (Dr) is considered as the perceptive distance (D)

and hence the intention of the robot will not be switched from the default to an

alternative intention in such cases.
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Figure 9.4: The ways to estimate the alternative perceptive distances are illus-
trated for the possible two scenarios. The shaded areas represent the obsta-
cles/objects in the environment that are in near vicinity of the considered field
view. The field angle is denoted as α. The dashed-line represents the perpen-
dicular drawn to the intended moving path from the evaluated gesture pointing
position in each scenario. Dg is calculated based on the point referred by the
gesture as explained in section 8.2. Dr, Da,min and Da,max are computed based
on the data of navigation map. This illustrates the parameter estimation consid-
ering the indented moving direction as forward. The same is applied for other
directions too.

9.3 Results and Discussion

9.3.1 Experimental Setup

The proposed concept has been implemented on the MIRob platform and ex-

periments have been carried out in an artificially created domestic environment in

order to validate the behavior of the proposed system in switching the perceptive

distance according to the intention of the user based on the pointing gestures

accompanied with verbal instructions. Furthermore, another set of experiments

has been carried out in order to evaluate the performance gain of the proposed

method over the work explained in chapter 4 (i.e., system without the intention
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switching ability) which is not capable of analyzing the information conveyed

through gestures. The evaluation was carried out with five healthy participants

(average and standard deviation of the age of the participant are 25.2 years and

1.7 years, respectively) and they were graduate students in the university. The

experiments have been carried out based on the guidelines suggested in [85] for

designing, planning and executing human studies for humanrobot interactions in

order to avoid the subjectivity of the experimental results. The scalar constants

δmax and δmin are chosen experimentally as 1.5 and 0.75, respectively, in for

achieving the desired characteristics.

9.3.2 Validation of the Behavior of the Motion Intention Switcher

(MIS)

In order to validate the behavior of MIS in switching the intention based on

the pointing gestures, experiments have been carried out in 10 different layout

scenarios where such intention switching may be required in order to effectively

evaluate the user instructions. Each participant was given the chance to perform

the evaluation in any two of the previously unused arrangements among these

10 scenarios. The behavior of the proposed method (i.e., the system with MIS)

and the system without the intention-switching ability (i.e., the system presented

in chapter 4) have been analyzed in those situations. The sample results obtained

from the experiment are given in Table 9.1. The views from the robot with tracked

skeletons of the users in the sample cases are shown in Fig. 9.5 along with the

third person view of the scenarios. The corresponding positions of the robot

during the execution of each case are marked on the map shown in Fig. 9.6.

In case (a), the robot was initially placed on the location ‘aI ’ without de-

ploying the MIS to the system. Then, the robot was commanded, “move far

forward”. The uncertain term in the command is “far” and the robot had to

quantify the meaning of “far” for fulfilling the user command by navigating to

the desired location. In this case, Dr was 33 cm since the robot only considers
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the immediate obstruction in its intended straight moving path. Therefore, the

perceptive distance D was 33 cm and the quantified output generated from the

UIUM was 29 cm, resulting a destination position in between the robot and the

obstacle as explained in section 9.1. Therefore, the robot moved to location ‘aB’.

Then, the MIS was activated and the robot was again placed at the initial posi-

tion (i.e., location ‘aI ’). The robot was again commanded with the same voice

instruction accompanied with a pointing gesture that expresses that the inten-

tion of the instruction is to navigate the robot to a position that is beyond the

obstacle. The gesture evaluation system interpreted the gesture and calculated

Dg was 121 cm. In this situation, the perceptive distance was altered by MIS to

alternative perceptive distance Da,max since Dg > δmaxDr. Da,max was evaluated

as 252 cm and it was assigned to the perceptive distance (D). Therefore, the

output of the UIUM was 199 cm that resulted a destination position beyond the

obstacle and then robot moved to location ‘aA’ by taking a curvy path generated

by the navigation controller for avoiding the obstacle.

In case (b), the robot was initially placed in location ‘bI ’ with disabled MIS.

Then it was commanded, “move medium right”. The robot had to quantify the

meaning of the uncertain term “medium” in order to move to the destination

position requested by the user. Here, Dr was 272 cm. Subsequently, D and the

quantified outputs were 272 cm and 181 cm, respectively. Therefore, the robot

moved to location ‘bB’ that is located well past the nearby obstacle. Then, the

robot was again placed in the same initial position (i.e., ‘bI ’) with enabled MIS.

This time the robot was commanded with the same voice instruction accompanied

with a pointing gesture that expresses the intention of the user is not to move the

robot to a location well past the nearby obstacle. Here, the Dg was 57 cm, that

lead to assigning of Da,min to D since Dg < δminDr. The evaluated Da,min was 72

cm since the robot considers the distance to the nearby obstacle in the considered

field along the intended moving direction. Therefore, the quantified output was

48 cm, which resulted the movement of the robot to location ‘bA’ where the robot

is not required to move beyond the nearby obstacle.
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3rd person view View from Kinect with tracked skeleton

(a)

(b)

(c)

(d)

(e)

Figure 9.5: The view of the robot and the third person view of sample scenarios
are shown with the corresponding case (a–e) given in Table 9.1. The tracked
skeletons of the users are also superimposed with the RGB view of the robot for
better clarity.
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Figure 9.6: The initial and final positions of the robot during the experiment
for identifying the behaviors of the proposed method are marked on the map
with corresponding case letters. The shaded areas represent the objects in the
environment. The map is drawn to a scale. However, it should be noted that the
markers do not represent the actual size of the robot.

In case (c), the initial position is location ‘cI ’ and it was commanded, “move

far forward”. The system without the MIS quantified the meaning of “far” as

42 cm by considering the default perceptive distance and the robot moved to

location ‘cB’. The quantified output of the system with MIS was 218 cm since

it considered the Da,max as D since the evaluated gesture indicated a request to

change the default intention.

In case (d), the initial location was ‘dI ’ and it was commanded, “move far

forward”. The quantified output of the system without the MIS was 70 cm and

the robot moved to location ‘dB’. In the system with the MIS case, D should

be altered to Da,min since Dg < δminDr. However, in this situation Da,min and

Dr were the same. Therefore, D was not altered and the quantified output is

the same as the system without MIS. Therefore, the robot moved to location

‘dA’ which was almost the same as ‘dB’ (due to navigational errors there is a very
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small different in position coordinates). In this case, the intention of the user was

to express his intention of navigating the robot to a location that is in between

the obstacle and the robot without altering the default intention. Moreover, the

proposed system is capable of successfully handling such situations.

In case (e), similarly to the case (b) the robot with MIS switched the intention

by identifying the actual intention of the user by analyzing the instructions con-

veyed from pointing gestures given along with voice instructions. Similarly, the

behavior of the MIS was found to be capable of effectively switching the intention

of the robot according to the actual intention of the user in all the test cases. An

explanatory video that shows the behaviors of the two systems in a similar kind

of experimental scenario is provided as a supplementary material in the multime-

dia attachment 61. It shows the video footage from a third person’s view along

with the traced location of the robot within the navigation map. Furthermore,

parameters used in the interpretation process of the commands are also given

with annotated explanations.

1Available in the attached CD and www.youtube.com/watch?v=bBSouHJhTzY
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Table 9.1: Sample Results of the Experiment for Validating the Behaviours of the MIS

User command
Initial positionUncertain

term

Room
size
(m2)

Free
space
(m2)

without Motion Intention Switcher with Motion Intention Switcher
Dr

(cm)
D
(cm)

Output
(cm)

Final position Dr

(cm)
Dgesture

(cm)
D
(cm)

Output
(cm)

Final position
X, Y , θ X, Y , θ X, Y , θ

a move far forward 254, 302, 88 far 15.08 12.77 33 33 29 252, 329, 95 33 121 252 199 254, 500, 90
b move medium right 220, 272, 179 medium 15.08 12.77 272 272 181 218, 452, 87 274 57 72 48 217, 319, 93
c move far forward 46, 344, 49 far 15.08 12.77 64 64 42 78, 375, 50 66 180 269 218 189, 509, 49
d move far forward 285, 260, 87 far 15.08 12.77 86 86 70 289, 330, 87 85 -140 85 70 283, 334, 88
e move medium forward -53, 135, -5 medium 18.55 16.33 470 470 313 262, 125, -3 470 100 130 86 33, 127, -5
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9.3.3 Evaluation of Performance Gain of the Proposed Method

A set of experiments has been carried out in order to compare the performance

gain of the system with MIS (i.e., the proposed system) over the system without

MIS (i.e., the system explained in chapter 4). For this experiment, the users were

asked to navigate the robot from a given initial position to a given goal position

marked on the floor as shown in Fig. 9.7. The number of steps taken for navigating

the robot towards the goal has been considered as the parameter for the evaluation

work based on the experimental evaluation carried out in the work presented in

[94]. The same task was repeated for both systems and the information related to

the systems was recorded. Ten different layout arrangements (i.e., with different

initial and goal positions) have been selected by randomly choosing the initial

and goal positions. The initial and goal positions for a particular layout scenario

have been kept within the same room since it is impractical to navigate the robot

from one room to another room using only this kind of simple motion command.

Furthermore, such navigation tasks could be deduced into this kind of problem by

using the ability of the robot to understand a command like “move to the kitchen”

as explained in chapter 3. All the participants have been given the chance to

perform one by one in all 10 layout arrangements and the results have been

analyzed in order to evaluate the value addition of the proposed MIS. It should

be noted that this experimental scenarios are independent of the experimental

scenarios discussed in experiment 1 (i.e., in section 9.3.2).

The data of the experiments for user 1 in layout arrangement 1 (i.e., named

as case 1) and user 1 in layout arrangement 2 (i.e., named as case 2) are given

in Table 9.2 as sample results. The corresponding positions of the robot after

executing each user instruction are marked on the map shown in Fig. 9.8. The

positions are annotated with the corresponding indexes given in Table 9.2.

186



goal

Figure 9.7: This shows the experimental scenario of the case 1 of the experi-
ment for comparing the performance of the system with the MIS and the system
without the MIS. The user was asked to navigate the robot to the goal position
marked on the floor by implementing both the system in the robot. The goal
area is annotated as “goal” in here.
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However, it should be noted that the markers do not represent the actual size of
the robot.
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Table 9.2: Sample Results of the Experiment for Evaluating the Performance Gain of the System with the MIS

User command
Uncertain
term

Room
size
(m2)

Free
space
(m2)

Dr

(cm)
Dgesture

(cm)
Intention
switched

D
(cm)

Distance
moved (cm)

Position
(X,Y ,θ)

Case 1 Initial position I1 (247,283,89)
with
MIS

A. move medium forward medium 15.08 12.77 57 128 True 275 183 A1 (250,466,89)
B. move little forward little 15.08 12.77 87 Not detected False 87 36 B1 (249,502,89)

without
MIS

a. move little left little 15.08 12.77 206 - - 206 86 a1 (160,283,-179)
b. move far right far 15.08 12.77 270 - - 270 219 b1 (149,502,92)
c. move medium right medium 15.08 12.77 149 - - 179 117 c1 (270,519,8)

Case 2 Initial position I2 (504,117,179)
with
MIS

A. move little forward little 18.55 16.33 470 60 True 102 42 A2 (462,118,179)
B. move medium right medium 18.55 16.33 63 Not detected False 63 42 B2 (460,159,87)

without
MIS

a. move medium left medium 18.55 16.33 98 - - 98 64 a2 (504,57,-89)
b. move medium right medium 18.55 16.33 106 - - 106 71 b2 (434,68,175)
c. move far right far 18.55 16.33 110 - - 110 89 c3 (447,152,83)
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In this case, the initial position of the robot was ‘I1’ and the goal position

is annotated as ‘goal 1’ in the map. In the system with the MIS event, first

the robot was commanded, “move medium forward” while being shown a gesture

that expresses the requirement of switching the intention to navigate the robot

beyond the obstacle in the front. Dr and Dg were 57 cm and 128 cm, respec-

tively. The intention of the robot was switched by the MIS since Dg > δmaxDr

and Da,max was assigned to the perceptive distance (D). Therefore, D was 275

cm and subsequently the quantified distance output was 183 cm which resulted

the movement of the robot to location ‘A1’. Then the robot was commanded,

“move little forward” and a pointing gesture was not detected by the system

since a pointing gesture was not issued by the user. Therefore, the intention of

the robot was not switched and the robot moved 36 cm by considering Dr as

perceptive distance (D). The moved position was ‘B1’ that was inside the given

goal area. Therefore, this was considered as the completion of the task. Then,

the robot was placed on the same initial position (i.e., ‘I1’) after disabling the

MIS (i.e., system similar to the system explained in chapter 4) and again the

user was asked to navigate the robot to the goal. In this event, if the user had

commanded the robot “move medium forward” similar to the earlier event, the

robot would have moved to a point between the obstacle and the robot (due to

the limitation of the system without MIS discussed in section 9.1). However, that

movement would be a waste since the user cannot navigate the robot beyond the

obstacle without changing the moving direction. Therefore, with this in mind, the

user first issued the command “move little left” in order to take away the robot

from the barrier. The robot quantified the distance meant by “little” as 86 cm

by considering the default perceptive distance and moved to position ‘a1’. Then

the robot was commanded “move far right” and robot moved to position ‘b1’ in

order to fulfill the request of the user. Then, the robot was commanded “move

medium right” and the robot moved to position ‘c1’ which was inside the goal

area. Therefore, the task was completed. In order to complete the task with the

system with the MIS, the user had to issue only two user instructions while with
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the system without the MIS, the user had to issues three instructions in order to

complete the tasks. Moreover, the work overhead of the user is comparative less

when the MIS is deployed into the robot.

In case 2, the initial position of the robot was ‘I2’ and the goal is annotated

as ‘goal 2’ in the map. In the system with the MIS event, the user first issued

the command “move little forward” accompanied with a pointing gesture that

express the requirement for the intention switching. If such a gesture had not

been issued, the robot would have moved to a location that is well past the nearby

table. Therefore, the robot moved to position ‘A2’ by switching the perception

to the alternative perception. Then the robot was commanded, “move medium

right” without giving a pointing gesture. Therefore, the robot moved to position

‘B2’ considering the default intention. Therefore, the task was completed with 2

user instructions. In the event of the system without the MIS, first the command,

“move medium left” was issued by the user and the robot moved to location ‘a2’.

If the command “move little forward” had been issued in this case, the robot

would have moved to a location that is well past the intended moving position

due to the limitation of the system (without MIS) and the user already knew

this from his past experience. That is the reason for issuing the command “move

medium right” instead of “move little forward” similar to the system with the

MIS case. Then with the next voice instruction, the robot moved to position ‘b2’.

After the next instruction, the robot moved to ‘c2’ that is inside the goal area .

Therefore, in order to navigate the robot in this situation, three user instructions

were required which is higher than for the event with the MIS.

Similarly, the experiments have been carried out in all the layout arrangements

by all the participants. The average number of steps required for fulfilling the

navigation task in each layout arrangement for the system with the MIS and

without the MIS is given in the graph shown in Fig. 9.9.

In all the layout arrangements except 6 and 9, the robot with the MIS was able

to be navigated to the goal positions with a fewer number of voice instructions
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Figure 9.9: This graph shows the average number of steps/instructions taken in
order to navigate the robot to the goal positions in different experimental layout
arrangements during the experiment for evaluating the performance gain of the
proposed MIS. The error bars represent the standard error.

compared to the robot without the MIS and the difference is statistically signifi-

cant (P < 0.05) according to the results of two sample t tests. Moreover, the sys-

tem with MIS has better abilities in understanding the intention of the user over

the system without the MIS. Therefore, the deployment of the MIS enhances the

evaluating ability of the ambiguous language instructions by the robot. However,

in layout arrangements 6 and 9, the number of steps taken by both the system

are the same. The reason behind this was in those two arrangements, the ability

of the MIS was not required and the robot was navigated without switching the

perception from the default perception. In all other layout arrangements, the in-

tention of the robot was changed only once in each case which leads to a reduction

of required total number of steps. Therefore, the number of user instructions or

steps required to navigate the robot to a desired location in this kind of situations

can be reduced by deploying the MIS. Even though the step number reduction

in this kind of task is small (about 1–3 steps), a robot that is used as supportive

aid in a caring facility such as a nursing home would be required to perform this

sort of navigation task a large number of times per a day and hence there would

be a noticeable reduction of the work load in real-world applications. Moreover,

this validates the potential of the MIS in enhancing the human-friendliness of the

robot and interpretation of ambiguous voice instructions.
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9.4 Summary

A method has been introduced in this chapter to enhance the effectiveness of

interpretation of verbal instructions with uncertain information such as “move far

forward” by identifying the actual intention of the user. The ability for effectively

interpreting such voice instructions by a service robot is useful in accomplishing

typical daily activities and humanrobot collaborative tasks that involve naviga-

tion of the robot. Therefore, the proposed method will improve the abilities of

human-friendly service robots.

The main improvement of the proposed method over the existing approaches

is that the system is capable of switching the intention of the robot by identifying

the actual intention of the user. The actual intention of the user is identified by

analyzing the information conveyed from pointing gestures that can be accompa-

nied with voice instructions. Moreover, the interaction ability has been improved

by integrating multimodal interaction ability in order to guess the intention of

the user for improved interpretation of uncertain information in user instructions.

The intention of the robot is switched by the proposed motion intention switcher

(MIS) by altering the perceptive distance from the default to an alternative. The

position referred from the pointing gesture and the arrangement of the environ-

ment in that scenario are analyzed by the MIS in order to decide the alternative

perceptive distance. Moreover the MIS shifts the perception of the robot between

the default and the alternative hypotheses based on a set of predefined rules. It

would be interesting for future work to consider a probabilistic approach instead

of this rule-based approach for intention switching.

Experiments have been carried out in an artificially-created domestic environ-

ment in order to analyze the behavior of the proposed MIS. The behavior of the

MIS has been found to be effective according to the experimental results. Fur-

thermore, experiments have been carried out in order to evaluate the performance
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gain of the proposed concept. The experimental results validates the potential

of the proposed concept in enhancing the human-friendliness of service robots by

effective interpretation of ambiguous voice instructions.
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Chapter 10

CONCLUSIONS AND FUTURE WORK

10.1 Conclusions

Voice instructions are often used to convey information between peers in

human-human interactions. Accordingly, the capability for human-like voice com-

munication between robots and humans would enhance the overall interaction

quality between robots and their users. Systems equipped with human-like voice

communication would be able to support users in a friendlier manner. Typi-

cally, precise quantitative information is not conveyed through voice instructions,

and such voice instructions tend to involuntarily contain imprecise and uncertain

terms, lexical symbols and notions, which must be interpreted correctly for a com-

mand to be understood. As an example, humans tend to issue commands such as

“move a little bit toward the TV” instead of “move 0.5 meters toward the TV”.

The actual quantitative meanings of uncertain terms such as “close”, “near”, “lit-

tle”, “far”, “small”, “large” and “few” are related to spatial information such as

the size /length of an item and depend on the environment, the overall context

and the perception of the user. Therefore, the ability of a robot assistant to in-

terpret such uncertain information in voice commands and respond appropriately

to those commands is crucial for improving human-robot interaction.

A service robot can cope with distance-related uncertain information contained

in navigation instructions when the robot’s perception of distance-related uncer-

tain information is adapted based on the environmental parameters. Size of the
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room, available free space of the room, and the arrangement of the environment

are the vital environmental parameters for effectively evaluating the uncertain in-

formation in motional navigation instructions. For positional commands, size of

the room, available free space of the room, size of the reference, and the arrange-

ment of the environment are the vital parameters. Fuzzy inference systems that

evaluate these parameters can be used to quantify the uncertain information in

language instructions. The robot’s perception of distance-related uncertain infor-

mation can be further improved by establishing human-like abilities in perceiving

and interpreting the environment.

A robot’s interpretation of uncertain information in navigation instructions

can be improved by adapting perception of both direction-related and distance-

related uncertain notions in navigation instructions. The directional perception

of the robot can be effectively adapted by considering the free space around the

robot or the reference. Fuzzy logic can be used to realize this and the output

membership function of the fuzzy inference system should be modified according

to the distribution of the free space. The navigational command understanding

ability of a robot with an adaptable directional perception surpasses that of a

robot with fixed directional perception with a significant margin. The user agree-

ment with the actions of the robot is remarkably improved when the directional

perception is adapted according to the current environment setting instead of

fixed directional perception.

A robot’s perception of uncertain information can be adapted toward the user

by evaluating the user feedback. This can be realized by fuzzy neural networks

that enable the robot to learn from user feedback while simultaneously adapting

its perception based on information related to the environment. The performance

of a robot with the learning ability surpasses that of a system with no learning

ability with a significant margin. The user satisfaction toward the robot’s quan-

tification ability of uncertain information vastly enhanced in a robot with learning

ability with respect to a robot with no learning ability.

195



Adapting a robot’s perception of uncertain information according to the infor-

mation conveyed non-verbally can improve the robot’s interpretation of uncertain

information. Moreover, the quantification effectiveness of uncertain spatial de-

scriptors by the robot can be improved by establishing a multimodal interaction

ability for the robot. The error of quantifying the uncertain information can be

significantly and remarkably reduced by fusing the information conveyed through

pointing gestures. Fuzzy logic can be used to fuse the information conveyed

through pointing gestures and the parameters related to the environment. Fur-

thermore, the information conveyed through pointing gestures can be used to

resolve the spatial ambiguities and it can significantly reduced the number of

steps required to navigate a robot toward a goal.

Commands understanding ability of a robot can be improved by deploying

methods to interpret uncertain information related to relative references, since

it enables the robot to understand more complex user instructions. Utilization

of natural human tendencies improves a robot’s perception of uncertain informa-

tion and subsequently it enhances the human-robot interaction. Fuzzy inference

systems and fuzzy neural networks are capable of quantifying the uncertain infor-

mation in navigation instructions while replicating the natural human tendencies

related to the perception of uncertain information.

The effectiveness of interpretation of uncertain information enhances the human-

robot interaction. However, the capabilities of the prevailing systems (including

previous approaches and the methods proposed in this thesis) are far below the

cognitive capabilities of human beings with regard to understanding uncertain

information. Therefore, a vast research gap is still remaining in this particular

research niche for future developments.
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10.2 Future Work

The limitations of the methods proposed in this thesis and the possible im-

provements are suggested based on the following three aspects; scope, interaction,

and adaptation (the same definitions used in chapter 2 are used).

10.2.1 Scope

This thesis addressed the issues in interpreting uncertain information in navi-

gation instructions in relation to distance, direction and relative references. Con-

versely, the navigation instructions may include uncertain information related to

other aspect such as time, speed, shape, and frequency. Ways for interpreting

uncertain information in relation such entities have not been addressed in this

work. Therefore, the possible extensions of the capabilities of a robot to un-

derstand uncertain information in relation to such entities are proposed for the

future work.

10.2.2 Interaction

The information conveyed non-verbally is used by the some of the proposed

concepts to enhance the interpretation of uncertain information contained in nav-

igation commands. However, only the pointing gestures are analyzed as the sole

source of information conveyed non-verbally; the information conveyed from other

means such as gaze, facial expressions, and head nodding are not analyzed in the

proposed methods of this thesis. The information conveyed from other than

pointing gestures could also be used to improve the understanding of uncertain

information contained in navigational instructions and subsequently the interac-

tion between the robot and users. For example, the facial expression could be

used as a substitute for voice feedback for the learning of the work presented in

chapter6. Such usage of notions conveyed non-verbally would reduce the overhead
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burden on the user and hence improve interaction. Therefore, usage of other no-

tions conveyed non-verbally for enhancing the interaction is proposed for future

work.

In all the experimental scenarios presented in this thesis, it is assumed that

there is only a single user at a particular instance. Furthermore, it is assumed

that the users are in the field of view of the robot when issuing the gesture in-

structions. If there are multiple users in a given time or the user is not within

the field of view, there is an uncertainty in interaction with the user; (e.g., de-

ciding the person who issues the commands or detecting the gesture accurately).

However, the scope of the research is limited to addressing the issues related to

the uncertain information in language instructions (i.e., interpreting terms like

“far” and “little”). Dedicated research wok on handling such issues (e.g., which

address only issues such as how to maintaining human-robot proxemics [95]) can

be found in the literature and outcomes of such research could be integrated into

the work presented in this thesis to resolve these issues.

10.2.3 Adaptation

The work proposed in this thesis is capable of adapting a robot’s perception

of uncertain information contained in navigation command based on the environ-

ment. The robot perceives the environment through available navigation maps

and its low-level sensors such as range sensors. Therefore, the robot perceives the

environment in 2-dimensions. Moreover, the plan views of the surrounding and

the footprints of the objects. The robot calculates the required environmental

parameters for adapting the perception based on these inputs. Therefore, there

are limitations of the proposed concepts in perceiving the environment effectively

in a human-like manner. For example, the DisI uses the footprint size of an ob-

ject as the size of the reference object when interpreting positional information

without considering the height of the object for the estimation of the size of it.

In order to rectify these issues and enhance the performance, the robot should
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be capable of perceiving the environment 3-dimensionally. Moreover, human-like

perceiving ability would enhance the performance. This could be achieved by

using stereoscopic vision systems and laser scanners to construct 3-dimensional

models of the environments that could be used by the robot to extract the envi-

ronmental parameters. It would be interesting for future work to integrate such

abilities for the improvement of the proposed system.

The meaning of uncertain information may depend on the specific awareness

about a particular task. As an example, the quantified meaning of the term

“near” in a situation where a plastic bottle is moved near to a lighted candle

will be different from moving the same bottle near to a glass on top of a dinner

table. Since it involves the specific knowledge of the human that the closing the

plastic near to a flame is unsafe. However, the work proposed in this thesis is

not capable of adapting the perception of uncertain information based on such

specific awareness in relation to different objects or tasks. However, the effects

caused to the perception due to such specific knowledge about different contexts

are minor for navigation. Therefore, further improvement for adaptation of the

perception according to such specific knowledge of different tasks is proposed for

the future work.
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[25] S. Frennert and B. Östlund, “Review: seven matters of concern of social

robots and older people,” International Journal of Social Robotics, vol. 6,

no. 2, pp. 299–310, 2014.

[26] S. Kleanthous, C. Christophorou, C. Tsiourti, C. Dantas, R. Wintjens,

G. Samaras, and E. Christodoulou, “Analysis of elderly users preferences

and expectations on service robots personality, appearance and interaction,”

in International Conference on Human Aspects of IT for the Aged Popula-

tion. Springer, 2016, pp. 35–44.

[27] S. Huang, T. Tanioka, R. Locsin, M. Parker, and O. Masory, “Functions of a

caring robot in nursing,” in 2011 7th Int. Conf. Natural Language Processing

and Knowledge Engineering, 2011, pp. 425–429.

[28] N. Mavridis, “A review of verbal and non-verbal human–robot interactive

communication,” Robotics and Autonomous Systems, vol. 63, pp. 22–35,

2015.

[29] F. Portet, M. Vacher, C. Golanski, C. Roux, and B. Meillon, “Design and

evaluation of a smart home voice interface for the elderly: acceptability and

objection aspects,” Personal and Ubiquitous Computing, vol. 17, no. 1, pp.

127–144, 2013.

[30] J. A. Ansari, A. Sathyamurthy, and R. Balasubramanyam, “An open voice

command interface kit,” IEEE Transactions on Human-Machine Systems,

vol. 46, no. 3, pp. 467–473, 2016.

[31] E. Bastianelli, D. Nardi, L. C. Aiello, F. Giacomelli, and N. Manes, “Speaky

for robots: the development of vocal interfaces for robotic applications,”

Applied Intelligence, vol. 44, no. 1, pp. 43–66, 2016. [Online]. Available:

http://dx.doi.org/10.1007/s10489-015-0695-5

206

http://dx.doi.org/10.1007/s10489-015-0695-5


[32] K. Sugiura and K. Zettsu, “Rospeex: A cloud robotics platform for human-

robot spoken dialogues,” in 2015 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), Sept 2015, pp. 6155–6160.

[33] M. Mazo, F. J. Rodriguez, J. L. Lázaro, J. Ureña, J. C. Garcia, E. Santiso,

P. Revenga, and J. J. Garcia, “Wheelchair for physically disabled people with

voice, ultrasonic and infrared sensor control,” Autonomous Robots, vol. 2,

no. 3, pp. 203–224, 1995.

[34] J. Clark and R. Roemer, “Voice controlled wheelchair.” Archives of physical

medicine and rehabilitation, vol. 58, no. 4, pp. 169–175, 1977.

[35] K. B. Stanton, P. R. Sherman, M. L. Rohwedder, C. P. Fleskes, D. R. Gray,

D. T. Minh, C. Espinoza, D. Mayui, M. Ishaque, and M. A. Perkowski,

“Psubot-a voice-controlled wheelchair for the handicapped,” in Circuits and

Systems, 1990., Proceedings of the 33rd Midwest Symposium on. IEEE,

1990, pp. 669–672.

[36] A. Iborra, D. Caceres, F. Ortiz, J. Franco, P. Palma, and B. Alvarez, “Design

of service robots,” IEEE Robot. Automat. Mag., vol. 16, no. 1, pp. 24–33,

2009.

[37] M. Kim, S. Kim, S. Park, M.-T. Choi, M. Kim, and H. Gomaa, “Service

robot for the elderly,” IEEE Robot. Automat. Mag., vol. 16, no. 1, pp. 34–

45, 2009.
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