TECHNO ECONOMIC ANALYSIS ON THE USE OF FULLY INSULATED CABLE FOR 33KV OVERHEAD POWER DISTRIBUTION SYSTEM IN SRI LANKA

D. M. A. K Dissanayake

(139556 H)

Dissertation submitted in partial fulfillment of the requirements for the Degree Master of Science in Electrical Installations

Department of Electrical Engineering

University of Moratuwa Sri Lanka

October 2017

DECLARATION

I declare that this is my own work and this dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature of the candidate	Date:
(D. M. A. K Dissanayake)	
The above candidate has carried out research for the Masters Dissupervision.	sertation under our
Signature of the supervisor (Dr. K.T.M. Udayanga Hemapala)	Date:
Signature of the supervisor (Eng. K. Weerasooriya)	Date:

ABSTRACT

Electricity Supply has become a fundamental commodity of present society. Hence, the availability and the reliability of the electricity distribution system have gained an utmost concern. Currently, Sri Lankan electricity distribution system of all over the island other than Colombo and Kandy Cities are networked through the 33kV Bare Overhead (BOH) lines. Ceylon Electricity Board (CEB) is being rapidly expanded 33 kV distribution network to cater rural electrification demands and the urban development demands. 33kV network has been constructed with poles and towers, many 33 kV lines pass through jungles and thick vegetation and further expose to the sea and lightning prone areas.

Therefore, nowadays the utility has to face some critical issues along with existing distribution system, especially higher number of feeder tripping during the rainy seasons due to thick vegetation. Even with the new regulations and demands, lines are unable to maintain right-of-way with required safety clearance especially in urban areas. Thus, in my dissertation discussed the 33kV Aerial Bundled Cable (MVABC) system as a more economical alternative to Medium Voltage Bare Overhead (MVBOH) lines. Further, address how to mitigate certain operational, climatic and environmental issues with MVABC. It is presented a comparative economic analysis of MVABC with MVBOH and MVUG systems. The analysis takes into consideration the initial investment costs, net present value (NPV) of operational and maintenance costs and NPV of unserved energy of lines along with their specific lifetime period.

Further, an algorithm has been developed that can be used all over the country to make decision for MVABC adaptation on feeders. Finally, a Software Tool is developed to make easy to generate decision for the same and review each case by doing the Sensitivity Analysis.

The dissertation concludes with few recommendations, technical issues associated with MVABC can be mitigated by purchasing cables according to the finalized specification. Use of MVABC shall improve availability and the reliability of consumers' power supply wherever the decision generated by mathematical model is yes.

Keywords: Electricity Distribution System, Medium Voltage, Bare Overhead System, Aerial Bundled Cable

ACKNOWLEDGEMENT

Foremost, I pay my sincere gratitude to Dr. K.T.M. Udayanga Hemapala, Eng. Kapila Weerasooriya and Eng. Kamal Illeperuma who encouraged and guided me to conduct this research and on preparation of final dissertation.

I extend my sincere gratitude to Dr. Nalin Wickramarachchi, Head of the Department of Electrical Engineering and all the lecturers and visiting lecturers of the Department of Electrical Engineering for the support extended during the study period.

Further, I extend my sincere gratitude to Eng. Anura Wijepala past Chairman CEB, Eng. Ratnayake CE (Planning & Development) Colombo City, Eng. (Mrs.) Narmali CE (Planning & Development) WPN, Eng. Jaliya EE (Development) WPN, Eng. Nilantha EE (Maintenance) WPN, Eng. Chamath EE (SCADA) Colombo City and Mrs. Kayathiri for supporting me during the study period.

Finally but not least a big thank goes to my wife, Ganguli Chathurika for finding me free time and free mind to do the research by taking away my other responsibilities and my parents and other family members for their continuous encouragement.

TABLE OF CONTENTS

DECL	ARATION
ABST	RACTii
ACKN	IOWLEDGEMENTiii
TABL	E OF CONTENTSiv
LIST (OF FIGURESvi
LIST (OF TABLESviii
LIST (OF ABBREVIATIONSix
1 IN	TRODUCTION 1
1.1	Background1
1.2	Motivation
1.3	Objectives of the study4
1.4	Methodology4
1.5	Contributions
1.6	Organization
2 LI	TERATURE REVIEW6
2.1	General Information6
2.2 attrib	Identified Alternative Solutions for MV BOH with their outes
	ERIFY THE INITIAL PRACTICES AND ISSUES WITH MV
3.1 of M	Factors to be considered during the preparation of Specification IV ABC
3.2	Factors to be considered in MV ABC Installation 14
	ENERAL CAPITAL COST ANALYSIS OF MV ABC AGAINST OH AND MV UG18
4.1	Capital Cost Calculation for 33kV BOH line per km 18
4.2	Capital Cost Calculation for 33kV ABC per km21

4.3 Capital Cost Calculation for 33kV UG per km	28
5 MV ABC ECONOMIC FEASIBILITY STUDY FO	R DIFFERENT
FEEDERS	30
6 CASE STUDIES FOR MODEL VALIDATION	38
6.1 Case Study 01: Kotugoda GSS Feeder No.11	38
6.2 Case Study 02: Katunayake GSS Feeder No.06.	41
7 SOFTWARE DEVELOPMENT FOR MV ABC AN	NALYSIS46
7.1 Overview of MV ABC Selection Tool	46
7.2 Functions of MV ABC Selection Tool	46
8 DISCUSSION AND CONCLUSIONS	56
REFERENCES	57

LIST OF FIGURES

Figure 1-1: Inadequate Safety Clearance	2
Figure 1-2: Non Standard Construction	2
Figure 1-3: O & M difficulties	3
Figure 1-4: Vegetation Problems	3
Figure 2-1: MV BOH Top Failure Causes	6
Figure 2-2: MV Covered Cable Cross Section Structure	7
Figure 2-3: MV Covered Cable Damages at Supportive Points	7
Figure 2-4: MV Underground Cable Structure	8
Figure 2-5: Direct Buried Cable Trench Layout	9
Figure 2-6: MV ABC Cross Section Structure	10
Figure 2-7: MV ABC Construction flexibility	11
Figure 3-1: Stress Crack on HDPE Outer Sheath of MVABC	12
Figure 3-2: Damaged Copper Screen	13
Figure 3-3: Burnt Outer Sheath	13
Figure 3-4: Improved Cable Structure	14
Figure 3-5: Installation of SA where ACB placed in between ABC	
line	14
Figure 3-6: Induced voltage of single core cable earth at the end	15
Figure 3-7: Induced voltage of single core cable earth at both end	16
Figure 3-8: Induced Current mitigated by having Earth Bonding at a	11
Joint	16
Figure 4-1: Capital Cost Calculation Flow Chart of MV ABC	21
Figure 4-2: Designed Pegging line diagram of 1km length MV ABC	24
Figure 5-1: Inputs for the economic feasibility	30
Figure 6-1: 33kV Kotugoda GSS Feeder No.11 in Geographical map	38
Figure 6-2: 33kV Katunayake GSS Feeder No.06 in Geographical	
map	41
Figure 6-3: The algorithm to select correct installation methodology	for
the electrical distribution system.	44
Figure 7-1: User Interface of MV ABC Selection Tool	46
Figure 7-2: Starting User Interface of MV ABC Selection Tool	47
Figure 7-3: User Interface of the Feeder Cost Calculation	48
Figure 7-4: User Interface of Material Cost Calculation	49

Figure 7-5: User Interface of Labour Cost Calculation	50
Figure 7-6: User Interface of O & M Cost Calculation	51
Figure 7-7: User Interface of Unserved Energy Cost Calculation	52
Figure 7-8: User Interface of Social Benefits	52
Figure 7-9: User Interface of Report Summery	53
Figure 7-10: User Interface of Sensitive Analysis_ Part 1	54
Figure 7-11: User Interface of Sensitive Analysis_ Part 2	55

LIST OF TABLES

Table 1-1: 33kV Breakdown Analysis of Distribution Division 02 in the
Year 2014
Table 1-2: Annual Network Maintenance Cost of NWP, CEB
Table 2-1: Summery of available solution
Table 4-1: Cable Size Selection for the comparison
Table 4-2: Standard Material List for 1 km Racoon Conductor 33kV on
11m Pole
Table 4-3: Standard Labour Rate for 1km Racoon Conductor 33kV on
11m Pole
Table 4-4: ABC Support requirements according to pegging line
diagram
Table 4-5: Estimated Material List for 1 km ABC 33kV on 11m Pole 26
Table 4-6: Drafted Standard Labour Rate for 1km ABC 33kV on 11m
Pole
Table 4-7: Standard Rate for 1km UG 33kV Cable laying in direct buried
method
Table 4-8: Summery of Capital Cost Values
Table 5-1: Average Operational Cost of Brazilian Distribution System in
US\$/ pole
Table 5-2: The cost of unserved energy for the Sri Lanka system 33
Table 5-3: Sample format of Daily HT Feeder Failure Report 2016 of
WPN, Ceylon Electricity Board
Table 6-1: Feeder 11, HT Interruption details for MV BOH in the year
2016 [18]
Table 6-2: Based on the assumptions calculated values for MV ABC
Feeder 11
Table 6-3: Feeder 06, HT Interruption details in the year 2016 [18] \dots 42
Table 6-4: Based on the assumptions calculated values for MV ABC
Feeder 06

LIST OF ABBREVIATIONS

Abbreviation	Description
MV	Medium Voltage
ABC	Aerial Bundle Cable
ВОН	Bare Over Head
CC	Covered Conductor
UG	Underground
CEB	Ceylon Electricity Board
LECO	Lanka Electricity Company
CMC	Colombo Municipal Council
GSS	Grid Substation
LKR	Sri Lankan Rupee
US\$	United State Dollar
WPN	Western Province North
NWP	North Western Province
TNB	Tenaga Nasional Berhad
O&M	Operation & Maintenance
NPV	Net Present Value
kWh	kilo watt hour
XLPE	Cross Link Polyethylene
PVC	Polyvinyl Chloride
ROW	Right of Way
kV	kilo Volts