BOLTED END PLATE BEAM TO COLUMN CONNECTIONS - ARE THEY SEMI RIGID?

P.KALYANI (138742R)

Master of Engineering Degree in Structural Engineering Design

University of Moratuwa Sri Lanka

NOVEMBER 2017

BOLTED END PLATE BEAM TO COLUMN CONNECTIONS - ARE THEY SEMI RIGID?

P.KALYANI

(138742R)

Thesis submitted in partial fulfillment of the requirements for the degree of Master of Engineering

Department of Civil Engineering

University of Moratuwa

Sri Lanka

NOVEMBER 2017

"I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books)."

~ •	
Signoturo	Date:
Signature:	Date.

The above candidate has carried out research for the Masters thesis under my supervision.

Signature of the supervisor: Date:

Abstract

The most commonly used moment resisting connections are bolted end plate beam to column connections. Connections are usually designed as simple or continuous although the actual behavior is known to fall between these two extreme cases. The use of semi-continuous connection results substantial savings in steel weight of the overall construction. Extended endplate, Flush end plate and partial depth connections are the widely used type of connections in steel frame construction. To understand the real behavior of semi-continuous connection, full scale laboratory test is the most accurate approach, but it is time consuming and costly to undertake. Therefore other methods were developed to predict the capacity of connections.

Thus, in this study 48 extended end plate and 48 flush end plate connections are analyzed to find the connection's behavior with variations in bolt diameter, end plate thickness, and grade (4.6/8.8) and bolt gauge length. A method proposed by Steel Construction Institute (SCI) is taken into account for analyzing. The analyzed connections are classified based on strength and stiffness.

Specially dedicated to my beloved family and friends...

Acknowledgements

First of all, I would like to express gratitude to my supervisors, Dr.(Mrs) M.T.P Hettiarachchi and Dr.K.Baskaran for their valuable advices and guidance during this research study. I would also like to express my sincere appreciation to staff members of civil engineering department of University of Moratuwa for their kind assistances.

I wish to acknowledge my friends and colleagues for their support and encouragement.

Last but not least, my most heartfelt appreciation goes to my family who give me invaluable support as always.

Finally I am grateful to everyone who helped me in various ways to complete this research.

CONTENTS

Decla	aration of the candidate & supervisor	i
Abstr	ract	ii
Dedic	cation	iii
Ackn	owledgements	iv
Table	e of Content	v
List o	of Figures	viii
List o	of Tables	X
List o	of Abbreviations	xi
List o	of Appendices	xiii
1.	Introduction	1
	1.1 General	1
	1.2 Bolted end plate connection	1
	1.3 Moment- Rotation (M-) Curve	4
	1.4 Classification of joints based on Eurocode 3 (EC2,2005)	5
	1.4.1 Classification by stiffness	5
	1.4.2 Classification by strength	7
	1.5 Classification of connections	8
	1.6 Research objective	10
	1.7 Scope of work	10

2.	Literature review	11
3.	Analysis and design of connections according to EC3	15
	3.1 Analysis and design of connections	15
	3.2 Classification of connection	19
	3.2.1 Classification by stiffness	19
	3.2.1.1 Initial stiffness	20
	3.2.1.2 Classification by strength	22
4.	Analysis, Results and Discussion	23
	4.1 General	23
	4.2 Configurations	23
	4.3 Selection of variable parameters for parametric study	24
	4.4 Numerical Results	27
	4.4.1 Extended end plate connection	36
	4.4.2 Flush end plate connection	41
	4.5 Comparison between the extended end plate connection and	
	flush end plate connection	46
	4.6 Classification of joints based on EC3	48
	4.7 Effect of beam span on initial stiffness (S j,ini) of connection	50
	4.8 Classification based on moment resistance to EEP & FEP	51
5.	Conclusion and Recommendations	53
	5.1 Conclusion	53

References	55
Appendix A: Design Calculations for Extended End Plate Connections	

Appendix B: Design Calculations for Flush End Plate Connections

5.2 Recommendations

54

LIST OF FIGURES

		Page
Figure 1.1	Extended end plate connections	02
Figure 1.2	Flush end plate connections	02
Figure 1.3	Partial depth end plate connections	03
Figure 1.4	Comparison of M- curves for different type of connections	04
Figure 1.5	Classification of joints by stiffness according to	
	Eurocode3	06
Figure 1.6	Classification of joints by strength according to	
	Eurocode3	07
Figure 1.7	Modeling of joints (elastic global analysis)	08
Figure 3.1	Critical zones of a joint (SCI/BCSA, 1995)	16
Figure 3.2	Critical zones of a joint (SCI/BCSA, 1995)	16
Figure 3.3	Initial stiffness of a joint	20
Figure 4.1	Geometrical configuration of EEP connection	23
Figure 4.2	Geometrical configuration of FEP connection	24
Figure 4.3	Variable parameters of EEP connection	25
Figure 4.4	Variable parameters of FEP connection	25
Figure 4.5	Effect of bolt diameter on moment resistance	36
Figure 4.6	Effect of bolt diameter on initial stiffness	37

Figure 4.7	Effect of bolt gauge length increasing 100 to 140mm on moment resistance	38
Figure 4.8	Effect of bolt gauge length increasing 100 to 140mm on initial stiffness	38
Figure 4.9	Effect of bolt grade on moment resistance	39
Figure 4.10	Effect of end plate thickness on moment resistance	40
Figure 4.11	Effect of end plate thickness on initial stiffness	40
Figure 4.12	Effect of bolt diameter on initial stiffness	41
Figure 4.13	Effect of bolt diameter on moment resistance	42
Figure 4.14	Effect of end plate thickness on moment resistance	43
Figure 4.15	Effect of end plate thickness on initial stiffness	43
Figure 4.16	Effect of bolt grade on moment resistance	44
Figure 4.17	Effect of bolt gauge on moment resistance	45
Figure 4.18	Effect of bolt gauge on initial stiffness	45
Figure 4.19	Comparison between the extended end plate connection and flush end plate connection on moment of resistance	46
Figure 4.20	Comparison between the extended end plate connection and flush end plate connection on initial stiffness	47
Figure 4.21	Effect of beam span on initial stiffness of EEP and FEP	50
Figure 4.22	Moment resistance of EEP and EEP	52

LIST OF TABLES

		Page
Table 1.1	Joint modeling and frame analysis	9
Table 4.1	Parameters Selected for numerical analysis	23
Table 4.2	Geometrical configuration of the EEP connection	25
Table 4.3	Geometrical configuration of the FEP connection	26
Table 4.4	Summary of EEP connection (Grade 8.8, W=100)	27
Table 4.5	Summary of EEP connection (Grade 8.8, W=140)	28
Table 4.6	Summary of EEP connection (Grade 4.6, W=100)	29
Table 4.7	Summary of EEP connection (Grade 4.6, W=140)	30
Table 4.8	Summary of FEP connection (Grade 8.8, W=100)	31
Table 4.9	Summary of FEP connection (Grade 8.8, W=140)	32
Table 4.10	Summary of FEP connection (Grade 4.6, W=100)	33
Table 4.11	Summary of FEP connection (Grade 4.6, W=100)	34
Table 4.12	Recommended connection details based on SCI	
	Guidelines	48
Table 4.13	Summary EEP connection details from parametric	
	study	48
Table 4.14	Summary FEP connection details from parametric	
	study	48

LIST OF ABBREVIATIONS

 P_T

Abbreviation Description Sum of the effective net areas of all the elements of the cross A_{e} section Effective cross-sectional area A_{eff} Gross cross-sectional area A_g Total net area A_n Shear area of a bolt A٩ Tensile stress area as specified in the appropriate bolt standard A_t Shear area of member $A_{\rm v}$ Weld throat thickness a_p Stiff bearing length b_1 Distance to the nearer end of the member from the end of the b_e stiff bearing d Nominal diameter of the bolt End distance e F_{vp} Column web panel zone the local shear force Bearing capacity of the bolt P_{bb} Bearing strength of the connected part p_{bs} Compressive strength p_c Shear strength of a bolt p_s

Transverse capacity per unit length of weld

Pt Tension strength of the bolt

P_{bw} Bearing capacity of the web

Py Yield strength of the connected part.

P_v Shear capacity

p_{yw} Design strength of the web

r Root radius

s Leg length of a fillet weld

T Thickness of a flange

T Thickness of a web

 $t_{p} \hspace{1cm} Thickness \ of \ the \ connected \ part$

LIST OF APPENDICES

Appendix Description

Appendix A Design Calculations for Extended End

Plate Connections

Appendix B Design Calculations for Flush End

Plate Connections