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APPENDIX A: STRENGTH AND LIMITATION ANALYSIS OF 

CARDIAC MEDICAL IMAGE MODALITIES 

Image Modality  Strength  Limitations 

Stress echo-
cardiography 

It is a low cost method. 

Global and regional left and 
right ventricular systolic 
function, valvular disease and 
hemodynamic can be assessed 
quickly and with reasonable 
accuracy.  

 

A proportion of patients have 
inadequate or suboptimal images.  

The success of imaging varies from 
laboratory to laboratory and 
dependent on the sonographer 
expertise, physicians' proficiency 
and tolerance for technically 
difficult studies (e.g., obese 
patients).  

In approximately 10–20% of 
examinations, two or more of 16 
(or 17) myocardial segments may 
not be well visualized.  

SPECT Provides physiological 
information through functional 
imaging.   

Can detect metabolic activity 
blood flow,  intrinsic lesion 
localization  

 

Gamma emissions harmful to the 
patients.  

Non-hybrid devices have poor 
spatial resolution. 

Tissue boundaries are ill-
determined  

Longer scanning duration, 
exceeding 30-40 minutes   

PET It allows study of body 
functions and can help 
physicians detect alterations in 
biochemical processes that 
imply the possibility of   
diseases before changes in 
anatomy are detected using 
other imaging tests, such as CT 
or MRI. As the radioactivity is 
very short-lived, patients’ 
exposure to radiation is low.  

Time-consuming. 

The resolution of structures of the 
body with nuclear medicine may 
not be as clear as with other 
imaging techniques, such as CT or 
MRI.PET scanning can give false 
results if chemical balances within 
the body are not normal.A person 
who is very obese may not fit into 
the opening of a conventional 
PET/CT unit. 
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Image Modality  Strength  Limitations 

Cardiac MRI MRI does not have any 
ionizing radiation, thus 
permitting its use in children 
and pregnant women.  

It can produce high resolution 
and 3D images of the cardiac 
chambers and thoracic vessels. 

Unlike echocardiography, MRI 
can produce images of 
cardiovascular structures 
without interference from 
adjacent bone or air, which 
limits echocardiography.  

MRI is also less operator 
dependant than 
echocardiography.Velocity 
encoded techniques permit 
measurement of blood flow. 

MRI does not have the 
weakness of geometric 
assumptions (as do 
angiography and 2D echo-
cardiography) in assessing 
ventricular volumes. 

MRI requires more patient 
cooperation than other tests and 
claustrophobic patients may not be 
able to undergo the exam.  

The duration of examination is 
significantly longer compared with 
CT.  

Installation and operation of MRI 
equipment is costly. 

MRI has less spatial resolution than 
CT, which limits the evaluation of 
small structures such as the CAs. 

MSCT Small and rapidly moving 
anatomic structures could be 
visualized with good image 
quality. Coronary CT 
angiography investigation 
allows the accurate detection of 
CA stenosis. 3D imaging 
provides a real coronary 
mapping mode using 3D 
volume rendering.Cardiac CT 
has the potential to visualize 
earlier stages of coronary 
atherosclerosis.CT provides for 
accurate assessment of general 
cardiac morphology.  

Compared to other diagnostic tests, 
CT scans deliver a relatively high 
dose of radiation to the patient.  

Allergic Reaction due to the 
contrast agents. 
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Image Modality  Strength  Limitations 

X-ray angiography Provide excellent visualizations 
of CA vasculature.  

Low cost.  

It consists of some visual artifacts, 
which causes degradations such as; 
non-uniform illumination, noise. 

It provides only two dimensional 
images. 

Difficult to quantitatively analyze 
the CAs lumen. Subjective analysis 
leads to over estimations and under 
estimations of detected stenosis. 

IVUS IVUS enables a physician to 
detect inside the artery with a 
camera-like device.  

IVUS can quantify the 
percentage of narrowing and 
give insights into the nature of 
the plaque.  

 

 

 

Some artifacts that occur during 
imaging causes erroneous results; 
e.g. ring-down artifact, nurd. 

The real three-dimensional 
geometry can hardly be obtained.  

IVUS is normally applied to a short 
segment of the vessel to 

minimize complications in the 
catheterization procedure, and it is 
almost impossible to image every 
branch of the coronary tree in order 
to recover the complete shape. 

OCT Provides accurate measurement 
of the structures in the 
vasculature than IVUS. 

Images contain broad dynamic 
range and high resolution. 

It can be used to determine the 
morphology of detected 
plaques.  

The real three-dimensional 
geometry can hardly be obtained.  

OCT is normally applied to a short 
segment of the vessel to 

minimize complications in the 
catheterization procedure, and it is 
almost impossible to image every 
branch of the coronary tree in order 
to recover the complete shape. 

FFR Provides accurate 
measurements of the stenosis 
based on the functional 
significance.   

The pressure wire used for the FFR 
is costly.  
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APPENDIX B: PSEUDO CODE OF SKELETON PATH 

TRACKER   

Skeleton Path Tracker (seedPoint) 

BEGIN 

skeletonPointArray [] 

taggedPointArray[] 

candidateKeyArray[] 

candidateKeyDensityArray[] 

trackingStatus 1 

kpCount, taggedCount, candidateCount, candidateDensityCount 0 

currentSeedPoint  seedPoint 

skeletonPointArray[kpCount]  currntSeedPoint 

WHILE (trackingStatus ==1) 

    FOR EACH 8 neighbors of currentSeedPoint 

        IF (pixelValue == 255 && notVisited && notTagged) THEN 

            skeletonPointArray[++kpCount]  neighborPoint  

            candidateKeyArray[candidateCount++]  neighborPoint 

       END IF 

    END FOR 

    IF (candidateCount == 0) THEN  

        taggedPointArray [++taggedCount] currentSeedPoint 

        trackingStatus 0 

    ELSE IF (candidateCount == 1) THEN 
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        taggedPointArray [++taggedCount] currentSeedPoint 

        currentSeedPoint  candidateKeyArray[0] 

        re-set candidateKeyArray 

    ELSE 

        FOR EACH candidateKey point in candidateKeyArray 

            count 0 

            FOR EACH 8 neighbors of candidateKey point in candidateKeyArray[] 

                IF (pixelValue == 255 && notTagged && !currnetSeedPoint) THEN 

                    count++ 

                    candidateKeyDensityArray [candidateKeyDensityCount++]  count 

                END IF  

            END FOR 

        END FOR             

    max 0; 

    maxIndex 0; 

    FOR (n  0; n< candidateCount) 

        IF(max<= candidateKeyDensityArray[n]) THEN 

            max  candidateKeyDensityArray[n] 

            maxIndex  n 

        END IF 

    END FOR 

    taggedPointArray [++taggedCount] currentSeedPoint 

    FOR(n  0; n< candidateCount) 
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        IF( n!= maxIndex) THEN 

            taggedPointArray [++taggedCount] candidateKeyArray[n] 

        END IF 

    END FOR 

    currentSeedPoint  candidateKeyArray[maxIndex] 

    re-set candidateKeyArray 

END WHILE 

END  

Note: 

notVisited indicates that the pixel point is not exists in skeletonPointArray[] and 
notTagged indicates that the pixel point is not exists in taggedPointArrayp[]. 

Following section elaborates the execution steps of Skeleton Path Tracker algorithm 
by using a sample skeleton image.  
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Example:  

Following Figure A depicts a sample skeleton image and seed point is given as [5,2]. 

Arrow head in the Figure A indicates the tracking direction. Table A enlists the steps 

of the proposed Skeleton Path Tracker algorithm and each column in the table 

represents the values, which are manipulated in accordance with the execution steps.      

 0 1 2 3 4 5 6 7
0         
1         
2         
3         
4         
5         
6         
7         

 

Figure A – Sample skeleton image 

 

Skeleton Point 
Array 

[5,2] [4,3] [3,4]  [4,4] [2,5]  [3,5] [1,6] 

 

Tagged Point Array  
 

[5,2] [4,3] [4,4] [3,4] [3,5] [2,5] [1,6] 
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Table A: Steps of the proposed Skeleton Path Tracker algorithm 

Iterations 
 

Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 

Current seed 
point 

[5,2] [4,3] [3,4] [2,5] [1,6] 

White 
colored 8 
Neighbors   

[4,3] [5,2][3,4] 
[4,4] 

[4,3] [4,4] 
[2,5] [3,5] 

[3,4] [3,5] 
[1,6] 

[2,5] 

Key Found 
status  

0 1,0,0 1,1,0,0 1,1,0 1 

Tagged status 0 1,0,0 1,1,0,0 1,1,0 1 
Add to 
Skeleton 
Point array 

[4,3] [3,4] [4,4] [2,5] [3,5] [1,6] - 

Selected  
Candidate 
Key Points 

[4,3] [3,4] [4,4] [2,5] [3,5] [1,6] - 

Selected 
Candidate 
Key count 

1 2 2 1 0 

Case Number 2 3 3 2 1 
End tracking  No  No No No Yes 
Candidate 
Density count 

- 3,2 2,1 -  

Maximum 
density value 

- 3 2 -  

Maximum 
density index 

- 0 0 -  

Tagged   
current seed 
point and 
non- 
maximum 
density  
Candidate 
Key points  

[5,2] [4,3], [4,4] [3,4][3,5] [2,5] [1,6] 

Next seed 
point  
maximum 
indexed 
Candidate 
Key point  

[4,3] [3,4] [2,5] [1,6] - 
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Following diagrams visually illustrate the skeleton path tracking progress according 

to the iterations. Gray colored pixel depicts the seed point. Yellow colored pixels 

represent the tracked key points. Orange colored pixels represent the tagged 

candidate pixels. Arrow head in each diagram indicates the tracking direction.       

 
 0 1 2 3 4 5 6 7
0         
1         
2         
3         
4         
5         
6         
7         

 
Iteration 1 

 
 0 1 2 3 4 5 6 7 
0         
1         
2         
3         
4         
5         
6         
7         

 
Iteration 2 

 
 0 1 2 3 4 5 6 7
0         
1         
2         
3         
4         
5         
6         
7         

 
Iteration 3 

 
 0 1 2 3 4 5 6 7 
0         
1         
2         
3         
4         
5         
6         
7         

 
Iteration 4 

 
 0 1 2 3 4 5 6 7
0         
1         
2         
3         
4         
5         
6         
7         

 
Iteration 5 

 
 0 1 2 3 4 5 6 7 
0         
1         
2         
3         
4         
5         
6         
7         

 
End of tracking 
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APPENDIX C: VISUAL ILLUSTRATIONS OF PROCESSING 

STEPS   

The visual illustrations of the processing steps of the proposed methodology have 

been presented in this section. A sample CCA of RCA recorded under LAO cranial 

view has been selected and it consists of 10 frames to be processed.  

Original frames (f0(x,y)) of the selected video  

Enhanced Frames (f3(x,y))  

Following are the uniformly illuminated normalized frames.  
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Aligned Frames (f4(x,y)) 

Following set of frames can be obtained after reduction of global motion from the 

enhanced frames.  

Background subtraction (f5(x,y)) 

Following set of frames can be obtained after subtracting the created mask image 

from each and every aligned frame. As a consequence of the operation the 

foreground area has been emphasized.   
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Foreground enhanced frames (f6(x,y)) 

Application of Frangi’s vessel enhancement filter emphasizes the tubular structures 

of the CCAs and can be used to determine the vesselness feature of the frames.  

Overlapped and normalized frames (f7(x,y)) 

Following frames are obtained as a result of application of structure filling and 

normalization operations. These operations improve the special coherence of the 

vessel structures and represent them with uniform intensity.   
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Foreground extracted frames (f8(x,y)) 

Following frames provide visual illustrations to emphasize the segmentation results 

of the processed CCA.  

Vessel isolation (f9(x,y)) 

The root arterial segments of the RCA selected to be isolated have been depicted in 

the frames.   
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Skeleton (fs(x,y)) 
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APPENDIX D: RESULTS OF CLINICAL FEASIBILITY 

ANALYSIS OF PROPOSED METHOD   

Following table enlists the results of the clinical feasibility analysis of the proposed 

method. Selected CCA are listed in CCA case ID column and the English letter of 

each case indicates the name of the diagnosed CA. Hence, ‘R’ indicates the RCA, ‘L’ 

indicates LCA and ‘C’ indicates the CX artery. Subjective analysis results are 

directly extracted from the clinical reports, which belong to these patient cases and 

objective analysis results are computed by the quantitative coronary analysis method 

proposed in this study. Severity level of both subjective results and objective results 

are determined according to the criteria mentioned in section 6.4.2.   

CCA 
case 
ID 

Subjective 
Analysis 
Result  

Severity 
Level 

Objective 
Analysis Result

Severity 
Level 

Stenosis 
Location 

3883R 90 Severe 79.18 Severe Mid 

4233R 90 Severe 57.47 Moderate Proximal 

4538R 99 Total  
Occlusion 

75.60 Severe Mid 

4585R 70 Moderate  74.19 Moderate Mid long 
lesion 

4782R 90 Severe 60.00 Moderate Proximal mid 
long lesion 

4837R 40 Minimal 65.20 Moderate Diffuse disease

5088R 90 Severe  57.29 Moderate Proximal 

5339R 95 Severe  79.83 Severe Proximal 

5371R 50 Moderate  44.19 Minimal Proximal 

5438R 70 Moderate  59.36 Moderate Mid 

5713R 99 Total  
Occlusion 

72.33 Moderate Mid 
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CCA 
case 
ID 

Subjective 
Analysis 
Result  

Severity 
Level 

Objective 
Analysis Result

Severity 
Level 

Stenosis 
Location 

4234L 99 Total  
Occlusion 

54.98 Moderate Mid culprit 
lesion 

4585L 40 Minimal 38.90 Minimal Mid 

4645L 90 Severe 66.80 Moderate Proximal  

4646L 40 Minimal 62.49 Moderate Proximal  

5084L 99 Total  
Occlusion 

71.15 Moderate Mid 

5088L 90 Severe 20.00 Minimal Proximal  

5106L 90 Severe 64.09 Moderate Proximal  

5233L 70 Moderate  65.00 Moderate Proximal  

5328L 80 Severe 88.55 Severe Mid 

5339L 70 Moderate  35.71 Minimal After d1 

5371L 40 Minimal 33.67 Minimal Proximal  

5438L 99 Total  
Occlusion 

54.70 Moderate Proximal  

5473L 90 Severe 82.00 Severe Proximal  

5556L 50 Moderate  68.60 Moderate Proximal  

4233C 70 Moderate  30.28 Minimal Proximal 

4434C 70 Moderate  49.53 Minimal Obtuse 
marginal  

4645C 70 Moderate  52.60 Moderate Proximal 

4646C 65 Moderate  55.87 Moderate Ostial  

4650C 70 Moderate  78.25 Severe Proximal 

4969C 60 Moderate  56.69 Moderate Proximal 
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CCA 
case 
ID 

Subjective 
Analysis 
Result  

Severity 
Level 

Objective 
Analysis Result

Severity 
Level 

Stenosis 
Location 

5067C 45 Minimal 50.42 Moderate Proximal 

5556C 50 Moderate  52.30 Moderate Proximal 
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