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Abstract

Vehicular communication is the key enabler of intelligent transport services (ITS).
Vehicular ad-hoc networks can be considered to be the integral component of such
communication. The state of art dedicated short range communication (DSRC), which
is a technology defined for vehicular communication, requires dedicated hardware. This
hinders the penetration of ITS, especially in developing countries. In this thesis, we
focus on analyzing the feasibility of using Wi-Fi Direct (WD), which is readily available
on many smartphones, as an alternative communication technology for VANETs.

We simulate VANETs using DSRC and WD with the help of network simula-
tor NS3 and traffic simulator SUMO. We validate our model first using existing results,
and perform simulations to evaluate the performance of both single and multi-hop com-
munications. Metrics such as throughput, end-to-end delay, packet receiving/loss ratios
for both WD and DSRC are considered.

As expected, DSRC demonstrates a better performance with regards to most
of the measured parameters. However, we observe that the performance of WD is not
drastically inferior. Delays is the most crucial performance measure in a VANET. Ex-
periments with different WD modifications show that the delays in WD based VANETs
can be reduced by modifying the WD protocol. As a whole, our results indicate the
potential of WD as an alternative communication technology for VANETs. Several per-
formance gaps are identified and suggestions are provided in order to enhance WD and
bridge those gaps.

Index terms— Wi-Fi Direct, Dedicated short range communication, Vehic-
ular ad-hoc networks.
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Chapter 1

Introduction

Vehicular communication has gained more attention in the recent times because
of the increasing number of vehicles and the introduction of automated vehicles.
Vehicular communication is the key enabler of intelligent transport servicess(ITS)
and its various applications. ITS applications can be categorized into three main
types [1]. Firstly, we have active road safety applications that aim to decrease the
probability of accidents and save lives. Examples of active road safety applications
include collision warnings, overtaking warnings, lane change alerts, emergency
vehicle warnings and breaking warnings. Traffic management applications which
deal with improving traffic flow, traffic coordination, and traffic assistant [1] can
be considered to be the second type. To this end, speed management and co-
operative navigation are two main categories of traffic management. Infotainment
applications are considered to be the third, and they focus on sharing additional
information such as point of interest details with the drivers.

In order to build ITS, reliable communication among vehicles and be-
tween vehicles and roadside infrastructure is needed. Additionally, some of the
applications require low latent and highly accurate data transfer. Vehicular ad-
hoc networks (VANETs) are widely used for the communication in the vehicular
environment. Next, we will introduce VANETs.

1.1 VANETS

An ad-hoc network is a network that does not rely on existing infrastructure. In
some ad-hoc networks, nodes have mobility, and such networks are called mobile
ad-hoc networks (MANETs). VANET is a subcategory of MANET. In VANETs,
two types of devices are used for communication, namely on board unit (OBU)
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Problem statement Introduction

and roadside unit (RSU). Fig. 1.1 explains a VANET with two RSU and number
of vehicles.

RSU

V2V

V2I

I2I

To internet

Figure 1.1: VANET architecture.

VANET has to overcome particular challenges prevailing in vehicular
environments, such as rapid topology change, fading due to high speed, and
multi-path propagation due to reflections from vehicles. To facilitate a robust
communication in the vehicular environment, dedicated short range communica-
tion (DSRC) was introduced based on the IEEE standard IEEE802.11p.

1.2 Problem statement

Currently, DSRC is the widely used communication technology for VANETs. The
majority of the OBUs and RSUs in the market, are based on DSRC. However,
DSRC based systems have some drawbacks, due to its requirement of specialized
hardware installation in all nodes in the network. The cost of these dedicated
DSRC devices are relatively high (commonly more than two times of a flagship
smartphone), and the installation requires technical expertise. Additionally, the
requirement of a dedicated device will make it difficult to incorporate cyclists and
pedestrians into a VANET. These issues slow down the penetration of VANETs,
especially in developing countries. Hence, a viable alternative for DSRC is bene-
ficial for the expansion of ITS.

2
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In this work, we focus on analyzing the feasibility of using Wi-Fi Di-
rect (WD) as an alternative communication technology for VANETs. WD is a
technology defined by the Wi-Fi Alliance to enable Wi-Fi devices to exchange
data without the presence of an access point. WD is available in most of the
smartphones, and if not, it can also be implemented and controlled entirely by
software. Today, it is reasonable to assume that the majority of vehicles in a
transportation network will consist of at least one WD enabled phone. There-
fore, if it is used for VANETs, the availability can be utilized to increase the
penetration speeds of ITS substantially. Also, WD will alleviate the practicality
issues related to incorporating stakeholders such as pedestrians and cyclists to
the VANET. It should be noted that WD is implemented over existing Wi-Fi
standards, and hence, future high-performance Wi-Fi standards can be easily in-
corporated. We believe that alternative communication technologies such as WD
for VANETs will be extremely useful for developing countries, where ITS seems
to be a far-fetched reality.

1.3 Approach of the research and contribution

We have analyzed the feasibility of using WD as an alternative communication
technology for VANETs, using a simulation study. A suitable system model
is built as the first step to analyze the performances of both WD and DSRC.
Wireless channel modeling is essential for an accurate VANET simulation. For
this purpose, Two-ray ground model is used as the path loss model [2], and the
Nakagami model is used to model the fading [3]. Also, the constant speed model
(delay=distance/propagation speed) is used to model the propagation delay. We
consider two topological and network models. The first one is a small-scale model,
where an RSU is placed at a junction, and two vehicles move away from the
junction at a constant speed while sending data to the RSU. This model is used for
studying the performance of single-hop communication. The second model, where
vehicles move in clusters to and from the junction, is a large scale model used for
studying the performance of VANETs with multi-hop communication. Multi-hop
communication requires routing, for that purpose we use two routing protocols,
AODV (Ad-hoc On-demand Distance Vector) [4] and OLSR (Optimized Link
State Routing) [5].

Then, we simulate several performance measures of interest such as,
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Outline of the thesis Introduction

throughput, delay, and packet receiving/loss ratios. We use network simulator
NS3 [6] to simulate the network part of the VANET, and traffic simulator Sim-
ulation Of Urban Mobility (SUMO) [7] to incorporate the mobility. Firstly, the
topology and network parameters are configured using respective NS3 modules.
Secondly, channel properties are configured according to the channel model ex-
plained above. Then, mobility traces are generated and exported using SUMO,
and finally, the data required to calculate the performance measures are captured
using NS3.

NS3 modules are first verified by comparing the generated results with
theoretical and experimental results from the literature. Then, simulations are
done for the small-scale model, while considering both communication technolo-
gies. More specifically, the throughput and the packet loss ratio are simulated.
Following the small-scale simulations, the large-scale simulations are done to ob-
tain insights into the performance of multi-hop communication. In order to gener-
alize the results, the large-scale simulations are repeated for 200 independent runs
and average results for the end-to-end delay and the packet receiving percentage
are calculated. End-to-end delays of several WD modifications are also measured
to get an idea about how WD protocol can be tuned for better performance in
terms of delay.

As expected, the performance of DSRC is better than that of WD. How-
ever, the performance gap between the two technologies is not alarmingly high.
Also, some of these performance gaps are identified, and future enhancements are
suggested.

1.4 Outline of the thesis

In Chapter 2, some of the topics related to the study are explained for a better un-
derstanding about the domain of this study. Also, a literature review is provided
at the end of this chapter. The system model used for this study, contains three
main parts namely channel model, topological model, and network model, which
is explained in Chapter 3. The simulation is done using the network simulator
NS3 and traffic simulator SUMO. This simulation setup is explained in Chapter
4. Simulations are done in two phases and the performance measures are also
collected and analyzed separately. An investigation of these results is provided
in Chapter 5. Finally, Chapter 6 concludes the thesis with the identification of
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future extensions.
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Chapter 2

Background

This Chapter explains several topics which will provide a background to the
research. Also, some of the related works are discussed in the later part of this
Chapter. We will start by introducing DSRC, the widely used communication
technology in VANETs.

2.1 Dedicated short range communications

DSRC is a standard designed to facilitate an efficient communication between
vehicles. A 75 MHz of spectrum, in the 5.9 GHz frequency band, has been
allocated for DSRC applications. In this 75 MHz spectrum, 5 MHz is reserved
as the guard band, and seven other 10-MHz channels are also defined. These
channels are configured into one control channel (CCH) and six service channels
(SCHs). The CCH is dedicated for priority messages and control messages while
SCHs are used to transfer other types of messages [8].

For PHY and MAC layers DSRC uses IEEE 802.11p standards, a mod-
ified version of the familiar IEEE 802.11 (Wi-Fi) standard. In the middle of the
stack DSRC uses a set of standards which were defined by the IEEE 1609 Work-
ing Group. These standards are defined as 1609.4 for Channel Switching, 1609.3
for Network Services (including the WAVE Short Message Protocol WSMP), and
1609.2 for Security Services. DSRC also supports the use of well known inter-
net protocols for the Network and Transport layers Internet Protocol (IP), User
Datagram Protocol (UDP) and Transmission Control Protocol (TCP). The choice
between using WSMP or IP+UDP/TCP depends on the requirements of a given
application. Single-hop messages, like in collision prevention applications, are
typically using the bandwidth-efficient WSMP, while multi-hop packets are us-
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Table 2.1: Comparison of PHY layer parameters between IEEE802.11a and IEEE802.11p

Parameter IEEE802.11a IEEE802.11p
Frequency band 2.4/5 GHz 5.9 GHz

Channel Bandwidth 20 MHz 10 MHz
Supported Data Rate (Mbps) 6, 9, 12, 18, 24, 36, 48 and 54 3,4.5, 6, 9, 12, 18, 24 and 27

FFT/IFFT Interval 3.2 µs 6.4 µs
Sub carrier Spacing 0.3125 MHz 0.15625 MHz

CP Interval 0.8 µs 1.6 µs
OFDM Symbol Interval 4 µs 8 µs

ing IP for its routing capability [9]. The PHY layer of IEEE 802.11p uses a
OFDM channel with 10MHZ bandwidth. Table 2.1 compares several PHY layer
parameters of both IEEE 802.11a and IEEE 802.11p.

The MAC layer of DSRC uses a new type of 802.11 communication
called "outside the context of a basic service set (BSS)". In traditional 802.11,
all data frames are sent between STAs that belong to the same BSS. In "outside
the context of BSS", the STAs are not belong to a specific BSS. There is no MAC
sub-layer setup required before STAs exchange data in this method.

2.2 Wi-Fi Direct Protocol

Wi-Fi Direct is a technology, defined by the Wi-Fi Alliance to enable data sharing
without an access point (AP). WD is available in most of the smartphone and
also can be implemented in other phones by software [10]. WD supports most of
the Wi-Fi standards (IEEE 802.11 a/d/g/n etc). Since WD can be used for an
ad-hoc network, additional to the vehicular application which we are looking for,
WD can also be utilized in following applications.

• Vehicle to pedestrian communication.

• Localized chat applications.

• Communication between indoor vehicles (Eg: Folk lifts in warehouses).

WD devices form groups by taking roles as either group owner (GO) or client.
Fig. 2.1 explains the structure of a WD group. Here, GOg1 and GOg2 are the
group owners of group1 and group 2, respectively, and Cgi indicates the clients of
group i. Packets are always transferred through the group owner in the original

7



Wi-Fi Direct Protocol Background

WD implementation. Only the GO is allowed to cross connect to the external
network in a WD group. Also, the GO of one group can be a client of another
group, which can be seen in Fig. 2.1, where GOg1 is the GO of group 1 and a
client of group 2. Other legacy Wi-Fi devices (not supported by WD) can also
join in a WD group by considering the GO as an AP.

Some properties in the original WD implementations cans be considered
as barriers in using WD for large-scale networks. In WD group packets are
always transferred through the GO and if GO leaves a WD group, it needs to
be re-formed, and these cause large delay in a WD network. Also, WD requires
user intervention, while connecting two devices, and this affects the formation of
autonomous networks, which is required for several ITS applications.

Group 1

Group 2
Cg1

Cg1

Cg2

Cg2

GOg2GOg1,Cg2

Figure 2.1: WD architecture.

Three types of group formation methods are allowed in WD [10]. Fol-
lowing is the complete list of steps involved in the group formation.

• Step 1 : Discovery of devices

• Step 2 : GO negotiations

• Step 3 : GO announces

• Step 4 : WPS setup phase 1

• Step 5 : WPS phase 2

• Step 6 : DHCP exchange and IP configuration

8
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However, some of WD group formation methods require only a subset of these
steps. Here, we describe the three types of WD group formation.

• Standard formation - This formation requires all steps listed above.
Firstly, P2P devices discover themselves, followed by negotiation of roles
using an intent value. One node will be elected as a GO and others will
be the clients. Then, the GO announces the credentials to other devices
(clients). Finally, the formation will be completed by making secured con-
nection between clients and the GO.

• Autonomous formation - In this formation, only steps 1,4,5 and 6 are
involved. One device will announce itself as the GO and initiate the forma-
tion. Other nodes will complete the formation by joining the autonomous
GO.

• Persistent formation - This formation is applicable for the devices which
have already formed a group, and steps 1,5 and 6 are required. If the
devices, which have already formed a group, come nearby again, they could
initiate the persistent formation. Devices will get the previously kept roles
again in the new WD group. Since they have the information about the
roles and security credentials, steps 2 and 4 are not required.

Table 2.2, contains data obtained from [10], provides data about various
delays involved in WD protocol.

2.3 Delays

In this section, we discuss about dissecting delay components in a VANET.
Firstly, we introduce several delay components and investigate their significance
in a VANET kind of network. Then, we provide in depth details about trans-
mission delay, which is the prominent components of the total delay. Finally, we
describe the packet transfer mechanisms of both technologies and show how those
mechanisms affect the total delay.

9
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Table 2.2: Wi-Fi Direct protocol delays

Description Delays(s)
Discovery
Standard 4-9

Autonomous 3
Persistent 4-9
Formation
Standard 1.5-2.5

Autonomous 1.5-2.5
Persistent 0.5-1.5
Total delay
Standard 5-10

Autonomous 4.5-5.5
Persistent 4.5-10

2.3.1 Types of delays

Delays involved in packet transferring in a wireless sensor network, such as
VANET, can be categorized into four main types.

Transmission delay - Transmission delay is the time taken for pushing the
bits of the packet to the link(wireless channel in this case). Transmission delay
Dt is given by

Dt = N/Rt, (2.1)

where, N is the number of bits in the packet, Rt is the transmission rate.

Propagation delay - Propagation delay is the time taken for the signal to travel
from sender to receiver in a wireless medium. Propagation delay Dp is given by

Dp = d/c, (2.2)

where, d is the distance between sender and receiver, c is the speed of the prop-
agating wave.

Processing delay - Processing delay is the time taken for the router to pro-
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cess the packet headers. This delay is significant only when complex encryption
algorithms are used or when header of the packets is modified in the application.
In other instances, these delays are negligible [11] compared to the transmission
delay.

Queuing delay - Queuing delay is the amount of time a packet waits for previ-
ous packets to complete transmission. This depends on the load of the network.
If the load is not high, the queuing delay will be less.

2.3.2 Comparison of delays

In this sub-section, we compare the delays described above to determine the sig-
nificance of the different delay components. Comparison is done via calculations,
using example values listed bellow.

Packet size =600 bytes
Data rate = 1Mbps
Distance between sender and receiver =150 m
Propagation speed (Speed of light) = 3X108m/s

Using the above values, the transmission delay (Dt) and the propagation
delay (Dp) can be calculated.

Dt=600X8/106s=4.8ms

Dp=150/3X108s=0.5µs

From the above results, we can observe that the propagation delay is
small compared to the transmission delay. Processing delay and queuing delays
are not significant in a simple application, like the one we use. Hence, we can
conclude that the transmission delay is the prominent component of the total
delay. In addition to these network delays, some of the protocol delays in WD
(as explained in Section 2.2) also contribute to the total delay in a WD based
VANET.

11
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2.3.3 Transmission delay in single packet transfer

This sub-section discuss the delay components that contribute to the transmission
delay of a single packet transfer between two nodes. In IEEE802.11, medium
access is performed using carrier sense multiple access with collision avoidance
(CSMA/CA) with distributed coordination function (DCF). Some inter-frame
space (IFS) intervals are used between the transmission of frames. Short IFS
(SIFS) is the first type of interval, after which an ACK or data frame will be
sent. DCF-IFS (DIFS) is the other IFS interval used with the DCF protocol.
Two types of medium sharing methods, namely basic access and RTS/CTS access
are used [12,13].

In the basic mechanism, the sender node needs to wait for a DIFS in-
terval before it sends the packet, and after SIFS interval, ACK will be sent back.
After that, the node will wait for another DIFS interval to decide whether the
packet is received successfully or not. Time interval DATA is used to indicate the
time taken to transfer the data packet. Therefore, the total delay in the basic
mechanism (DTB

) will be as follows:

DTB=DIFS+DATA+SIFS+ACK+DIFS.

In RTS/CTS mechanism, the sender node first sends the RTS(RTS) frame af-
ter waiting for a DIFS interval. Then, the receiver node will send the CTS (clear
to send) frame after an SIFS interval. After that, the sender node will send the
DATA FRAME after an SIFS interval. Finally, the receiver sends the ACK after
waiting for another SIFS interval. Hence, the total delay on RTS/CTS mecha-
nism DTRC will be as follows:

DTRC
= RTS+SIFS+CTS+SIFS+DATA+SIFS+ACK+DIFS.

However, in DSRC, the packet will be broadcasted after a DIFS interval.
Hence, single transmission delay DDSRC will be given by

DDSRC=DIFS+DATA.
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2.3.4 Comparison of transmission delays in different type of packet
transferring mechanisms

In the original WD implementation, packets are transferred by forming the group,
and messages are always passed through the GO. Let’s consider a situation where
every node in the network needs to send a basic safety message(BSM) to every
others. Assume N nodes in a network. In this network, transmission delay can be
divided into three parts. Here the time taken for single packet transfer is noted
as D

Part 1 : The time taken by every node to send their BSM to the GO

Tclienttransmison=(N − 1)×D

Part 2 : Time taken for GO to re-transmit the BSM to other nodes

Tretransmison=(N − 2)× (N − 1)×D

Part 3 : Time taken for GO to transfer its own BSM to other nodes

TGOtransmison=(N − 1)×D

DSRC uses a broadcast mechanism to transfer BSM. If one node need
to send a packet to other node, it will just broadcast it. All the nodes by the
reach of the sender, will receive the broadcasted BSM. Consider a network with
N number of nodes.
Time taken to transfer packets to all the nodes, TDSRC is given as

TDSRC = (N)×DDSRC

here, DDSRC is the transmission delay of a single packet transfer in DSRC.

2.4 Simulators

A VANET simulation requires a network setup as well as a traffic configuration.
In this study, network simulator NS3 is used along with traffic simulator SUMO,
for simulating these to components. The network simulator NS3 and its suitability
in VANET simulations, is described in the next sub-section.

13
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2.4.1 NS3

NS3 is a widely used network simulator. The NS3 project has a solid simulation
core that is well documented and easy to use and debug. Several helper classes are
available in NS3 that can be used for VANET simulations [7]. NS3 follows event-
based simulation, where events are initiated through calling functions, scheduled
to execute at a prescribed simulation time. This is done by callback functions
[14]. NS3 allows both IP and non-IP based networks, and supports a real-time
scheduler for interacting with real systems.

Every simulation in NS3 is an independent program. For wireless simu-
lations, some common steps are followed. Firstly, nodes will be initialized. Then,
wireless channels and its properties will be configured using respective methods.
After that, the MAC and PHY models will be installed in each node. Finally, ap-
plication will be configured to send/receive data and to monitor the performance
measures. Flow diagram provided in Fig. 2.2 explains the architecture of a NS3
simulation [2]. It shows, how the net devices (WD/DSRC devices) are configured
with the protocol and application, and installed into nodes. Those nodes are then
connected through a realistic channel.

Application Application

Protocol

stack

Protocol

stack

Net device Net device

Channel

Node Node

Figure 2.2: Architecture of NS3 simulation.

For VANET simulations, several NS3 modules are needed. Table 2.3
shows some of the required modules and available solutions in NS3.
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Table 2.3: Availability of related NS3 modules

Requirement Available NS3 modules
Node creation Node container

Device configuration Wi-Fi 802.11,DSRC (IEEE 802.11p)
Propagation Two-ray ground path loss model, Nakagami fading, Constant speed delay model

Packet transfer UDP packet sink, UDP client server, Onoff application
Mobility NS2 mobility helper, Constant velocity mobility model

Data collection Flow monitor
Visualization NetAnim animator, PyViz visualizer

Tracing Pcap packet tracing, ASCII tracing
Routing AODV, OLSR, Static

Addressing IPV4 address helper

NS3 also includes some inbuilt mobility models, that can support basic
mobility patterns. However, a complex mobility model requires a dedicated traffic
simulator. In this study, we use SUMO traffic simulator, to model large-scale
networks. An introduction to SUMO is provided in the next sub-section.

2.4.2 SUMO

SUMO is a widely used open source traffic simulator, which is used for microscopic
road network simulations [14]. Following features are available in SUMO:

• Traffic simulation with different road and vehicle configuration.

• Exportable files to use with a network simulator.

• High interoperability (use XML files only).

• High portability.

Scenarios are created by using separate XML files. Three files are needed
for a SUMO simulation. Files with nod.xml and edg.xml extensions contain the
road network information such as nodes and links, respectively. As shown in Fig.
2.3, using netconvert tool, nod.xml and edg.xml files are converted into net.xml
file, which will contain overall detail about the road network. Files with rou.xml
extension is created from flow.xml file, using a tool called duarouter, and contains
the traffic demand and route information [7]. Ultimately, the net.xml and the
rou.xml files will be compiled into sumo.cfg file, which can be used to visualized
the road network in SUMO. Using some additional tools, SUMO files can be
converted into NS3 supported mobility trace files. Fig. 2.4 explains, how SUMO
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nod.xml edg.xml flow.xml

netconvert duarouter

net.xml rou.xml

sumo.cfg

Trace file

Figure 2.3: Creation of a mobility model using SUMO.

trace files(sumo.cfg) are converted into NS3 supported files using a tool called
"traceExporter.py".

SUMO trace files

traceExporter.py

ns2mobility-output

NS3 suported traces

Figure 2.4: Generating NS3 supported trace files from SUMO traces.

2.5 Related works

WD is a relatively new technology and not designed with the idea of making large-
scale networks. Hence, we find only a small amount of works related to VANETs
based on WD. The work in [15] introduces WD as an alternative to DSRC. A the-
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oretical comparison between DSRC and WD focusing on the transmission delay
is provided as the main contribution. They have identified the re-transmission
through GO as the main component of transmission delay, and hence, proposed a
GO broadcast based method to reduce the transmission delay. Delays related to
WD group formation are not included in this work. Additionally, pros and cons
of using WD instead of DSRC are analyzed. The study in [16], also proposes WD
as an alternative communication strategy for VANETs. They have considered
the protocol delay components of WD, which is not considered in [15], and have
provided an analysis on WD group formation delays. Also, they have addressed
the issue of group failure because of the GO leaving the group. Algorithms are
provided for selecting a backup group owner and exchanging the role between GO
and backup group owner. They have demonstrated an analytical model to show
the performance of their group formation algorithm.

In [17], another comparison is presented between DSRC and WD, con-
centrating on the MAC layer, and analyzing the average throughput and collision
probabilities. They have provided a mathematical analysis by implementing a
non-uniformly distributed back-off timer based on the binomial distribution for
the contention window. Their goal is to reduce the collision probability and
increase the throughput in a WD network.

There are few other papers which are not based onWD utilized VANETs,
but directly related to our work. Out of them, [10] presents a performance evalu-
ation of WD for device to device communication with the help of an opensource
WD implementation. Firstly, they have provided a technical overview of WD by
explaining the group formation and architecture. Secondly, three types of group
formations are analyzed with the delays associated with every step. Finally, they
have presented a study on security and power management.

Furthermore, in [18], a VANET based on smartphones is presented.
In this work, the network is created by toggling Wi-Fi between hot-spot/client
functionality. This solution can be implemented without rooting the smartphone
and enable auto connection of devices without user intervention. They have
provided an analysis on optimum time for being in each function (hot-spot/client).
Experimental results are also provided with improved performance in vehicular
data collection.

The work in [19] describes a smartphone based vehicular communication
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system named SPIVC. With the help of a centralized server, they have used Wi-Fi
and a cellular network for building SPIVC, and have done some field test for GPS
accuracy and communication delays of their system. By using the results from
the conducted experiments, they have determined the optimal configurations for
SPIVC.

The work in [20], is a comparison of performance in a VANET, be-
tween Wi-Fi and DSRC. First, they have introduced the current standards and
requirement for vehicular communication. Then, they have done experiments us-
ing off-the-self DSRC and Wi-Fi radios, for observing the effects of message size,
message frequency, weather, mobility, and speed in the communication. Results
from these different conditions are provided based on real world experiments.

In [21], a comparison study is done betweenWi-Fi standards IEEE802.11a
and IEEE802.11p. Results of some real world experiments for comparing the per-
formance of VANETs based on IEEE802.11a and IEEE802.11p, are provided in
this work. Contact time with the roadside infrastructure and throughput with
different data rates, are measured as the main performance measures in this study.

Finally, the work described in [22] analyzes on incorporating the RF
front end of DSRC (IEEE 802.11p) into smartphone hardware. They have mod-
ified existing Wi-Fi radios in smartphones, with the support of IEEE802.11a, to
support IEEE 802.11p. They also address the power and area management issues
of combining smartphones and the DSRC technology.
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Chapter 3

System model

The primary goal of this study is to compare the performances of both WD and
DSRC, in a VANET scenario. We present a system model for this comparison
study by considering three main aspects. Firstly, we design a reliable channel
model between two nodes in a VANET, which is explained in Section 3.1. Sec-
ondly, the topology of the system and the mobility of the nodes are configured,
and these are explained in Section 3.2. Finally, our network model is explained
in Section 3.3.

3.1 Channel model

The channel between two nodes needs to be modeled carefully so that the relia-
bility can be improved. Two main types of attenuation can be seen in the wireless
channel in a vehicular environment. The first type is the path loss, and it depends
on the distance between the sender and the receiver. The path loss modeling is
described in the next sub-section. In addition to the path loss, there is fading
in the vehicular environment due to multi-path propagation. Therefore, a prob-
abilistic model needs to be incorporated to model the fading, which is described
in Sub-section 3.1.2.

3.1.1 Path loss model

Path loss models are used to calculate the attenuation in signal power while
traveling in the propagation medium. Several models are there to evaluate the
path loss in a wireless medium. Free space path loss is modeled for line of sight
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communication as

Pr ∝ 1/d, (3.1)

where Pr is the received signal power and d is the distance between the sender
and the receiver. The Fris propagation model [2] extends the free space model
by integrating the antenna gain. This also assumes a clear line of sight path, and
ignores scattering by atmospheric particles. In Fris model, the received power Pr

is given as

Pr =
PtGtGrλ

2

(4π)2d2L
, (3.2)

where Pt is the transmitted power, Gt andGr are the transmit and receive antenna
gains, λ is the wavelength of the signal and L is the system loss [2].

Two-ray ground model incorporates the heights of the antennas into the
model [23]. Also, the wavelength is not a factor in the Two-ray ground model
equation, where received power Pr is given by

Pr =
PtGtGrht

2hr
2

d4L
, (3.3)

where L is the system loss which is a scalar, Gt and Gr are the scalar gains at the
transmit antenna and the receive antenna respectively, and ht and hr are the an-
tenna heights at the transmitter and receiver in meters respectively. The Two-ray
ground model assumes a line of sight path as well as a reflected path to calculate
the received power. The implementation of the Two-ray ground model in NS3 is
provided in [2]. The Two-ray ground model won’t give proper measurements for
short distances due to the oscillations caused by the constructive and destructive
combination of the two rays [24]. Hence, the work in [2] introduced a crossover
distance, which estimates the point where the signal will reflect off the ground.
Until the crossover distance, Fris model is used instead of Two-ray ground model.
The crossover distance dcross is calculated as

dcross =
4πhthr
λ

, (3.4)

Fig 3.1 explains various parameters of the channel model used in our study.
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Figure 3.1: Parameters of channel model.

3.1.2 Fading model

A deterministic propagation model alone is not enough to provide a realistic
channel. Randomness is mainly caused due to high mobility and multitude re-
flection [25]. Rayleigh and Rice distributions are also used to model the envelop
of the fading channel. However, several studies indicate that Nagakami model is
more suitable for vehicular environment [25–30].
According to the Nakagami fading model, the probability density function of the
received signal amplitude is given by

f(x : m,ω) = 2
mm

Γ(m)ωm
x2m−1exp−m

ω
x2

, (3.5)

where m is the fading depth parameter, ω is the average power and Γ(·) is the
Gamma function. In our setup, we consider three distant fields separated at
distances d1 and d2, and hence, we use three fading depth parameters m0, m1

and m2 (please refer to Fig. 3.1) for those three distance fields.

3.1.3 Limitation of channel models

Our channel model is configured with the proper selection of a path loss model
and fading model. However, there are still some limitations in the model. Some of
the recent studies suggest that obstacle modeling will give more accurate results
[31–33] in a VANET environment. They have suggested a model, which will
give radio-interfering conditions that are caused by the obstacle within VANET
topology.
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Also, in most of the scenarios, vehicles are moving at a high speed,
and the velocity of the vehicles also will affect the signal propagation. It should
be noted that the considered propagation models are not taking velocity as a
parameter. In these cases, range is the main factor considered for calculating the
received power, and velocity will be a determining factor only when readings are
taken with time.

Despite these limitations, we use the model explained in Section 3.1
because of two reasons. Firstly, we feel our selection of propagation models is
suitable for this study because our main concern is comparing the performance
of DSRC and WD. Hence, using a similar propagation model with adequate
accuracy will serve the purpose. Secondly, even though some studies implements
an obstacle model for NS3, those implementations are not included in official
NS3 release used in this study. Also, any propagation models that considering
velocity as a factor are not implemented in NS3. Due to time constraints, we
decided not to concentrate on implementing new modules in NS3, and focused
on the comparison study.

3.2 Topological Model

Topology and mobility also need to be configured properly in a VANET sim-
ulation. Road networks need to be modeled, together with vehicles, and their
mobility pattern. In our simulation study, two topological models are used. The
first model is used for small-scale simulation, and it contains two vehicles and
one RSU. The second model is a large-scale model with clusters of vehicles. Both
models are designed for a junction scenario. Next, we will describe our small-scale
model.

3.2.1 Small-scale model

In the first phase of the simulations, we intended to do a comparison of perfor-
mance between DSRC and WD with single-hop communication. The topology
model for the Phase 1 simulations, is shown in the Fig. 3.2. We can notice that,
in the small-scale model, two nodes (vehicles) are moving away from the junction
with velocities v1, v2 and sending packets to the RSU at the junction. Constant
velocity model is used here to model the mobility of the vehicles.
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v2

RSU

Vehicle

Packets

Mobility

v1

Figure 3.2: Phase 1: Small-scale model.

3.2.2 Large-scale model

The large-scale model is designed to compare the performance in multi-hop com-
munication. In order to group the vehicles, and easily differentiate their relative
positions, vehicles are divided into clusters. Vehicles are divided into C clusters,
and let γi, where i ∈ 1, . . . , C, be the number of vehicles in cluster i. All vehicles
in cluster i move at the same velocity vi. A junction similar to Phase 1 is consid-
ered. In this phase, some of the clusters are moving towards the junction, while
some clusters are moving away from the junction. This means, some clusters are
moving close to each other, and some are moving away from others. An example
for Phase 2 is provided in Fig. 3.3, where C = 4, γ1 = γ3 = 13 and γ2 = γ4 = 12.

3.3 Network

As the final step of the system modeling, network part need to be designed. In
Phase 1, the packet transfer is from the moving nodes (vehicles) to the static
node (RSU) in the junction. UDP packets of size sp1 each are sent at a rate of rp1
directly to the RSU. These packets are received by the RSU, and the performance
measures are calculated.

In the large scale model, a vehicle can either communicate with a vehicle
inside its cluster or a different one. Such a communication process (data transfer)
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v1 v2
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Figure 3.3: Phase 2 : large-scale model.

is called a “flow" in this thesis. Let F be the number of flows in the network. In
each flow, λp2 packets of size sp2 each are transmitted at a rate rp2. Unlike in Phase
1, packets may be sent through multiple hops, in Phase 2. Intermediate vehicles
are functioning as re-transmitters for this purpose. The performance measures
are calculated for these flows in the simulations. Since the packet transfers in
Phase 2 involve multi-hop, it requires a routing protocol, which is explained in
the next sub-section.

3.3.1 Routing protocols

A routing protocol is needed for the efficient transfer of packets in a VANET,
where the transmission requires multiple hops, and nodes are highly mobile.
There are two main categories of routing protocols used in VANET studies. The
first category is an active protocol that dynamically finds the routing path ev-
ery time. The second category is proactive routing scheme, which periodically
calculates the routing path, and maintains the routing table. In this study, we
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select two widely used routing protocols AODV [4] and OLSR [5] from each cat-
egory and compare their performance in VANETs. These two routing protocols
are studied in various researches for their use in VANETs, and also some works
compare their performance in VANETs [34–37].

3.3.1.1 Ad-hoc On-Demand Distance Vector (AODV)

The AODV protocol initiates a route discovery process whenever a packet needs to
sent from a source node to the destination. The source node starts the process by
broadcasting a route request (RREQ) packet. After that, the neighbor nodes also
forward the packet to the next node until the route is found to the destination. If
the maximum number of hops are reached, nodes will stop forwarding the packet.
Ultimately, when an intermediate node is aware of the route to the destination, it
will send a Route Reply (RREP) packet back to the source node. By this means,
the source node will get to know the route to the destination, and will send the
packet [37].

As explained above, the route is calculated actively in the AODV proto-
col, and it has its pros and cons. Using an active routing method will be beneficial
for ad-hoc networks with mobility. Since the global topology of the network will
change rapidly, a dynamic protocol will incorporate those changes and perform
well. However, being dynamics, and calculating route every time, increases the
latency in routing, and eventually, affects the throughput.

3.3.1.2 Optimized Link State Routing Protocol (OLSR)

OLSR is a proactive protocol, in which each node periodically constructs its set of
neighbors with hop distance up to two [37]. An algorithm named multi-point relay
(MPR) will find the active relay to cover all the two-hop neighborhoods. This
algorithm also minimizes the number of active relays since, only the selected nodes
(by MPR from sender) forward the packets. OLSR send link state information
periodically to construct and maintain the routing tables. After the saturation,
each node will have the active path to each other node in the network. Hence
OLSR is a proactive protocol, it will construct the routing table periodically.
This may be suitable for a network which has slow changes in topology, such as
urban traffic scenarios.
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Chapter 4

Simulation Setup

Our simulation setup is aimed at designing a VANET, based on the system model
described in the previous chapter to compare the performances of both WD
and DSRC. Several components are essential in a simulator to design a realis-
tic VANET. A list of simulation modules is provided in Table 2.3. NS3 has a
DSRC implementation with the support of IEEE802.11p protocol. However, WD
has not been implemented in NS3 at the time of the project. In our simulations,
we use the existing Wi-Fi implementation in NS3 to develop a model that gives
similar performance to a WD based network. Since our primary focus is on the
transmission delays of both networks, we have not considered some of the pro-
tocol delays in WD in the initial stage. We will first discuss several important
steps of the simulation, which are summarized in Fig. 4.1 .

Node creation

Device

configuration

Channel

modelling

Mobility

configuration

Application

configuration

Data

collection

Mobility

traces

Figure 4.1: Steps of the simulation.
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4.1 Node creation

The first step of the simulation is creating the nodes using the node container
class, which is done as follows:

NodeContainer c ;

If different types of nodes are required in a simulation, several node contain-
ers need to be defined, but in this simulation, we use all the nodes with same
properties(similar device). After creating the device containers, nodes need to be
created for each container, using

c . Create (numNodes ) ;

The required number of nodes depends on the topology of the simulation, and
it needs to be aligned with the mobility model. Until this point of simulation,
nodes have no properties. Hence, these steps are common for both WD and
DSRC simulations.

4.2 Channel modeling

Modeling the channel between two nodes is the next step in the simulation. As
explained in Chapter 3, Two-ray ground model and Nakagami model are used
to model the channel. Also, constant speed delay model is used to configure
the propagation delay. NS3 has the implementation of these two propagation
loss models and the delay model. We configure the parameters using respective
helper classes. As the first step, channel is defined by using the YANS Wi-Fi
PHY module as follows:

YansWifiChannelHelper wi f iChanne l ;

After defining the channel object, delay and loss models are added to the channel
using respective functions. Constant speed delay model is added to the channel
using SetPropagationDelay function, as follows:

wif iChanne l . SetPropagationDelay ( "ns3 : : ConstantSpeedPropagationDelayModel " ) ;

Two-ray Ground path loss model is introduced and configured with its
parameter as shown bellow.
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wif iChanne l . AddPropagationLoss ( "ns3 : : TwoRayGroundPropagationLossModel" ,
"Frequency" , DoubleValue ( f r e q ) ,
"HeightAboveZ" , DoubleValue ( he ight ) ,
"SystemLoss" , DoubleValue ( s y s l o s s ) ) ;

Frequency is set according to the protocol (5GHz for WD and 5.9GHz for DSRC)
for the "Frequency" parameter. The height of the antenna is set as "HeightAboveZ"
parameter in this function. System loss is set using the parameter "SystemLoss".
Nagakami loss model is added in addition to the path loss model for giving the
fading effect to the channel as follows:

wif iChanne l . AddPropagationLoss ( "ns3 : : NakagamiPropagationLossModel " ,
"Distance1 " , DoubleValue ( d1 ) ,
"Distance2 " , DoubleValue ( d2 ) ,
"m0" , DoubleValue (m0) ,
"m1" , DoubleValue (m1) ,
"m2" , DoubleValue (m2) ) ;

Here, "Distance1","Distance2" are the distances, which divides the distance fields
and "m0","m1","m2" are the fading depth parameters of the distance fields as
explained in Fig. 3.1. Channel is configured in a similar manner for both tech-
nologies in order to provide the same environment for both technologies.

4.3 Device configuration

In this step, we configure the nodes with different net devices and set up their
PHY, MAC layers using the helper classes. Configurations in this step are differ-
ent for both technologies. We will start by describing the DSRC configuration.
Initially, a IEEE802.11p device is defined using the Wifi80211pHelper module
and PHY layer object is defined by using YansWifiPhyHelper module as follows:

Wifi80211pHelper dsrc = Wifi80211pHelper : : De fau l t ( ) ;
YansWifiPhyHelper dsrcPhy = YansWifiPhyHelper : : De fau l t ( ) ;

After defining the PHY object, the physical layer configuration is added to the
object using the set of following functions.

dsrcPhy . Set ( "TxPowerEnd" , DoubleValue ( power ) ) ;
dsrcPhy . Set ( "TxPowerStart" , DoubleValue ( power ) ) ;
dsrcPhy . SetPcapDataLinkType ( YansWifiPhyHelper : : DLT_IEEE802_11_RADIO) ;
dsrcPhy . SetChannel ( wi f iChanne l . Create ( ) ) ;
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Here, the TxPowerEnd, TxPowerStart parameters are the maximum and mini-
mum available powers, respectively. We set the same value for both in-order to
make a constant transmission power. The last line of the above snippet shows
how the channel properties are assigned to the PHY object. After configuring the
PHY layer, the MAC layer object is defined using NqosWaveMacHelper module
of the NS3 as follows:

NqosWaveMacHelper dsrcMac = NqosWaveMacHelper : : De fau l t ( ) ;

The "dsrc" object is configured with the device parameters as shown bellow.

dsrc . SetRemoteStationManager ( "ns3 : : ConstantRateWifiManager" ,
"DataMode" , Str ingValue (phyMode ) ,
"ControlMode" , Str ingValue (phyMode ) ) ;

Using the SetRemoteStationManager, the node is configured with the Wi-Fi man-
ager, the data mode, and control mode. Here, the ""DataMode" is the data rate
of the device used.

Finally, DSRC net devices are created using NetDeviceContainer object
by installing the PHY and MAC objects to the "dsrc" object.

NetDeviceContainer dev i c e s = dsrc . I n s t a l l ( dsrcPhy , dsrcMac , c ) ;

The configuration of WD devices also follows the same procedure, except it uses
different PHY, MAC and device modules. Following part of the code explains
how these modules are defined for WD. Also, sample code for WD simulation is
provided in Appendix A.1.

WifiHelper w i f i ;
YansWifiPhyHelper wif iPhy = YansWifiPhyHelper : : De fau l t ( ) ;
NqosWifiMacHelper wifiMac = NqosWifiMacHelper : : De fau l t ( ) ;

4.4 Mobility

In this section, we are going to explain about configuring mobility to the nodes
in the simulation. Some basic mobility models are implemented in NS3 such as

• ConstantPosition

• ConstantVelocity
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• ConstantAcceleration

• RandomDirection2D

• RandomWaypoint

• RandomWalk2D

However, mobility in VANET simulation requires some complex and customized
requirements, which cannot be done with the available basic mobility models in
NS3. Hence, we use external means of introducing mobility. In Chapter 3, the
steps are described on how a NS3 supported mobility trace file can be obtained
using traffic simulator SUMO. Following code is a example of NS3 supported
mobility trace file(.tcl).

$node_ (0) s e t X_ 0
$node_ (0) s e t Y_ 0
$node_ (0) s e t Z_ 0
$node_ (1) s e t X_ 5
$node_ (1) s e t Y_ 0
$node_ (1) s e t Z_ 0
$node_ (2) s e t X_ 0
$node_ (2) s e t Y_ 5
$node_ (2) s e t Z_ 0
$ns_ at 1 "$node_ (1) ␣ s e t d e s t ␣5␣0␣5"
$ns_ at 1 "$node_ (2) ␣ s e t d e s t ␣0␣5␣5"
$ns_ at 2 "$node_ (1) ␣ s e t d e s t ␣10␣0␣5"
$ns_ at 2 "$node_ (2) ␣ s e t d e s t ␣0␣10␣5"
$ns_ at 3 "$node_ (1) ␣ s e t d e s t ␣15␣0␣5"
$ns_ at 3 "$node_ (2) ␣ s e t d e s t ␣0␣15␣5"

The initial positions of the nodes are indicated at the beginning. Then, periodi-
cally, the positions and velocities of each node are defined. These traces can be
used in the simulation with the help of Ns2MobilityHelper module in the following
way.

Ns2Mobi l i tyHelper ns2 = Ns2Mobi l i tyHelper ( " s c ra t ch /ranTW. t c l " ) ;
ns2 . I n s t a l l ( ) ;

Above steps install the mobility model to each node in the simulation.
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4.5 Application configuration

In this section, we discuss the application modules which need to be installed to
transfer packets and collect data. In the Phase 1 simulations (small-scale model),
two moving nodes are sending packets to the static node at the junction, at a
constant data rate. An NS3 application called "OnOff" is used for this purpose
as follows:

OnOffHelper ono f f ( "ns3 : : PacketSocketFactory " , Address ( socket ) ) ;
ono f f . SetConstantRate (DataRate ( dataRate ) ) ;
ono f f . Se tAtt r ibute ( "PacketS ize " , UintegerValue ( packetS i z e ) ) ;

Appl i cat ionConta iner apps = ono f f . I n s t a l l ( c . Get (Node1 ) ) ;
apps . S ta r t ( Seconds ( startTime ) ) ;
apps . Stop ( Seconds ( endTime ) ) ;

As shown above, the OnOffHelper object is configured with parameters such as
data rate and packet size. This will send packets from the sender node to the
receiver node at a constant data rate. After configuring the application, it is
installed on all the nodes. The application is configured to start and stop at the
required time, using start and stop functions.

In Phase 2 simulations, we use an application similar to Phase 1. How-
ever, instead of using "OnOff" application, we design our sender application.
Sample code for this application is provided in Appendix A.2. This application
will send a packet soon after the previous packet sent. Following lines show how
the receiver node (hereafter it will be referred as sink node) is configured, and
sink app is initiated on it.

Address s inkAddress1 ( InetSocketAddress ( i f c o n t . GetAddress ( to1 ) ,
s inkPort ) ) ;

PacketSinkHelper packetSinkHelper1 ( "ns3 : : UdpSocketFactory" ,
InetSocketAddress ( Ipv4Address : : GetAny ( ) , s inkPort ) ) ;

Appl i cat ionConta iner sinkApps1 = packetSinkHelper1 . I n s t a l l ( c . Get ( to1 ) ) ;
sinkApps1 . S ta r t ( Seconds ( startTime ) ) ;
sinkApps1 . Stop ( Seconds ( endTime ) ) ;

Firstly, the sink address is obtained from the sink node. Secondly, the sink helper
object is initialized using the sink port. Then, the app is installed in the receiver
node. Finally, the sink app is started and stopped according to the required
times. After sink node configuration, the sender node is configured as follows:
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Ptr<Socket> ns3UdpSocket1 = Socket : : CreateSocket ( c . Get ( from1 ) ,
UdpSocketFactory : : GetTypeId ( ) ) ;

Ptr<MyApp> app1 = CreateObject<MyApp> ( ) ;
app1−>Setup ( ns3UdpSocket1 , s inkAddress1 , packetS ize , numPackets ,

DataRate ( datarate ) ) ;
c . Get ( from1)−>AddApplication ( app1 ) ;
app1−>SetStartTime ( Seconds ( startTime ) ) ;
app1−>SetStopTime ( Seconds ( endTime ) ) ;

The socket for sending the packet is created with the address of the sender node in
the first two steps of the above snippet. An object for the sending application is
created in the remaining steps above. This object is configured with the addresses,
the size of the packet, number of packet and data rate. After these steps, the app
is started and stopped according to the required simulation time. The application
will be sending required number of packets in specific size with specific data rate.

In the large-scale simulations, the nodes are moving in clusters, and
data transfer is via a multi-hop network. Hence, we configure two routing proto-
cols AODV and OLSR. Following example describes the configuration of OLSR
routing protocol.

OlsrHelper o l s r ;
AodvHelper aodv ;
Ipv4ListRout ingHelper l i s t ;
l i s t .Add( o l s r , 1 0 ) ;

In te rne tStackHe lpe r i n t e r n e t ;
i n t e r n e t . SetRoutingHelper ( l i s t ) ;
i n t e r n e t . I n s t a l l (Nodes ) ;

in the first four steps of the above code, routing objects are defined and added
to the routing list. In the next three lines, the list is added to the Internet stack,
and the routing scheme is installed on all the nodes. It should be noted that the
above example is about configuring OLSR and line 4 need to be replaced with
"aodv" for configuring AODV routing. After every parameter related to nodes are
configured, following lines are placed to run the simulation for a specific period.

Simulator : : Stop ( Seconds ( stopTime ) ) ;
S imulator : : Run ( ) ;

Simulation is started using "waf" tool. Additional parameters can be
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passed as arguments with the code. Following terminal command explains the
way of running the simulation.

. / waf −−run " s c ra t ch / scr iptname ␣−−parameter1=value "

4.6 Data collection configuration

In the above sections, we have discussed how to configure the topology and packet
transfer in the VANET network. In this section data collection process is ex-
plained. In Phase 1 of the simulation, data collection is straightforward since
all the packets are sent towards the RSU at the junction. These statistics are
calculated using functions with the help of callbacks in NS3.

However, for the large-scale simulation, data collection is more com-
plicated. Hence, a data collection framework called "Flow monitor" is used to
organize the data. Flow Monitor module is designed to measure the performance
metrics in an NS3 simulation. It uses probes in network nodes to track packets
through the nodes. These probes will measure some parameters such as transmit-
ted bytes, received bytes, end-to-end delay, transmission time, received time and
jitter sum for each flow. Here, flow is categorized by packets with same source
and destination. This data is exported to an XML format. From this, we can
calculate metrics like packet delivery ratio, throughput, and end-to-end delay etc.
The following steps show how the flow monitor is installed in the simulation.

FlowMonitorHelper flowmon ;
Ptr<FlowMonitor> monitor = flowmon . I n s t a l l A l l ( ) ;

After installing the flow monitor, the classifier is defined to identify the
flows using the source and destination IP.

Ptr<Ipv4F lowCla s s i f i e r > c l a s s i f i e r =
DynamicCast<Ipv4F l owC la s s i f i e r ( flowmon . Ge tC l a s s i f i e r ( ) ) ;

s td : : map<FlowId , FlowMonitor : : FlowStats> s t a t s =
monitor−>GetFlowStats ( ) ;

Using the classifier, we can calculate performance measures, by utilizing the ex-
ported data. Following part of the code explains how the required parameters
can be calculated from the flow statistics.

for ( std : : map<FlowId , FlowMonitor : : FlowStats >: : c on s t_ i t e r a to r i t e r =
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s t a t s . begin ( ) ; i t e r != s t a t s . end ( ) ; ++i t e r )
{

Ipv4F l owC la s s i f i e r : : FiveTuple t =
c l a s s i f i e r −>FindFlow ( i t e r−>f i r s t ) ;

i f ( ( t . sourceAddress == Ipv4Address ( ip1 )
&& t . de s t ina t i onAddre s s == Ipv4Address ( ip2 ) ) )

{
NS_LOG_UNCOND( i t e r−>f i r s t << "␣␣"
<< t . sourceAddress << "␣␣"
<< t . de s t ina t i onAddre s s << "␣␣"
<< i t e r−>second . txPackets <<"␣␣"
<< i t e r−>second . rxPackets << "␣␣"
<<i t e r−>second . delaySum . GetSeconds ( ) ) ;

}
}

Using the for loop, the code is iterating through flows, and calculating the pa-
rameters of interest. In the given example, the number of received packets and
delay are calculated.

4.7 Additional modules

Above sections covered the important steps in the simulation. Additional to those
steps, there are some modules that can also considered important. In this section,
some of these additional modules are discussed.

Firstly, we discuss on the SeedManager module, which is used to run
an independent instance of the simulation. Some part of the simulation has
randomized components. Hence, running one instance of the code won’t give us
fair results. The SeedManager is used to run independent simulations of the same
code. The following part of the code is used to configure the SeedManager.

ns3 : : SeedManager : : SetSeed ( Seed ) ;
ns3 : : SeedManager : : SetRun (Run ) ;

Here, the "Seed" and "Run" parameters can be changed to get the difference
instances. The simulation is repeatedly run with different "Run" values.

Secondly, we discuss some of the modules that can be used to visualize
the simulation results. NetAnim module is used to configure the visualization
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using AnimationInterface.

Animat ionInter face anim ( " traceAnimation . xml" ) ;
anim . EnablePacketMetadata ( ) ;

This will give the XML output, which can be opened with NetAnim tool for the
visualization. In addition to the visualization, some of the metrics are plotted
with the help of the "Gnu plot" module.

Finally, we introduce some of the tracing related modules. NS3 can
generate "pcap" files, which contain the packet traces. This files can be opened
using tracing tools such as Wireshark and TCP dump to analyze the packet
transfers.

WifiPhy . EnablePcapAll ( " t r a c e f i l e " ) ;

An ASCII file can also be generated in the format of .tr as the output, and can
be extracted from it, as follows:

Asc i iTraceHe lper a s c i i ;
WifiPhy . Enab l eAsc i iA l l ( a s c i i . CreateFi leStream ( " t r a c e f i l e . t r " ) ) ;

4.8 Other tools

In this section, we discuss some additional tools, which supplements the NS3
modules, especially related to data processing. Tools such as Linux shell scripts,
"Sed" text editor and Python programming language are used for this purpose.
Separate instances of the code are need to be run with different seeds for getting
the independent set of results. This is done by using a shell script in Linux.

#! / bin /bash
echo "200␣ independent ␣ runs "
cd / d i r e c t o r y
. / waf −−run " s c ra t ch / s imu la t i on_sc r ip t ␣−−Run=1"
. / waf −−run " s c ra t ch / s imu la t i on_sc r ip t ␣−−Run=2"
. / waf −−run " s c ra t ch / s imu la t i on_sc r ip t ␣−−Run=3"
. / waf −−run " s c ra t ch / s imu la t i on_sc r ip t ␣−−Run=4"
.
.

All of the outputs from the simulations are exported into text files, which
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are then processed using "Sed" editor to filter the required lines. Finally, Python
scripts are used to process these metrics, and calculate the statistical results.
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Chapter 5

Results and Discussion

In this chapter, the results of simulations that compare the performance between
WD and DSRC, are discussed. More specifically, we focus on the throughput,
delay and packet loss ratio in the simulations related to the small-scale model.
Then, we focus on the average end-to-end delay and the average packet receiving
percentage in the simulations related to the large-scale models. Parameters are set
as follows, and the values are consistent with the values used in the literature [30].
The Two-ray ground propagation model parameters are set as hr = ht = 1.5m
(an estimate of the vehicle height), L = 1 and Gr = Gt = 1. Transmit power
(Pt) is considered to be 40mW (16dBm) for WD and 2W (33dBm) for DSRC,
based on the recommended power setting in respective technology standards.
In the Nakagami model, the distance fields are set by selecting d1 = 50m and
d2 = 150m, and the fading depth parameters are set as m0 = 3, m1 = 1.5,
m2 = 1 . Prior to the primary simulations, the related modules are verified using
some experimental and theoretical results.

5.1 Verification

The NS3 simulation modules are validated, before starting the performance com-
parison, in order to make the results more trustworthy. Some of the existing
results are compared with the simulation results for this validation. The small
scale model is used for the validation, and results from one hop communication
are compared. However, we couldn’t find many of the metrics related to WD for
VANET in literature. Therefore, we start our validation with DSRC modules.

To this end, the behavior of the throughput with the distance, between
two nodes is compared with existing experimental results in [21]. For this simu-
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lation, λp1 is set at 1000, velocities of both vehicles (v1, v2) are set at 54 km/h
and sp1 is set at 1000 Bytes. Values are selected for rp1 in accordance with [21].
Fig. 5.1 illustrates the comparison of throughput. It can be observed that the
simulation results show adequate conformity with existing experimental results.
More specifically, we can observe that the patterns at which the graphs change
are similar, but there are some differences in values, which can be expected when
experimental results are compared with simulation results. We can see that the
selection of the parameters of the fading model looks reasonable as well. However,
we may be able to get a closer match by fine tuning the fading parameters.
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Figure 5.1: A comparison between the theoretical, experimental and simulation based throughput results.

We also intended, to validate the WD related modules, but unfortu-
nately, a suitable data set for WD is not found in the literature. However, in our
comparison of DSRC and WD, mostly, the same simulation parameters (chan-
nel properties, mobility, and applications) are used. Under our assumptions, the
only key differences are with regards to transmitting power, bandwidth, and fre-
quency (IEEE 802.11a uses 20 MHz bandwidth at 5.15 GHz while IEEE802.11p
uses 10MHz at 5.9 GHz). While studying the codes and implementation docu-
ments of DSRC in NS3, we have found that the DSRC (IEEE802.11p) modules,
which we considered in the simulation, are extended from the Wi-Fi (IEEE802.11)
modules, by accounting for the aforementioned differences. Also, the MAC model
used in the DSRC implementation is similar to the ad-hoc Wi-Fi MAC, which is
used in our WD model. Because of these reasons, we can expect the WD modules
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to function similarly to the DSRC modules. Therefore, although not perfect, we
believe that the DSRC validation presented in Fig. 5.1 is adequate to consider
the results from the WD modules to be trustworthy as well. Propagation and mo-
bility modules have also been tested and validated by comparing with theoretical
results.

5.2 Small-scale simulations

After the validation, performance measures of interest are simulated for both
DSRC and WD, considering the direct packet transfer (single-hop communica-
tion), using the small scale model. Most of the parameters, that were set for
the validation process are kept at the same values for these simulations as well.
Firstly, we compare the packet loss ratio of both technologies. Fig. 5.2 illustrates
the behavior of the packet loss ratio with the distance between the transmitter
and the receiver, for both communication technologies. We can observe that the
packet loss ratio increases more rapidly for WD compared to DSRC. The lower
transmit power in WD can be considered as the reason for this behavior. Since
the transmit power is lower for WD, the range at which it can communicate reli-
ably is less compared to DSRC. As the two technologies operate at two different
frequencies, the fading can be considered to be another reason for this behavior.
However, since the frequencies are not drastically different (both in the 5GHz
range), this can be considered to be a minor reason. Close observation of Fig. 5.2
also shows that distances of 50m and 150m are points of interest as the behavior
of the curves change at these points. This is because of the fading model. Note
that the fading depth parameters change at these two points.

Comparison of the behavior of throughput with the distance between
the transmitter and the receiver is provided in Fig. 5.4. It can be seen that the
throughput is constant up to a certain range, and then it starts to decline. When
the distance is small, the received signal strength is above the minimum threshold
for successful reception of packets. In Fig. 5.3, we can observe this, where the
declining red line indicates the receive signal power and the horizontal green line
indicates the threshold power for successful reception. This explains the reason
for the constant throughput. As the received signal strength deteriorates with
distance, the throughput starts to decrease when the distance is above a certain
value. Also, we can observe that the distance at which the throughput starts to
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Figure 5.2: Comparison of the packet loss ratio between WD and DSRC.

deteriorate is higher for DSRC. The main reason for this is the higher transmit
power used in DSRC.

-120

-100

-80

-60

-40

-20

 0

 20

 0  50  100  150  200  250  300  350  400  450  500

R
e
c
e
iv

e
d
 p

o
w

e
r 

(d
B
m

)

Distance (m)

Received power
-94 dBm Threshold

Figure 5.3: Change of received signal power with distance and threshold power for successful reception.

Another parameter of interest is the velocity at which the vehicles move.
Changing the velocity will not change the behavior of our performance measures,
with regards to the distance, as both the path loss model and the fading model are
independent of velocity. However, the rate at which the path loss values change,
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Figure 5.4: Comparison of the throughput between WD and DSRC.

depends on the velocity of the vehicles. Therefore, for different velocities, we
observe how the throughout changes with time, and the results are presented in
Fig. 5.5.
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Figure 5.5: The behavior of throughput with time at different velocities.

Similar to the observations from Fig. 5.5, the throughput is constant
for a certain interval, and then it starts to deteriorate. At the same velocity, the
time interval with constant throughput, is longer for DSRC compared to WD.

41



Large-scale simulations Results and Discussion

Furthermore, for the same technology, the time interval, where the throughput is
constant, reduces when the velocity is increased. This observation is consistent
with the observations in Fig. 5.4 as well. Due to increasing the velocity, the
vehicle will go beyond its favorable communication range much more quickly, so
the throughput will start deteriorating sooner. This also means that the commu-
nication process should be handed over to another intermediate node after this
time.

5.3 Large-scale simulations

The Phase 2 simulations are focused on the multi-hop communication scenario,
and the large-scale topological model is used for this. Parameters in the topolog-
ical and network models are set as C = 4, F = 3 , λp2 = 1000, sp2 = 600Bytes,
γ1 = γ3 = 13, γ2 = γ4 = 12, v1 = v2 = v3 = v4 = 54km/h and rp2 = 1Mbps.
Channel model parameters are set same as in Phase 1.

For the first set of simulations, we use a modified WD model and re-
sults are discussed next. We also investigate the delay using the current WD
implementation, and these simulations are explained in Sub-section 5.3.2.

5.3.1 Conceptual Wi-Fi Direct model

The first set of simulations, is done with a conceptual WD protocol which is
configured based on some assumptions. Firstly, we assume an already formed
WD group, hence the protocol delays such as group formation delays are ignored
in these simulations. Secondly, we assume that all the nodes can communicate
with another node irrespective of the roles. Finally, we assume that broadcast is
allowed in all the nodes, and making an individual connection is avoided. Some
of these assumptions are based on the modification works in literature [15,16,38].
End-to-end delay and the packet receiving percentage are calculated for every
flow, using the flow monitor. In order to get more generalized results, simulations
are run 200 independent instances. The average end-to-end delay and the average
packet receiving percentage are calculated using these results from 200 runs.

Statistical results are compared between the two communication tech-
nologies, and also between the two routing protocols. In both Fig. 5.6 and Fig.
5.7 the average end-to-end delay of WD and DSRC are illustrated for both rout-
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Figure 5.6: Comparison of average end-to-end delay with AODV routing.

Figure 5.7: Comparison of average end-to-end delay with OLSR routing.

Figure 5.8: Comparison of the average packet receiving percentage.
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Table 5.1: Average results of all flows.

DSRC-AODV WD-AODV DSRC-OLSR WD-OLSR
Average End-to-End Delay (ms) 28.00 58.37 0.56 0.96

Average packet receiving percentage 87.2 83.3 98.8 97.3

ing protocols in three flows. Also, Table 5.1 provides a more generalized results,
where the average results of these parameters are calculated among twenty flows.
We can observe that the average delay for WD is higher than DSRC in every
flows in Fig. 5.6 and Fig. 5.7. The average results in Table 5.1 also indicate the
same. These differences in delays can be explained as follows. When comparing
the delays, the key component is the transmission delay, which is the time it
takes to push the packet to the wireless link. In DSRC, the effective throughput
is higher, and the packet loss is lower, as per the results generated for Phase 1.
These factors make DSRC’s effective transmission delay less compared to WD.
Also, in terms of average delay, we can notice that OLSR performs much better
compared to AODV from the simulations. Reasons are rather obvious as AODV is
dynamic, and OLSR maintains a pre-calculated routing table. Fig. 5.8 illustrates
the average packet receiving percentage of WD and DSRC for both OLSR and
AODV and Table 5.1 shows the average results of receiving percentage for both
protocols considering twenty flows. We can observe that the average packet re-
ceiving percentage is high for DSRC and OSLR, and the reasons can be explained
using similar arguments to the ones used earlier.

5.3.2 Models with original Wi-Fi Direct implementation

In Sub-section 5.3.1, we have analyzed a conceptual WD model with several mod-
ifications to WD protocol. However, we also want to get an idea about a VANET
with the current WD implementation. Next, we will discuss the results of the
simulations on delay, using original WD implementation.

Original Wi-Fi Direct implementation - In this part, we discuss the simula-
tions done onWD delay, with the original WD implementation. These simulations
use the original WD model explained in Sub-section 2.3.4, where all the packet
transfers are through the GO and GO will make individual connections with each
client to send data. The comparison of average end-to-end delay, between this
WD model and DSRC, is provided in Fig. 5.9. We could notice that the delay in
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original implementation is higher than the conceptual implementation explained
in Sub-section 5.3.1.

Original Wi-Fi Direct implementation with Group Owner broadcast

Figure 5.9: Comparison of average end-to-end delay between original WD implementation and DSRC.

mechanism - For this part of simulations, we use a mechanism which is suggested
in [15],to improve the delay. According to their method, GO broadcasts the packet
to clients, instead of making separate connections with every client. Also, they
have assumed that the WD group is already formed, and the protocol delays are
ignored. These can be implemented with some application level changes in the
original WD implementation (hence without modifying the WD protocol). Fig.
5.10 compares the delays in these three types of WD based VANET implemen-
tations, from which we can observe that the delay of the broadcast mechanism is
in between the original and conceptual models.

Figure 5.10: Comparison of average end-to-end delay with different WD implementations (Modified- implemen-
tation in 5.3.1, Broadcast and Original-implementations in 5.3.2)
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5.4 Discussion

In this Section, we are going to analyze the results of the comparison study
of performance between WD and DSRC. From the Section 5.2, we can notice
that DSRC’s performance in single hop communication is better, compare to
WD. If we consider the packet loss ratio, the values are similar until certain
range and the increase is high for WD above that range. The throughput also
follows similar pattern, that is, close values for both technologies until a certain
range, and increasing after that range. Results of the large-scale simulations,
with conceptual WD implementation, as shown in Sub-section 5.3.1, also indicate
better performance with DSRC. We can clearly observe this in the Average end-
to-end delay and Average packet receiving ratio comparisons.

Better performance of DSRC, in VANET scenario, is expected. However,
it is important to notice that the performance of WD is not drastically inferior.
Also, we should note that the superiority of DSRC is mainly due to its higher
transmit power compared to WD. The delay is the most critical parameter, and it
is expected that the delay should be bellow 100ms for a safety critical application
[15]. Results (Fig. 5.6, 5.7) also indicate that the average delay is below this
level for both technologies in all the flows. The average packet receiving ratio
is not very low for WD either, when compared to DSRC, as shown in Fig. 5.8.
Even in Phase 1, the packet loss ratio (Fig. 5.2) is almost similar until 150m, and
the throughput achieved with both technologies (Fig. 5.4) are very close to each
other when the distance is below 200m. These results show the potential of WD
as an alternative communication technology for VANETs.

From Subsection 5.3.2, we can get an idea about the delays regarding
different implementations of WD (refer Fig. 5.10). We can observe that by
changing the WD protocol, delay performance of WD can be enhanced.

Also, from these simulations, we can identify several performance gaps
between WD and DSRC. Identifying these gaps is also very essential for future
researches that focus on enhancing the WD protocol for VANETs. Some of the
suggestions for enhancements are provided in Section 6.2.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

Vehicular communication is essential for various ITS applications, and VANETs
enable this communication. DSRC is the widely used communication technology
in VANETs. However, due to the requirement of dedicated hardware device,
DSRC has some barriers for a large-scale VANET implementations. In this thesis,
we analyzed the feasibility of using WD as an alternative technology for DSRC,
through a simulation study.

Firstly, we simulated the VANET with the help of network simulator
NS3 and traffic simulator SUMO. We configured various modules related to
VANET such as topology, channel, and network. Our simulation consisted of
various steps namely node creation, channel modeling, device configuration, ap-
plication configuration and data collection. Some additional tools were also used
for data processing and visualization.

Then, NS3 modules were validated using some available results. After
the validation, simulations were carried out in two phases. Phase 1 was done with
a small scale model with two vehicles and an RSU in the junction. Simulations
were done on single hop communication using this model. Parameters such as
packet loss ratio and throughput were measured against range in this phase.
The Phase 2 simulations, were done with a large scale model with clusters of
vehicles. In this phase, the communication happened through multiple nodes
and two routing schemes were used namely OLSR and AODV, for transfer of
packets. The average end-to-end delay and average packet receiving ratio were
calculated using 200 independent runs of the simulation. Also, delays of different
WD implementations were analyzed in Phase 2.
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Finally, we investigated the results of these simulations and they high-
lighted the better performance of DSRC compared to WD. However, we have
pointed out that the gap in the performance is not drastically high. Hence, we
sensed the feasibility of WD to be used as an alternative technology in VANET
with some enhancements. Some of the suggested enhancements are provided in
the next section.

6.2 Future Work

In this section, we are going to introduce some of the ideas, for the purpose of
future study in this area. Some of them are related to the enhancement of the
WD protocol and rest of them are application level barriers, which are needed to
be overcome.

6.2.1 Reducing the delay

Reducing the delays such as the transmission delay and the group formation de-
lay is essential for the performance of WD in VANETs. The works in [15, 16]
suggest some improvement works to reduce these delays. These are needed to
be incorporated and checked in the smartphones to make WD more suitable for
transferring data in the context of vehicular communications. The WD protocol
can be further modified in order to reduce the transmission delays by using differ-
ent packet transfer patterns. It should be noted that the group formation delays
are also required to be minimized for further enhancement in the performance of
WD.

6.2.2 Overcome the challenges in real implementation

In addition to the delay, there are some other challenges that needed to be ad-
dressed. The first challenge is the requirement for user intervention (by entering
a pin or by pressing a button) to connect two devices for the first time. This is a
barrier for WD to be used in VANETs, because the driver’s intervention for every
connection, is not practical. Some of the existing works suggest several methods
to overcome this challenge. Notably, the work in [38] suggests a method to form
an autonomous WD network, without rooting the smartphone.
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The second challenge is regarding to power, since smartphones need to
be active all the time, if used for vehicular communications. Solutions should be
found for providing power to the phone in the vehicle as well as optimizing the
power.

Finally, the concerns about security and privacy also need to be ad-
dressed, to make the drivers participate willingly in a ITS system.
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Appendix A

Sample codes

A sample code for the simulation in phase 2 is provided here. This code is corre-
spond to the modified WD experiments. Codes for other experiments explained
in Section 5 are modified form this. Also, codes for DSRC simulation is slightly
different form this example as explained in 4. The sending application is defined
in the SenderApp.h file which is provided in A.2.

A.1 Main Application

#include "ns3/ core−module . h"
#include "ns3/network−module . h"
#include "ns3/mobi l i ty−module . h"
#include "ns3/ con f i g−s tore−module . h"
#include "ns3/ w i f i−module . h"
#include "ns3/ in t e rne t−module . h"
#include "ns3/ o l s r−he lpe r . h"
#include "ns3/dsdv−he lpe r . h"
#include "ns3/ flow−monitor−module . h"
#include "SenderApp . h"
#include "ns3/netanim−module . h"
#include "ns3/aodv−module . h"
#include "ns3/rng−seed−manager . h"

#include <iostream>
#include <fstream>
#include <vector>
#include <st r ing>
double s tar tapp =15.0 ;
int from1=22;
int to1=48;
int from3=41;
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int to3=32;
int from4=17;
int to4=44;
const char ∗ ip1=" 1 0 . 1 . 1 . 2 3 " ;
const char ∗ ip2=" 1 0 . 1 . 1 . 4 9 " ;
const char ∗ ip5=" 1 0 . 1 . 1 . 4 2 " ;
const char ∗ ip6=" 1 0 . 1 . 1 . 3 3 " ;
const char ∗ ip7=" 1 0 . 1 . 1 . 1 8 " ;
const char ∗ ip8=" 1 0 . 1 . 1 . 4 5 " ;

NS_LOG_COMPONENT_DEFINE ( "Lab5_0" ) ;
using namespace ns3 ;
uint32_t MacTxDropCount , PhyTxDropCount , PhyRxDropCount ;

void
MacTxDrop( Ptr<const Packet> p)
{

NS_LOG_INFO("Packet␣Drop" ) ;
MacTxDropCount++;

}

// f o r p r i n t the packe t l o s s in c e r t a i n node
void
PrintDrop ( Ptr<Node> node )
{

Simulator : : Schedule ( Seconds ( 5 . 0 ) , &PrintDrop , node ) ;
}

// f o r p r i n t the Tx packe t l o s s in c e r t a i n node
void
PhyTxDrop( Ptr<const Packet> p)
{

NS_LOG_INFO("Packet␣Drop" ) ;
PhyTxDropCount++;

}

// f o r p r i n t the Rx packe t l o s s in c e r t a i n node
void
PhyRxDrop( Ptr<const Packet> p)
{

NS_LOG_INFO("Packet␣Drop" ) ;
PhyRxDropCount++;

}

52



Main Application Sample codes

int mymain ( int argc , char ∗argv [ ] , s td : : s t r i n g a )
{

std : : s t r i n g datarate=a ;
std : : s t r i n g phyMode ( "OfdmRate18Mbps" ) ;

uint32_t numNodes = 50 ; // Number o f nodes
uint32_t packetS i z e = 600 ; // Packet s i z e in by t e s
uint32_t numPackets = 1000 ; //number o f packe t s

std : : s t r i n g r t s l i m i t = "2200" ; // Limit f o r enab l e RTS/CTS
// turn o f f RTS/CTS fo r frames below 2200 by t e s
Config : : Se tDe fau l t ( "ns3 : : WifiRemoteStationManager : : RtsCtsThreshold " ,

Str ingValue ( r t s l i m i t ) ) ;
// Fix non−un i ca s t data ra t e to be the same as t ha t o f un i ca s t
Config : : Se tDe fau l t ( "ns3 : : WifiRemoteStationManager : : NonUnicastMode" ,

Str ingValue (phyMode ) ) ;

NodeContainer c ;
c . Create (numNodes ) ;

Wif iHelper w i f i ;

//PHY con f i g u ra t i on
YansWifiPhyHelper wif iPhy = YansWifiPhyHelper : : De fau l t ( ) ;
wif iPhy . SetPcapDataLinkType ( YansWifiPhyHelper : : DLT_IEEE802_11_RADIO) ;

// Conf igur ing the channel
YansWifiChannelHelper Channel ;
Channel . SetPropagationDelay ( "ns3 : : ConstantSpeedPropagationDelayModel " ) ;
Channel . AddPropagationLoss ( "ns3 : : NakagamiPropagationLossModel " ,

"Distance1 " , DoubleValue (50 ) ,
"Distance2 " , DoubleValue (150) ,
"m0" , DoubleValue ( 3 ) ,
"m1" , DoubleValue ( 1 . 5 ) ,
"m2" , DoubleValue ( 1 ) ) ;

double f r e q =5.15 e9 ;
// Conf igur ing tworay ground model
Channel . AddPropagationLoss ( "ns3 : : TwoRayGroundPropagationLossModel" ,

"Frequency" , DoubleValue ( f r e q ) ,
"HeightAboveZ" , DoubleValue ( 0 . 8 ) ,
"SystemLoss" , DoubleValue ( 1 ) ) ;
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// s e t the channel f o r PHY model
wif iPhy . SetChannel ( Channel . Create ( ) ) ;

// Add a non−QoS upper mac , and d i s a b l e ra t e con t r o l
NqosWifiMacHelper wifiMac = NqosWifiMacHelper : : De fau l t ( ) ;
w i f i . SetStandard (WIFI_PHY_STANDARD_80211a) ;
w i f i . SetRemoteStationManager ( "ns3 : : ConstantRateWifiManager" ,

"DataMode" , Str ingValue (phyMode ) ,
"ControlMode" , Str ingValue (phyMode ) ) ;

// Set i t to adhoc mode
wifiMac . SetType ( "ns3 : : AdhocWifiMac" ) ;
NetDeviceContainer dev i c e s = w i f i . I n s t a l l ( wifiPhy , wifiMac , c ) ;

// con f i gu r i n g the mob i l i t y us ing t c l f i l e
Ns2Mobi l i tyHelper ns2 = Ns2Mobi l i tyHelper ( " s c ra t ch / t r a c e f i l e . t c l " ) ;
ns2 . I n s t a l l ( ) ;

// Enable rou t ing
OlsrHelper o l s r ;
AodvHelper aodv ;
DsdvHelper dsdv ;

Ipv4ListRout ingHelper l i s t ;
l i s t .Add ( o l s r , 1 0 ) ;

// I n s t a l l i n t e r n e t s t a t c k
In te rne tStackHe lpe r i n t e r n e t ;
i n t e r n e t . SetRoutingHelper ( l i s t ) ; // has e f f e c t on the next I n s t a l l ( )
i n t e r n e t . I n s t a l l ( c ) ;

Ipv4AddressHelper ipv4 ;
NS_LOG_INFO ("Assign ␣IP␣Addresses . " ) ;
ipv4 . SetBase ( " 1 0 . 1 . 1 . 0 " , " 255 . 255 . 255 . 0 " ) ;
Ipv4 In t e r f a c eConta ine r i f c o n t = ipv4 . Assign ( dev i c e s ) ;

// Create Apps
// In t h o i s example we c r ea t e 3 f l ows
// t h i s can be change by changing the code here
uint16_t s inkPort = 6 ; // use the same fo r a l l apps

// UDP connect ion from N22 to N48
Address s inkAddress1 ( InetSocketAddress ( i f c o n t . GetAddress ( to1 ) ,
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s inkPort ) ) ; // i n t e r f a c e o f n22
PacketSinkHelper packetSinkHelper1 ( "ns3 : : UdpSocketFactory" ,

InetSocketAddress ( Ipv4Address : : GetAny ( ) , s inkPort ) ) ;
Appl i cat ionConta iner sinkApps1 =

packetSinkHelper1 . I n s t a l l ( c . Get ( to1 ) ) ; //n48 as s ink
sinkApps1 . S ta r t ( Seconds ( 0 . ) ) ;
sinkApps1 . Stop ( Seconds ( 1 0 0 . ) ) ;

Ptr<Socket> ns3UdpSocket1 = Socket : : CreateSocket ( c . Get ( from1 ) ,
UdpSocketFactory : : GetTypeId ( ) ) ; // source at n22

// Create UDP app l i c a t i o n at n22
Ptr<MyApp> app1 = CreateObject<MyApp> ( ) ;
app1−>Setup ( ns3UdpSocket1 , s inkAddress1 ,

packetS ize , numPackets , DataRate ( datarate ) ) ;
c . Get ( from1)−>AddApplication ( app1 ) ;
app1−>SetStartTime ( Seconds ( s tar tapp ) ) ; // 31.
app1−>SetStopTime ( Seconds ( 1 0 0 . ) ) ;

// UDP connect ion from N22 to N48
Address s inkAddress1 ( InetSocketAddress ( i f c o n t . GetAddress ( to1 ) ,

s inkPort ) ) ; // i n t e r f a c e o f n22
PacketSinkHelper packetSinkHelper1 ( "ns3 : : UdpSocketFactory" ,

InetSocketAddress ( Ipv4Address : : GetAny ( ) , s inkPort ) ) ;
Appl i cat ionConta iner sinkApps1 =

packetSinkHelper1 . I n s t a l l ( c . Get ( to1 ) ) ; //n48 as s ink
sinkApps1 . S ta r t ( Seconds ( 0 . ) ) ;
sinkApps1 . Stop ( Seconds ( 1 0 0 . ) ) ;

Ptr<Socket> ns3UdpSocket1 = Socket : : CreateSocket ( c . Get ( from1 ) ,
UdpSocketFactory : : GetTypeId ( ) ) ; // source at n22

// Create UDP app l i c a t i o n at n22
Ptr<MyApp> app1 = CreateObject<MyApp> ( ) ;
app1−>Setup ( ns3UdpSocket1 , s inkAddress1 ,

packetS ize , numPackets , DataRate ( datarate ) ) ;
c . Get ( from1)−>AddApplication ( app1 ) ;
app1−>SetStartTime ( Seconds ( s tar tapp ) ) ; // 31.
app1−>SetStopTime ( Seconds ( 1 0 0 . ) ) ;

// UDP connect ion from N41 to N32
Address s inkAddress2 ( InetSocketAddress ( i f c o n t . GetAddress ( to2 ) ,

s inkPort ) ) ; // i n t e r f a c e o f n41
PacketSinkHelper packetSinkHelper2 ( "ns3 : : UdpSocketFactory" ,
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InetSocketAddress ( Ipv4Address : : GetAny ( ) , s inkPort ) ) ;
Appl i cat ionConta iner sinkApps2 =

packetSinkHelper2 . I n s t a l l ( c . Get ( to2 ) ) ; //n32 as s ink
sinkApps2 . S ta r t ( Seconds ( 0 . ) ) ;
sinkApps2 . Stop ( Seconds ( 1 0 0 . ) ) ;

Ptr<Socket> ns3UdpSocket2 = Socket : : CreateSocket ( c . Get ( from2 ) ,
UdpSocketFactory : : GetTypeId ( ) ) ; // source at n41

// Create UDP app l i c a t i o n at n41
Ptr<MyApp> app2 = CreateObject<MyApp> ( ) ;
app1−>Setup ( ns3UdpSocket2 , s inkAddress2 ,

packetS ize , numPackets , DataRate ( datarate ) ) ;
c . Get ( from2)−>AddApplication ( app2 ) ;
app2−>SetStartTime ( Seconds ( s tar tapp ) ) ;
app2−>SetStopTime ( Seconds ( 1 0 0 . ) ) ;

// UDP connect ion from 17 to N44
Address s inkAddress3 ( InetSocketAddress ( i f c o n t . GetAddress ( to3 ) ,

s inkPort ) ) ; // i n t e r f a c e o f n17
PacketSinkHelper packetSinkHelper3 ( "ns3 : : UdpSocketFactory" ,

InetSocketAddress ( Ipv4Address : : GetAny ( ) , s inkPort ) ) ;
Appl i cat ionConta iner sinkApps3 =

packetSinkHelper3 . I n s t a l l ( c . Get ( to3 ) ) ; //n44 as s ink
sinkApps3 . S ta r t ( Seconds ( 0 . ) ) ;
sinkApps3 . Stop ( Seconds ( 1 0 0 . ) ) ;

Ptr<Socket> ns3UdpSocket3 = Socket : : CreateSocket ( c . Get ( from3 ) ,
UdpSocketFactory : : GetTypeId ( ) ) ; // source at n17

// Create UDP app l i c a t i o n at n17
Ptr<MyApp> app3 = CreateObject<MyApp> ( ) ;
app1−>Setup ( ns3UdpSocket3 , s inkAddress3 ,

packetS ize , numPackets , DataRate ( datarate ) ) ;
c . Get ( from3)−>AddApplication ( app3 ) ;
app1−>SetStartTime ( Seconds ( s tar tapp ) ) ;
app1−>SetStopTime ( Seconds ( 1 0 0 . ) ) ;

// I n s t a l l FlowMonitor on a l l nodes
FlowMonitorHelper flowmon ;
Ptr<FlowMonitor> monitor = flowmon . I n s t a l l A l l ( ) ;

// Trace Co l l i s i o n s
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Config : : ConnectWithoutContext ( "/NodeList /∗/ Dev i ceL i s t /∗/$
␣␣␣␣␣␣␣␣ ns3 : : Wif iNetDevice /Mac/MacTxDrop" , MakeCallback(&MacTxDrop ) ) ;

Conf ig : : ConnectWithoutContext ( "/NodeList /∗/ Dev i ceL i s t /∗/$
␣␣␣␣␣␣␣␣ ns3 : : Wif iNetDevice /Phy/PhyRxDrop" , MakeCallback(&PhyRxDrop ) ) ;

Conf ig : : ConnectWithoutContext ( "/NodeList /∗/ Dev i ceL i s t /∗/$
␣␣␣␣␣␣␣␣ ns3 : : Wif iNetDevice /Phy/PhyTxDrop" , MakeCallback(&PhyTxDrop ) ) ;

S imulator : : Schedule ( Seconds ( 5 . 0 ) , &PrintDrop , c . Get ( 2 3 ) ) ;

Animat ionInter face anim ( " V i s ua l i z e . xml" ) ; // Mandatory
anim . EnablePacketMetadata ( ) ; // Opt iona l

Simulator : : Stop ( Seconds ( 1 0 0 . 0 ) ) ;
S imulator : : Run ( ) ;

PrintDrop ( c . Get ( 2 3 ) ) ; // f o r p r i n t i n g drops in node 23

// Print per f l ow s t a t i s t i c s
monitor−>CheckForLostPackets ( ) ;
Ptr<Ipv4F lowCla s s i f i e r > c l a s s i f i e r =

DynamicCast<Ipv4F lowCla s s i f i e r > ( flowmon . Ge tC l a s s i f i e r ( ) ) ;
s td : : map<FlowId , FlowMonitor : : FlowStats> s t a t s = monitor−>GetFlowStats ( ) ;

for ( std : : map<FlowId , FlowMonitor : : FlowStats >: : c on s t_ i t e r a to r i t e r =
s t a t s . begin ( ) ; i t e r != s t a t s . end ( ) ; ++i t e r )

{

Ipv4F l owC la s s i f i e r : : FiveTuple t = c l a s s i f i e r −>FindFlow ( i t e r−>f i r s t ) ;

i f ( ( t . sourceAddress == Ipv4Address ( ip1 ) &&
t . de s t ina t i onAddre s s == Ipv4Address ( ip2 ) )

| | ( t . sourceAddress == Ipv4Address ( ip3 ) &&
t . de s t ina t i onAddre s s == Ipv4Address ( ip4 ) )

| | ( t . sourceAddress == Ipv4Address ( ip5 ) &&
t . de s t ina t i onAddre s s == Ipv4Address ( ip6 ) ) )

{

NS_LOG_UNCOND( datarate <<" , "<<i t e r−>f i r s t << " , " << t . sourceAddress << " , "
<< t . de s t ina t i onAddre s s << " , "

<< i t e r−>second . txPackets <<" , "
<< i t e r−>second . rxPackets<< " , "
<<i t e r−>second . delaySum . GetSeconds()<<" , "
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<<i t e r−>second . timesForwarded<<" , "
<<i t e r−>second . l o s tPacket s<<" , "
<< i t e r−>second . rxBytes ∗ 8 .0 /
( i t e r−>second . timeLastRxPacket . GetSeconds ()−

i t e r−>second . t imeFirstTxPacket . GetSeconds ( ) ) / 1024 ) ;

}
}

monitor−>Ser ia l i z eToXmlF i l e ( "FlowFi le . flowmon" , true , true ) ;

S imulator : : Destroy ( ) ;

return 0 ;
}

int main ( int argc , char ∗argv [ ] )
{

CommandLine cmd ;
int Run=3;
// to ob ta ing seed run va lue as an argument .

cmd . AddValue ( "Run" , "Wifi ␣Phy␣mode" , Run ) ;
cmd . Parse ( argc , argv ) ;
ns3 : : SeedManager : : SetSeed ( 1 ) ;
ns3 : : SeedManager : : SetRun (Run ) ; // Set the seed run va lue
mymain( argc , argv , "1Mbps" )

return 0 ;
}

}

A.2 Sender Application

#include "ns3/ app l i c a t i on s−module . h"
#include "ns3/ core−module . h"

using namespace ns3 ;

class SenderApp : public Appl i ca t ion
{
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public :

SenderApp ( ) ;
virtual ~SenderApp ( ) ;

void Setup ( Ptr<Socket> socket , Address address ,
uint32_t packetS ize , uint32_t nPackets , DataRate dataRate ) ;

private :
virtual void Sta r tApp l i c a t i on (void ) ;
virtual void StopAppl i cat ion (void ) ;

void ScheduleTx (void ) ;
void SendPacket (void ) ;

Ptr<Socket> m_socket ;
Address m_peer ;
uint32_t m_packetSize ;
uint32_t m_nPackets ;
DataRate m_dataRate ;
EventId m_sendEvent ;
bool m_running ;
uint32_t m_packetsSent ;

} ;

SenderApp : : SenderApp ( )
: m_socket ( 0 ) ,

m_peer ( ) ,
m_packetSize ( 0 ) ,
m_nPackets ( 0 ) ,
m_dataRate ( 0 ) ,
m_sendEvent ( ) ,
m_running ( fa l se ) ,
m_packetsSent (0 )

{
}

SenderApp : : ~ SenderApp ( )
{

m_socket = 0 ;
}

// Set the parameters
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void
SenderApp : : Setup ( Ptr<Socket> socket , Address address ,

uint32_t packetS ize , uint32_t nPackets , DataRate dataRate )
{

m_socket = socket ;
m_peer = address ;
m_packetSize = packetS i z e ;
m_nPackets = nPackets ;
m_dataRate = dataRate ;

}

// S ta r t sending a pp l i c a t i o n
void
SenderApp : : S ta r tApp l i c a t i on (void )
{

m_running = true ;
m_packetsSent = 0 ;
m_socket−>Bind ( ) ;
m_socket−>Connect (m_peer ) ;
SendPacket ( ) ;

}
//Stop sending a pp l i c a t i o n
void
SenderApp : : StopAppl i cat ion (void )
{

m_running = fa l se ;

i f (m_sendEvent . IsRunning ( ) )
{

Simulator : : Cancel (m_sendEvent ) ;
}

i f (m_socket )
{

m_socket−>Close ( ) ;
}

}

// func t i on f o r send the packe t
void
SenderApp : : SendPacket (void )
{

Ptr<Packet> packet = Create<Packet> (m_packetSize ) ;
m_socket−>Send ( packet ) ;
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i f (++m_packetsSent < m_nPackets )
{

ScheduleTx ( ) ;
}

}

// Scedu le the next packe t us ing data ra t e
void
SenderApp : : ScheduleTx (void )
{

i f (m_running )
{

Time tNext ( Seconds (m_packetSize ∗ 8 / static_cast<double>
(m_dataRate . GetBitRate ( ) ) ) ) ;

m_sendEvent = Simulator : : Schedule ( tNext ,
&SenderApp : : SendPacket , this ) ;

}
}
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