
AUTO-TUNING MULTI-TIERED
APPLICATIONS FOR PERFORMANCE

Vimuth Fernando

158017T

Thesis/Dissertation submitted in partial fulfillment of the requirements for the

degree Master of Science in Computer Science and Engineering

Department of Computer Science & Engineering

University of Moratuwa

Sri Lanka

July 2016



DECLARATION

I declare that this is my own work and this dissertation does not incorporate with-

out acknowledgement any material previously submitted for a Degree or Diploma

in any other University or institute of higher learning and to the best of my knowl-

edge and belief it does not contain any material previously published or written

by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to

reproduce and distribute my dissertation, in whole or in part in print, electronic

or other medium. I retain the right to use this content in whole or part in future

works (such as articles or books).

Signature: Date:

The above candidate has carried out research for the Masters thesis/Dissertation

under my supervision.

Signature of the Supervisor: Date:

i



ACKNOWLEDGEMENTS

I am sincerely grateful for the advice and guidance of my supervisor Prof. Sanath

Jayasena. Without his help and encouragement this project would not have been

completed. I would like to thank him for taking time out of his busy schedule to

be available anytime that was needed with help and advice.

I would also like to thank my progress review committee, Dr. Ajith Pasqual

and Dr. Dilum Bandara. Their valuable insights and guidance helped me im-

mensely. My thanks also goes to Prof. Saman Amarasinghe for his help and

advice.

I would like to thank the entire staff of the Department of Computer Science

and Engineering, Both academic and non-academic for all their help during the

course of this work and for providing me with the resources necessary to conduct

my research.

This work was partially funded by the LK Domain Registry through Prof.

V.K. Samaranayake top-up grant.

Finally, i would like to express my gratitude to my family and all my friends

for their support.

ii



ABSTRACT

Auto-Tuning Multi Tiered Applications for Performance

With the widespread use of cluster-based environments, getting the maximum pos-

sible performance from multi-tiered web applications becomes an important task. The

large numbers of configurable parameters in such environments and applications, how-

ever, makes manual performance tuning (i.e., searching for and identifying key parame-

ters that affect performance and optimal values for those parameters) extremely difficult,

if not virtually impossible. The problem becomes further complicated because the key

parameters and/or their optimal values will vary across environments, applications and

workloads.

In this work, we explore the autotuning approach, which is generally used to au-

tomatically tune the performance of programs in traditional HPC settings, to tune

multi-tiered web applications. Our approach is based on OpenTuner, a framework used

to build auto-tuners to search through a configuration space for an optimal configura-

tion. Even for this autotuning approach, the wide variations and the dynamic nature

in the runtime environment, such as network congestion, variations in demand, possible

node failures and changes in workloads pose a significant challenge. In this work, we

explore offline and online tuning techniques to overcome the challenges of autotuning

multi-tiered applications.

We present results of offline autotuning experiments that tuned benchmark ap-

plications for multiple performance goals. We show that 20% - 25% improvements in

response time and throughput can be achieved through our offline autotuning approach.

We present a way of reducing the tuning time by pruning the configuration space. We

identify the parameters in web servers that contribute most to performance. We also

show that different performance goals can lead to differences in configurations and dis-

cuss the shortcomings of offline autotuning methods. We also take a look at online

tuning methods and show that online tuning of multi-tiered applications is feasible.

Keywords: Performance autotuning; Multi-tiered applications; Opentuner; Autotun-

ing;

iii



LIST OF FIGURES

Figure 1.1 A simple multi-tiered application 2

Figure 3.1 Major components of Opentuner 11

Figure 3.2 Offline autotuner 13

Figure 5.1 Percentage performance gains achieved from tuning 16

Figure 5.2 RUBiS benchmark tuning results 17

Figure 5.3 TPC-W benchmark tuning results 18

Figure 5.4 Tuning the RUBiS benchmark for response time. 19

Figure 5.5 Process of pruning the configuration space 21

Figure 5.6 Tuning the Benchmarks with differently sized configuration spaces 23

Figure 6.1 Tuning the RUBiS benchmark to maximize throughput with online

autotuning 29

Figure 6.2 Online autotuner based on Sibling Revelry 31

Figure 6.3 Online tuning using the Sibling Revelry inspired method 32

iv



LIST OF TABLES

Table 3.1 Parameters used in the tuning process 12

Table 5.1 Parameters that contribute most to the performance. Ranked ac-

cording to their contribution 24

Table 5.2 Gains in response time for TPC-W benchmark from tuning indi-

vidual tiers. 25

Table 6.1 Comparison of online tuning algorithms 30

v



LIST OF ABBREVIATIONS

API Application Programming Interface

JVM Java Virtual Machine

SLA Service Level Agreement

WIRT Web Interaction Response Time

WIPS Web Interactions Per Second

QOS Quality of Service

vi



TABLE OF CONTENTS

Declaration of the Candidate & Supervisor i

Ackowledgement ii

Abstract iii

List of Figures iv

List of Tables v

List of Abbreviations vi

Table of Contents vii

1 Introduction 1

1.1 Problem 1

1.2 Proposed Solution 3

1.3 Contributions 3

1.4 Organization 3

2 Literature Survey 5

2.1 Auto-tuning 5

2.1.1 Offline auto-tuning 6

2.1.2 Online auto-tuning 7

2.1.3 Hybrid approaches 7

2.2 Performance tuning of multi-tiered applications 8

2.2.1 Model based approaches 8

2.2.2 Learning based approaches 9

3 Methodology 11

4 Experimental Setup 14

4.1 RUBiS Benchmark 14

4.2 TPCW Benchmark 14

4.3 Deployment Environment 15

5 Offline Tuning Results 16

5.1 RUBiS results 17

5.2 TPC-W results 18

vii



5.3 Tuning time 19

5.4 Offline Tuning Discussion 23

6 Online Autotuning of Multi Tiered Applications 27

6.1 Simple online autotuning 28

6.2 Sibling Revelry based methodology 30

6.3 Discussion 32

7 Conclusions and Recommendations 34

References 35

viii



Chapter 1

INTRODUCTION

Web applications are a very important aspect of the Internet today. These appli-

cations are commonly used around the world for all kinds of purposes including

business, security, education and communication. These applications rely on per-

forming to their maximum ability to cater to the rapidly growing demand. A lot

of work has been done in this are to ensure that these applications yield their

best performance. Getting the maximum performance out of such applications

also allow them to be deployed with fewer resources thereby lowering costs, and

to provide a better user experience.

These are one of the many cases where multi tiered applications are used.

We define multi-tiered applications as those whose functionality is divided across

multiple physically separated groups of computers also called tiers. In addition

to web services other applications also use this architecture to ensure good per-

formance and reliability including high performance computing applications used

by researchers around the globe.

Figure 1.1 shows one such multi-tiered application using the common tier

breakdown used by web application. In this case the functionality of the appli-

cation is broken down into three tiers. One tier handle the presentation related

functionality(Ex: generating web pages), one tier handles the business logic of

the application, and the final tier handles the database related functionality.

Performance tuning programs that uses a multi-tiered architecture is a difficult

task. Any method of generating an increase in performance of these application

can have far reaching implications.

1.1 Problem

Each tier in a multi-tiered application consists of a set of computers executing

some program. These programs run in environments that can be configured

1



Figure 1.1: A simple multi-tiered application

in multiple ways to change their performance characteristics. For example web

services run on server applications that provide them with required functionalities.

These applications can be configured in multiple ways by setting the value of a

set of configurations.

This provides a large number of configurable parameters that can be used

to change the behavior of the servers. Enterprise level server software usually

used in similar situations such as Apache Server, Tomcat Server and MySQL

Database server each exposes hundreds of configurable parameters. By tuning

these parameters user are able to get the best possible performance out of a

system.

Usually this is handled by system administrators based on their expertise and

using trial and error experiments. This is made harder due to factors such as

the wide variety in application behavior, differences in available technology, and

variations in load and user behavior. So achieving good performance out of these

systems is a hard process.

Significant amount of work has been done to simplify this process. Some

people have focused on developing mathematical models that can be used for

performance prediction, configuration management, etc. But these methods re-

quire adapting the model to specific scenarios through model parameters that

need to be identified. Other tuning methodologies have been proposed that focus

on a very small number of parameters. But this ignores a large portion of tunable

2



parameters that can yield improvements in performance.

1.2 Proposed Solution

Autotuning mechanisms have been used in similar situations previously and they

have been shown to provide increases in performance with no changes being made

to the original application. Autotuning methods provide ways of identifying op-

timal configurations by searching through possible values automatically.

In this work we are exploring the use of OpenTuner[1], an autotuning frame-

work developed by Ansel et al, towards the tuning of applications deployed in a

tiered setup. Opentuner provides the basic building blocks needed to develop a

domain specific tuning system.

We propose an Opentuner based autotuner to search through the possible

configurations to identify a better performing configuration.

1.3 Contributions

We make the following contributions in this thesis:

∙ A framework for developing offline tuners that can generate significant per-

formance gains in multi-tiered applications

∙ A methodology to reduce the size of a configuration space automatically

thereby reducing tuning time

∙ Analysis of parameters and their contribution to performance in a common

multi-tiered application setup

∙ An online autotuner to tune multi-tiered applications and a study of its

effectiveness.

1.4 Organization

The rest of this document is organized as follows. Chapter 2 presents the past

work done in the area of autotuning and performance tuning of multi-tiered ap-

3



plications. Chapter 3 presents the methodology we used in our offline autotuner.

Chapter 4 describes the experimental testbed used by us in out tests. Chapter 5

discusses the results of offline autotuning and methods of reducing tuning time.

Then we look at online autotuning. We conclude this document with a discussion

on the results obtained.

4



Chapter 2

LITERATURE SURVEY

In this section we take a look at the prior work done in the area of tuning multi

tier applications. First we look at common performance tuning methodologies

and frameworks. Then, we look at how these methods and other are used in the

context of Multi-tiered applications.

2.1 Auto-tuning

Autotuning is a research area that has been gaining popularity in the recent

years. Especially in the areas of high performance computing, computer vision

and other performance critical areas.

Performance tuning is used to identify the best possible implementation for

an program. Possible implementations of the program have to be searched to

identify the optimal one. This used to be done manually by developers working

to optimize programs for new platforms. This becomes a very hard task with the

vast amount of platforms available today, possible resource limitations, and other

factors that affect performance. Auto-tuning methods can take away the burden

of performance tuning from developers and allow applications to perform at their

best potential.

Autotuners usually consists of a method of representing all possible imple-

mentations of a program and a set of methods to optimally search through the

implementations looking for the best.

Auto-tuning methods can be broadly broken down into two possible method-

ologies,Offline auto-tuning and Online auto-tuning. The distinction among the

two methodologies comes down to the adaptability of tuning methods and the

positioning of the tuning process in the application’s life cycle.

5



2.1.1 Offline auto-tuning

Offline auto-tuning methods are distinguished by their distinct tuning phase that

comes up before an application is deployed. Before the actual use of the applica-

tion a separate tuning phase is used to tune the application and identify the best

possible configuration for deploying the application.

These autotuning methods works by either using code variant tuning methods

or parameter tuning methods. Code variant tuning work by using code transfor-

mations that changes the final compiled version of the program. These methods

can be developed using advanced compiler techniques. Parameter based methods

work by finding the optimized set of values to the parameters being tuned. The

difference being that it doesnt affect the actual code of the program it self.

ATLAS[1] is a linear algebra library that is autotuned. The tuning process

described here consists of two approaches. The first is parameterized adaptation

used to tune parameter values such as block sizes in distributed algorithms. The

other approach is source code adaptation where the compiler changes the code

itself with methods such as loop unrolling. Several versions of performance critical

routines are developed and the best is identified by searching through them.

PHiPAC[2] presents another way of generating hardware optimized linear alge-

bra libraries using a optimizing compiler. Using the results of ANSI C compilers,

they derive rules that can be used to specifically tune matrix multiplication scripts

for multiple platforms. Offline tuning methods are very popular and widely used.

Orio [3] is another autotuning system that works through code transforma-

tions. Orio takes annotated C source code as input, generates many versions of

the code, and searches for the best performing version of the program by going

through these versions.

Major downside to these approaches is the lack of adaptability. If the program

environment changes after the tuning process is completed the whole tuning needs

to be done again to re-optimize the program. This is not possible in dynamic

rapidly changing environments.

6



2.1.2 Online auto-tuning

Online autotuning is also known as adaptive/dynamic autotuning. These meth-

ods work alongside the program being tuned and does not require a dedicated

tuning phase. These methods consists of either a linear model of the program

that is used to test performance characteristics or some machine learning method

that uses feedback from the program to do the tuning.

The lack of a separate autotuning phase allows online tuning systems to adapt

with changes in the environment at program runtime, providing better perfor-

mance. But the tuning program itself can negatively effect the performance of

the tuned program and can cause disruptions to the program’s normal flow.

PowerDial[4] is one such system. It transform static application configuration

parameters into dynamic control variables called dynamic knobs. These knobs are

then tuned at runtime to minimize system resource usage. It uses a framework

that provides system performance information at given periods to monitor the

system and make the necessary changes.

Ansel et al. presented a way of using using local competition to performance

tuning in SiblingRevelry[5]. This approach separates the available resources into

two groups, safe and experimental. Experimental resources are used to search

for better performing implementations. If found, the better performing version

is copied to the safe subsystem. This ensures reliability of the system at the cost

of resource waste. Half the resources are used for tuning making the identified

good implementations only valid for half the available resources.

2.1.3 Hybrid approaches

Hybrid approaches to autotuning have also been proposed that include a initial

offline training phase and an adaptive online phase. The offline phase is used to

model the performance characteristics of the system. This model is then used to

adaptively tune the system at runtime.

Ding et al. [6] presents a system where the system is tuned to perform the

best for the given input. They achieve this by breaking the input space to clusters

7



in an initial offline phase. The for each identified cluster the best configuration

is identified. When the program is running and it receives a new input, fist the

relevant cluster is identified and the previously recognized configuration is used

to maximize performance.

In AROMA[7] a similar method is introduced to tune MapReduce queries

for performance. It works by the assumption that querries with similar resource

usage have similar performance characteristics. So in an initial phase a set of

example queries are clustered based on their resource usage patters. For new

requests the relevant cluster is identified and the identified configuration is used.

2.2 Performance tuning of multi-tiered applications

With the popularity and importance of Multi-tiered applications on the Internet,

their performance is a major concern. So, a lot of research has been performed

in this area from around the world. Several people have worked on performance

modeling and tuning implementing both offline and online autotuning systems.

2.2.1 Model based approaches

One major method of tackling performance in multi-tiered applications is the use

of model based approaches. Many people have worked on modeling multi-tiered

applications. Usually the tiers in a multi-tiered application is modeled as a set

of queues. This allows for queuing theory knowledge to be used to make the

necessary calculations required.

For example, Menascé et al. presents one such approach[8]. In their proposed

approach they model a multi-tiered application as a set of queues. For queuing

theory calculations some values such as visit ratios and service times needs to be

estimated. These values are estimated by monitoring the system. The parameters

that needs to be tuned are also incorporated into the model itself(Ex: Number

of threads in a server affects the service time). This allows the to use a simple

hill climbing method with the model to search for the best configuration without

affecting the online application.

8



Many other models such as the above have been presented[9][10][11]. These

approaches vary by the factors they have captured in their model and the ap-

proach they use to predict performance.

Model based approaches allow for quick estimation of performance for a given

configuration and there by faster performance tuning. But they do come with

a some drawbacks. Modeling how configuration parameters affect performance

is not a trivial task. Some parameters such as garbage collection parameters in

JVMs provide huge challenges to modeling in a queuing model. This make tuning

large set of parameters very difficult.

2.2.2 Learning based approaches

A common approach that have been used in performance autotuning for multi-

tiered application is the use of machine learning algorithms to try configurations

and use their feedback to search through the possible configuration space.

Zheng et al. presents one such approach[12]. They use a tuning framework

called Active Harmony to autotune a set of configurations in multi-tiered appli-

cations. They tune a set of 20 parameters using Nelder-Mead method [13]. It is

a simplex method for finding a local minimum of a function. This approach has

the same problem of not scaling well with the number of tuning parameters.

Bu et al. [14] uses reinforcement learning to tune 8 parameters in a multi-

tiered setting. Reinforcement learning allows for very fast searching through the

configuration space but suffers when the configuration space grows.

In [12], Zheng et al. uses a parameter dependency graph to reduce the num-

ber of parameters that needs to be tuned in another tuning system using the

Nelder-Mead method. They use an online system of monitoring a multi-tiered

application. When a change in the environment is detected they use the parame-

ter dependency graph to identify the parameters that need to be adjusted. Then

those selected parameters are tuned. This a one way of overcoming the size of

possible configuration space.

Other approaches have also been proposed to handle performance tuning[15][16][17].

9



These approaches also follow similar methodologies varying only by the learning

methods used and other optimizations.

These approaches have the benefit of being black box approaches that do

not require changes to the program or server applications from developers. No

modeling of resources or additional work from the developers is needed to apply

these learning based methods as opposed to the model based approaches.

All these learning based methods have the same drawbacks. Because they

use the feedback from configurations to generate better ones, bad configurations

have to be tried which can cause disruptions to the tuned program. In addition

reinforcement learning and other similar learning techniques do not scale well

with large numbers of tuning parameters.

10



Chapter 3

METHODOLOGY

We used OpenTuner [18] to build the autotuners for Multi-tiered applications.

Opentuner is a open source framework for creating domain specific autotuning

applications. It consists of a method of representing a complex configuration space

and methods of manipulating the configurations. In addition it also provides a

large number of search methods that are used to go through the configuration

space looking for the optimal configuration.

The structure of the framework is shown in figure 3.1. Three main components

are required to create a autotuner using Opentuner. First we need a definition

of the configuration space describing the parameters used in the tuning and the

possible values they can take. Then we need a way of manipulating and setting

the configurations in the system. Finally a measurement driver is required to

monitor the system and report the results to Opentuner.

Figure 3.1: Major components of Opentuner

So we needed to identify a set of parameters that can define the configuration

space. We did this by looking at prior work on the field and by consulting the

documentation of the server applications. Each server application in the system

exposes hundreds of tunable parameters. From these we selected a set that can

be used to prove the effectiveness of the tuning process. The selected parameters

are shown in table 3.1.

11



Server Parameters
Apache MaxConnectionsPerChild, StartServers, MinSpareThreads,

MaxSpareThreads, ThreadsPerChild, ThreadLimit, MaxRe-
questWorkers

Tomcat Server maxThreads, acceptCount, acceptorThreadCount, minS-
pareThreads, maxConnections
Java Virtual Machine parameters

MySQL Server table_cache, query_cache_size, sort_buffer_size,
thread_stack, query_cache_limit, read_buffer_size,
max_connections, thread_cache_size, key_buffer_size,
innodb_buffer_pool_size

Table 3.1: Parameters used in the tuning process

In addition to the server parameters we also focused on the tunable parameters

of the underlying Java Virtual Machines(JVMs). Tuning this JVM allows us to

get bigger performance gains. Opentuner allows us to handle the large number of

additional tunable parameters that are added here but the tuning can be slow due

to having a bigger configuration space to look through. To overcome these issues

we used the prior work done in JATT[19]. Their work focused on developing a

hierarchical structure to represent the possible configuration space in JVMs. By

using this flag structure they were able to avoid erroneous flag configurations and

speedup the tuning process.

The offline autotuner we developed consists of a single node monitoring the

system and distributing the testing configurations. The structure is shown in

figure 3.2a Opentuner generates sample configurations that need to be tested to

identify their performance. The autotuner then distributes these configurations,

runs the benchmark application, monitors the system to identify the required

performance metrics and then reporting the feedback to Opentuner. The results

are used in the generation of new test configurations that need to go through the

same procedure. the procedure is shown in Figure 3.2b

Using this procedure allows us to be very flexible in our autotuner. We are

able to tune programs for any performance goal that we can set. We are also able

to handle systems deployed in any architecture by making simple changes to the

scripts used to set the configurations.

12



(a) Offline tuner structure (b) Offline tuning procedure

Figure 3.2: Offline autotuner

We tested our tool is a experimental setup using two benchmarks and tuned

the benchmarks for multiple performance goals. In each of the tuning experiments

the tuner was run for 24 hours. This is an arbitrarily defined time limitation and

can be changed. We selected this limit to allow the autotuner enough time to

identify a better configuration compared to the default. Further discussions about

the tuning time can be found in section 5.3

13



Chapter 4

EXPERIMENTAL SETUP

The experiments on the autotuners were conducted using two popular benchmark

web applications. These benchmarks consist of a benchmark application that

can be deployed in our system and a request generator that is used to get the

benchmark application working in a setting similar to an actual web application.

4.1 RUBiS Benchmark

RUBiS[20](Rice University Bidding System) is benchmark specification for an

auction prototype developed at Rice University. The benchmark specifies the

structure of a auction website and the possible interactions with users. In this

research we used a Java Servlet implementation of the benchmark. This imple-

mentation provides a client application that can be used to simulate the behavior

of a given number of potential customers.

4.2 TPCW Benchmark

A transactional web e-Commerce benchmark based on the TPC-W specification.

We used a Java Servlets version of the benchmark[21] developed at University

of Wisconsin - Madison. The benchmark also provides a client simulator with

multiple behavioral patterns. We are able to generate requests from a given

number of simulated clients with a pre defined behavior pattern. Two main

metrics of performance are considered by this benchmark.

∙ WIPS - Web Interactions Per Second

∙ WIRT - Web Interaction Response time

14



4.3 Deployment Environment

These two applications were deployed in a three tier setup. Each tier in the

application was deployed in a separate server with the following configuration

Intel Core i7 CPU @3.40Ghz (4 cores)

16 GB RAM

Ubuntu 12.04 LTS

OpenJDK 7 (HotSpot JVM) update 55

The Autotuner and the client emulator was run on a seperate server with the

following configuration.

Intel Xeon E7-4820v2 CPU @2.00 GHz (32 cores)

64GB RAM

Ubuntu 14.04 LTS

OpenJDK 7 (HotSpot VM) update 55

Following server applications were selected for the system.

∙ Presentation tier - Apache 2.4.7

∙ Application tier - Apache Tomcat 7.0.47

∙ Data Tier - MySQL Server 5.5.46

All these software are free and open-source. Together they makes up the most

popular web server configuration used by users. This setup was used as a simple

testbed that is easy to understand and experiment on. But the auto-tuner can

be easily extended to support any other configurable server application.

15



Chapter 5

OFFLINE TUNING RESULTS

Both benchmarks were tuned for multiple performance goals. We were able to

generate significant performance gains in all cases. The performance metrics we

used were,

1. Average Response Time : Average of the time taken to complete a request

sent by a user in a given time period. measured from the client’s perspective.

2. Average Throughput : Average of the number of requests correctly handled

from the program in a given time. the throughput is calculated per minute

and the average value at the end of monitoring is used.

3. 99th percentile average response time : When dealing with large number of

requests in a web application some of them tend to fail or take longer. These

outliers affect the average response time even though they are unavoidable.

So this metric is calculated by removing these outliers.

Figure 5.1: Percentage performance gains achieved from tuning

The performance gains are summarized in Figure 5.1. These gains show the

improvement of the performance against the default configuration available in the

system.

16



(a) Average response time (b) Average throughput

Figure 5.2: RUBiS benchmark tuning results

5.1 RUBiS results

We were able to observe significant performance gains in the RUBiS benchmark

for all benchmarks after the tuning process. For the tuning we used the emulated

clients provided with benchmark. We used a set of 500 clients to generate the

requests concurrently. The system was then tuned to maximize/minimize certain

performance goals.

1. Average Response Time : We got an 26% reduction in average response

time as shown in Figure 5.2a. This figure shows the comparison between

the response time we get from the default configuration against that of the

tuned system. We can also see that significant reduction in the tail of the

response time histogram was achieved by the autotuner. This was achieved

by improving the concurrency in the program. Being able to handle more

concurrent results allowed a reduction in average response time.

2. Average Throughput : We were able to observe a 18% improvement in av-

erage throughput. Figure 5.2b shows that through multiple measurements

the throughput of the tuned program outperformed the default program.

3. 99th percentile average response time : We observed 8.8% reduction in aver-

age response time when the outliers with long response times were ignored.

This is expected as we saw when tuning for average response time, reduc-

tion in the tail end is not enough to increase the overall average response

17



(a) Average response time (b) Average throughput

Figure 5.3: TPC-W benchmark tuning results

time because the number of outliers are somewhat limited.

5.2 TPC-W results

Similar to the RUBiS benchmark, we used client scripts to emulate the behavior

of actual clients in the system. We used 500 clients to generate the results. We

then used 50 seconds to ramp up the system, monitored the system and ramped

down as per the benchmark specification. The performance metrics were collected

in the monitoring phase after the ramp-up period. We were able to observe good

gains in performance for multiple performance goals.

1. Average Response Time : In the TPC-W benchmark the response time

is calculated as the Web Interaction Response Time. This measures the

time taken to successfully complete an interaction between the client and

the server. We got an 14.6% reduction in WIRT as shown in Figure 5.3a.

2. Average Throughput : In the same way, throughput is measured in Web

Interactions Per Second. This is a measure of the rate of interactions the

user can make with the program. We were able to observe a 27.2% im-

provement in average throughput. Figure 5.2b shows that through multiple

measurements the throughput of the tuned program outperformed the de-

fault program.

18



3. 99th percentile average response time : We observed 9.4% reduction in aver-

age response time when the outliers with long response times were ignored.

This observation is similar to what we saw in the other benchmark due to

similar reasons.

5.3 TUNING TIME

As mentioned earlier, the autotuner in each of the above experiments were run

for 24hrs. OpenTuner uses many search algorithms to go through the configu-

ration space and these need to test many configurations before identifying good

configurations that can improve our performance metrics.

Consider the tuning run represented in Figure 5.4. This shows the result of

one tuning run that was used to tune the RUBiS benchmark to minimize response

time.

Figure 5.4: Tuning the RUBiS benchmark for response time.

In the tuning process, Opentuner generates test configurations that needs to

be run and the result recorded. Each of the red dots in the graph represents

one such recorded instance of response time. This graph represents 500 such test

configurations and the resultant response time. And the red line connecting them

connects the best possible configurations identified.

So, we can see that we have to go through a large number of test configurations

before arriving at a result that gives a significant improvement in performance.

19



For each of these test configurations we have to set the configuration in the

system, run the benchmark and record the performance metric. This results in

the tuning time growing bigger delaying the program deployment.

One major cause of this increase in the number of test configurations is the

size of the configuration space it self. Due to the large number of parameters

we use in the tuning process the configuration space is growing exponentially.

Reducing the size of the configuration space by removing some parameters from

being considered for tuning can lead to the number of configurations that need

to be tested being reduced.

But reducing the number of tuning parameters need to be done carefully.

Not considering a performance critical parameter in the tuning stage can lead

to us loosing a potentially large performance gain. So identifying and removing

parameters that don’t have a significant impact in performance is very important.

Manually going through each of the 250+ parameters to look at its contribu-

tion to performance is not a trivial task. We also need to have a system that can

be generically applied. So adding new parameters to be tuned should be easy

and the user should not have to do the same analysis for every new parameter

that needs to be tuned. So, an automated method is very important.

The method proposed by us is to use the results of a initial offline tuning

phase to prune the configuration space. This initial tuning phase consists of

running a set of test parameters and collecting the performance record for each

of those test configurations. This data can be then used to model how changing

each parameter affect the performance and how much a parameter contribute to

performance.

First the performance data is modeled as a Random Forest Regression[22].

Random Forest Classifiers and Regressors are a very common ensemble method

of modeling large data sets foe prediction and analysis. They use a set of decision

trees that are trained with a dataset. Then the mean of their output is considered

for future prediction needs. we used the implementation of Random Forests

available with the scikit-learn[23] API.

This allows us to calculate the feature importance. This is a representation

20



(a) Example decision tree from a Random
Forest used in parameter pruning.

(b) Steps in the parameter pruning process

Figure 5.5: Process of pruning the configuration space

of how changing each parameter can affect performance. identify features which

have lower importance and therefore does not contribute to a change in perfor-

mance. We can then remove these parameters as they are not required for tuning.

This prunes the configuration space.

This method works as follows. The random forest consists of a set of decision

trees similar to the one in Figure 5.5a. For each such tree in the random forest go

to each internal node, calculate the error reduction by that node using the gini

index and add the values to get feature importance from a single tree. Average

the values over all the trees in the forest to get the overall feature importance

But this only considers the effect on the performance metric but not the

quality of the effect. Consider for example an optimization method that is turned

on by default. Disabling the optimization leads to poor performance. But, since

this parameter has a big effect on performance it is given a higher importance.

Tuning such parameters is futile because it is already at the best position in

default.

To identify such parameters we used a simple heuristic of comparing the av-

erage value of a parameter in the best performing configurations with its default

21



value. For parameters with higher importance if the values are similar then we can

estimate that changing the value does not affect performance positively. While

this is not the perfect solution this provides enough insight to suit our tuning

needs.

The full process of parameter pruning is given in Figure 5.5b. To test the

effectiveness of the process we ran experiments by reducing the configuration

space, first to 50 parameters and then to 25 parameters, for both the benchmarks.

Figure 5.6 shows the results of the tuning runs.

Consider Figure 5.6a as an example. This graph shows the result for tuning

the RUBiS benchmark to minimize throughput. The red graph shows the results

of tuning the program with all the parameters available(Same as in Figure 5.4).

The blue line represents the tuning done with 50 parameters selected using the

method discussed above. The green graph is with 25 parameters.

As can be seen clearly the smaller configuration space leads to faster tuning

times. We were able to generate significant performance gains within a very small

time span. But even though they are fast, we don’t see the full performance gains

that can be achieved when all the parameters are used.

The graph here is limited to 500 iterations of the tuning process to ensure

clarity. But we observed that given enough time the full configuration space

yields far better performance gains. The same can be set of the 50 parameter

configuration space in that it is able to generate better performance compared

to the smaller 25 parameters. This is expected and presents us with a trade-off

between the tuning time and the performance gains.

The trade-off is clearer when the configuration space is further pruned. Re-

moving more tunable parameters makes the performance gains less significant.

We believe that for these two benchmarks and this system 25 presents the best

of both performance gains and faster tuning. But this automatic process can be

used with other systems to identify the best trade-off for them.

22



(a) RUBiS Benchmark

(b) TPC-W Benchmark

Figure 5.6: Tuning the Benchmarks with differently sized configuration spaces

5.4 OFFLINE TUNING DISCUSSION

As we saw we were able to generate good performance gains for both benchmarks

for multiple performance goals. We wanted to see if there is a optimal configura-

23



Parameter Tier
ThreadsPerChild Apache
max_allowed_packet MySQL
AdaptiveSizePolicyCollectionCostMargin Tomcat
BaseFootPrintEstimate Tomcat
ThreadLimit Apache
thread_cache_size MySQL
YoungPLABSize Tomcat
ParallelGCBufferWastePct Tomcat
max_connections MySQL
GCTimeLimit Tomcat

Table 5.1: Parameters that contribute most to the performance. Ranked accord-
ing to their contribution

tion that can generate performance gains for any application. What we observed

is that better performing configurations vary a lot between the two benchmarks

and between the performance goals. So, there is no silver bullet configuration.

This further emphasizes the need for a autotuning system. As there is no one

perfect configuration, each time a new program is deployed the optimal configu-

ration can change. The best way to overcome this burden on tuning is to use an

auto tuner.

Even though there is no optimal configuration that works in any scenario we

identified a set of parameters that seem to contribute the most to performance.

We used the method described in the configuration space pruning to rank the

parameters according to their contribution to changing the performance. The top

parameters we identified are presented in Table 5.1. We see a lot of parameters

that directly contribute to the amount of concurrent requests a system can handle

in the top parameters. This confirms our intuition that concurrency is the biggest

bottleneck for performance in these cases.

We also looked at other methods of tuning a multi-tiered system. One such

scenario we looked at is tuning the components of the system separately and com-

bining the partial configurations we get to get the full optimized configuration

required. As we expected this method did not perform as well as when we con-

sidered the system as a whole. This is not very surprising as treating the tiers as

24



Experiment Performance Gain
Apache server 13.4%
Tomcat server 8.75%
MySQL server 10%
Combining the separately identified configurations 10.84%
tuning the system as a whole 14.6%

Table 5.2: Gains in response time for TPC-W benchmark from tuning individual
tiers.

separate fails to take into account the interactions between configurations across

the tiers. The results of this experiment is shown in Table 5.2. In addition we

can also see that the parameters we iden- tified as the most important towards

performance are spread across the tiers. This further confirms the need of tuning

the system as a whole rather than as individual elements.

Even though we see good performance gains from the offline autotuning we

also can see some drawbacks to the tuning system.

∙ As there is a separate tuning process before the application is deployed

the autotuner needs to know about the environment the program will be

deployed in. With these benchmarks we used a set of simulated clients and

only had to estimate the load that will be used in deployment. But for real

world usage this presents some difficulty.

∙ The tuning process we use here is going to cause disruptions in a deployed

program during the tuning phase. most of the tunable parameters available

in the server applications used by us requires restarting the application for

changes to take place. Since we are using test configurations generated by

Opentuner they can be invalid or very poor performing configurations.

∙ In addition, this tuning process is an off-line process. So it is unable to adapt

to changes in the environment an application is deployed in. Therefore a

configuration identified as optimal can become sub-optimal with changes

in the system. Modern methods of deploying web applications such as

auto-scaling systems also makes off-line tuning methods less accurate as

the runtime system is very hard to replicate in an offline setting.

25



It is difficult to overcome these issues in any offline tuning mechanism. So

the solution would be to move into an online tuning system. But this introduces

a lot of difficulties that needs to be overcome. The next chapter looks into the

work done by us in online autotuning.

26



Chapter 6

ONLINE AUTOTUNING MULTI-TIERED APPLICATIONS

The major drawback of offline tuning methodologies is the lack of adaptability.

Once a optimized configuration is found through the offline tuning phase it doesn’t

change with changes in the environment. This lack of adaptability is major

problem for real life scenarios in modern web services where the environment goes

through rapid changes due to factors such as scaling, changes in user behavior,

shared resource usage, etc.

The solution to overcoming these issues is to introduce a tuning system that

constantly monitors and adapt to changes in the environment. These types of

tuning systems are known as online tuning mechanisms.

But online tuning systems have a lot problems that needs to be overcome

before they become feasible.

∙ Service disruptions - Running a tuning mechanism alongside a program that

is being used by actual users can damage their user experiance through

service disruptions. As discussed earlier, learning based tuning mechanisms

need to go through test configurations that can result in poor performance.

While this is not an issue in offline settings, doing so while the system is

being used is a problem.

∙ When to start/stop tuning - We cant keep trying test configuration indef-

initely as mentioned earlier. So we need to identify possible conditions for

starting and stopping the tuning process that can ensure best performance

while preserving the service quality.

∙ Monitoring - We need to introduce new server side monitoring solutions as

the methods we used in the offline system that relied on data from simulated

clients is not feasible in a online setting

27



∙ Fast tuning - To be able to adapt to changes in the environment we need

our tuning algorithms to yield fast results that can be used in time. Slower

methods can produce more system disruptions due to longer tuning times

and makes the tuning system less responsive.

We experimented on some methods of performing online autotuning that try

to overcome these issues.

6.1 Simple online autotuning

One approach we attempted is the simple application of Opentuner to online

autotuning ignoring the service disruption caused by the tuning process. We

setup a autotuner similar to the one used for offline tuning. We used a simplified

configuration space identified by the method described earlier.

We used a threshold value of 10% to define the rules for starting and stopping

the tuning process. So at the start the autotuner will tune the program until a

10% improvement in tuning is achieved. Once it is done the autotuner will go

into the monitoring phase and monitor the systems performance. If due to any

change in the environment the performance of the system go up or down by the

same margin the tuner will start again and will attempt to autotune the program

again.

We looked at using two search algorithms for this. Opentuner by default uses

evolutionary algorithm based search methods to go through the configuration

space. This leads to large amounts of illegal configurations as the result of the

randomized nature of the algorithms. In addition no guarantees can be provided

about the tuning time again due to their random nature.

So in addition to the default methods used by Opentuner we implemented our

own simple hill climbing method that can go through the configuration space.

This search technique helps us to reduce the amount of invalid configurations

that would have to be tested in our system.

Figure 6.1 presents the results of tuning the RUBiS benchmark to maximize

throughput using the two methods. To simulate a change in the environment

28



(a) Using the default search methods on Opentuner

(b) Using a simple hill climbing search algorithm

Figure 6.1: Tuning the RUBiS benchmark to maximize throughput with online
autotuning

after 50 iterations of the tuner the number of request generators were increased

to 1000 in both cases. Each dot represents a measurement of throughput gathered

29



Tuning Methodol-
ogy

Performance Gain Invalid configuration Rate

Default Algorithms
(Evolutionary)

5.4% 8 per 50

Hill Climbing method 6.5% 0

Table 6.1: Comparison of online tuning algorithms

after monitoring the system for 1 minute.

Both the search algorithms were able to identify better configurations com-

pared to the default that can provide up to 10% in performance gains. In terms

of tuning performance both algorithms performed similarly.

The main difference is in the variability of the performance. As can be seen

from the graph the evolutionary algorithms tended to generate configurations

with degraded performance more regularly compared to the simple hill climbing

method. The number of invalid configurations fell dramatically too. In experi-

ments run by us the default evolutionary algorithm used by Opentuner tended to

generate around 8 invalid configurations per fifty tied. The hill climbing method

was able to avoid generating invalid configuration altogether in most runs.

We also wanted to see how the tuning process affected the overall performance.

At the end of all the tuning we were able to observe overall performance gains

in both search methods despite the overheads and the restarting times involved.

These information is presented in Table 6.1

6.2 Sibling Revelry based methodology

One major drawback of the simple online autotuning methodology is the service

disruptions cause by either invalid or poor performing configurations. These cause

the entire service to be stopped multiple times in the tuning process. In addition

setting the configuration in the servers requires a restart that again disrupts the

service.

One possible solution to overcome this issue is to add additional resources for

autotuning that can save the entire system from having to be stopped regularly.

We propose an approach based on Sibling Revelry[5]. In this approach the in-

30



coming requests from users are load-balanced among two sets of servers safe and

experimental.

The experimental servers are used in the autotuning if a good configuration

is found in the experimental servers they are copied to the safe servers.

In this case the safe servers ensure service continuation despite the tuning

process. Even though we are testing poor configurations in the experimental

servers the service will not get completely disrupted. While this does not fully

eliminate failed requests this can reduce them. Even if a very bad configuration

is being tested at least some of the requests will get good performance. The

structure of this autotuner is available in Figure 6.2

Figure 6.2: Online autotuner based on Sibling Revelry

One major issue with this approach is the lack of tuning done on the front

facing tier. Due to load balancing and monitoring reasons we have to remove one

entire tier from the consideration for performance tuning.

This limits the possible performance gains achievable through this method.

The fornt facing tier is a major factor in the amount of simultaneous requests

a system can handle. So it is a major factor in the throughput of a system.

Not changing the configuration at that tier causes us to miss out on possible

performance gains.

31



Figure 6.3: Online tuning using the Sibling Revelry inspired method

During our experiment similar to the ones done for other online tuning meth-

ods, where we tune RUBiS benchmark to maximize throughput, we were only

able to generate 5.4% performance gains on average. This gains are less than

what we got with the simple online tuning methods.

But the major advantage of using this method is the lack of downtime. Since

the safe set of of servers always run using a configuration that is better than

or equally performing to the default configuration we are able to observe stable

performance even while the tuner is being run. This is important as the system

is being tuned whilst it is being used by actual users.

6.3 Discussion

We looked at three methods of tuning multi-tiered applications online. All meth-

ods are able to achieve some level of performance gains and the difference is in

the level of reliability that is required in the service being tuned.

The simple online tuning methods cause disruptions to the service at each

iteration as the configurations need to be set in the servers. The Sibling revelry

based method avoids that by only updating the configuration once a good con-

figuration is found. So the simple methods get better results but at the cost of

32



reliability.

We chose a simple threshold of 10% for starting/stopping the tuning process.

this is not the ideal solution as it is a arbitrarily selected threshold. More complex

methods of starting/stopping the tuning process could lead to better results.

All the tuning here were done with very limited configuration spaces being

considered. Improving the search techniques used here can enable us to tune

more parameters thereby improving the performance gains that can be achieved.

33



Chapter 7

CONCLUSIONS AND RECOMMENDATIONS

We have shown that the Opentuner framework can be successfully used to develop

autotuners for multi-tiered applications. Our autotuners were able to generate

significant performance gains for multiple benchmark applications. The auto-

tuners we introduced are very flexible and can be adapted to suit the needs of

any multi-tiered setup. Our approach also allows the tuning of a large number

of parameters space thereby attempting to achieve the best possible performance

gains.

In addition we have also introduced an automated method of identifying per-

formance critical configuration parameters. This allows us to focus our tuning in

these parameters and increase our efficiency.

We also looked at online autotuning and the challenges that online tuning

poses. we were able to generate good performance gains through the online

tuning methodologies.

There are multiple ways that this work can be improved on. Our online tuning

methodologies still suffer from many service disruptions that needs to be avoided

if the system is to become more useful. In addition, We are not focusing on

modern trends in the development of multi-tiered systems such as auto-scaling.

We can also look at other uses on multi-tiered applications such as the ones in

High Performance Computing use cases.

Overall, good progress have been made on autotuning multi-tiered applica-

tions and with further improvements we can make even further improvements in

the performance of these applications.

34



References

[1] R Clint Whaley, Antoine Petitet, and Jack J Dongarra. Automated empirical

optimizations of software and the atlas project. Parallel Computing, 27(1):3–

35, 2001.

[2] Jeff Bilmes, Krste Asanovic, Chee-Whye Chin, and Jim Demmel. Opti-

mizing matrix multiply using phipac: A portable, high-performance, ansi c

coding methodology. In Proceedings of the 11th International Conference on

Supercomputing, ICS ’97, pages 340–347, New York, NY, USA, 1997. ACM.

[3] Albert Hartono, Boyana Norris, and Ponnuswamy Sadayappan. Annotation-

based empirical performance tuning using orio. In Proceedings of the 2009

ieee international symposium on parallel&distributed processing, pages 1–11.

IEEE Computer Society, 2009.

[4] Henry Hoffmann, Stelios Sidiroglou, Michael Carbin, Sasa Misailovic, Anant

Agarwal, and Martin Rinard. Dynamic knobs for responsive power-aware

computing. In ACM SIGPLAN Notices, volume 46, pages 199–212. ACM,

2011.

[5] Jason Ansel, Maciej Pacula, Yee Lok Wong, Cy Chan, Marek Olszewski,

Una-May O’Reilly, and Saman Amarasinghe. Siblingrivalry: online auto-

tuning through local competitions. In Proceedings of the 2012 international

conference on Compilers, architectures and synthesis for embedded systems,

pages 91–100. ACM, 2012.

[6] Yufei Ding, Jason Ansel, Kalyan Veeramachaneni, Xipeng Shen, Una-May

OâĂŹReilly, and Saman Amarasinghe. Autotuning algorithmic choice for

input sensitivity. In ACM SIGPLAN Notices, volume 50, pages 379–390.

ACM, 2015.

35



[7] Palden Lama and Xiaobo Zhou. Aroma: Automated resource allocation and

configuration of mapreduce environment in the cloud. In Proceedings of the

9th International Conference on Autonomic Computing, ICAC ’12, pages

63–72, New York, NY, USA, 2012. ACM.

[8] Daniel A Menascé, Daniel Barbará, and Ronald Dodge. Preserving qos of

e-commerce sites through self-tuning: a performance model approach. In

Proceedings of the 3rd ACM conference on Electronic Commerce, pages 224–

234. ACM, 2001.

[9] Bhuvan Urgaonkar, Giovanni Pacifici, Prashant Shenoy, Mike Spreitzer, and

Asser Tantawi. An analytical model for multi-tier internet services and its

applications. SIGMETRICS Perform. Eval. Rev., 33(1):291–302, June 2005.

[10] Wes Lloyd, Shrideep Pallickara, Olaf David, Jim Lyon, Mazdak Arabi, and

Ken Rojas. Performance modeling to support multi-tier application deploy-

ment to infrastructure-as-a-service clouds. In Utility and Cloud Computing

(UCC), 2012 IEEE Fifth International Conference on, pages 73–80. IEEE,

2012.

[11] Pradeep Padala, Kang G. Shin, Xiaoyun Zhu, Mustafa Uysal, Zhikui Wang,

Sharad Singhal, Arif Merchant, and Kenneth Salem. Adaptive control of

virtualized resources in utility computing environments. In Proceedings of

the 2Nd ACM SIGOPS/EuroSys European Conference on Computer Systems

2007, EuroSys ’07, pages 289–302, New York, NY, USA, 2007. ACM.

[12] Wei Zheng, Ricardo Bianchini, and Thu D Nguyen. Automatic configuration

of internet services. ACM SIGOPS Operating Systems Review, 41(3):219–

229, 2007.

[13] John A Nelder and Roger Mead. A simplex method for function minimiza-

tion. The computer journal, 7(4):308–313, 1965.

36



[14] Xiangping Bu, Jia Rao, and Cheng-Zhong Xu. A reinforcement learning

approach to online web systems auto-configuration. Distributed Computing

Systems, 9:29, 2009.

[15] Palden Lama and Xiaobo Zhou. Autonomic provisioning with self-adaptive

neural fuzzy control for end-to-end delay guarantee. In 2010 IEEE Interna-

tional Symposium on Modeling, Analysis and Simulation of Computer and

Telecommunication Systems, pages 151–160. IEEE, 2010.

[16] Gerald Tesauro, Nicholas K Jong, Rajarshi Das, and Mohamed N Bennani.

A hybrid reinforcement learning approach to autonomic resource allocation.

In 2006 IEEE International Conference on Autonomic Computing, pages

65–73. IEEE, 2006.

[17] Yixin Diao, Frank Eskesen, Steven Froehlich, Joseph L Hellerstein, Lisa F

Spainhower, and Maheswaran Surendra. Generic online optimization of mul-

tiple configuration parameters with application to a database server. In In-

ternational Workshop on Distributed Systems: Operations and Management,

pages 3–15. Springer, 2003.

[18] Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan Ragan-

Kelley, Jeffrey Bosboom, Una-May O’Reilly, and Saman Amarasinghe.

Opentuner: an extensible framework for program autotuning. In 14). ACM,

New York, NY, USA,. DOI=10.1145/2628071.2628092, pages 303–316. Pro-

ceedings of the 23rd international conference on Parallel architectures and

compilation (PACT, 2014.

[19] Sanath Jayasena, Milinda Fernando, Tharindu Rusira, Chalitha Perera, and

Chamara Philips. Auto-tuning the java virtual machine. In Parallel and

Distributed Processing Symposium Workshop (IPDPSW), 2015 IEEE Inter-

national, pages 1261–1270. IEEE, 2015.

[20] Emmanuel Cecchet, Anupam Chanda, Sameh Elnikety, Julie Marguerite,

and Willy Zwaenepoel. Performance comparison of middleware archi-

37



tectures for generating dynamic web content. In Proceedings of the

ACM/IFIP/USENIX 2003 International Conference on Middleware, pages

242–261. Springer-Verlag New York, Inc., 2003.

[21] Harold W Cain, Ravi Rajwar, Morris Marden, and Mikko H Lipasti. An

architectural evaluation of java tpc-w. In High-Performance Computer Ar-

chitecture, 2001. HPCA. The Seventh International Symposium on, pages

229–240. IEEE, 2001.

[22] Andy Liaw and Matthew Wiener. Classification and regression by random-

forest. R news, 2(3):18–22, 2002.

[23] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-

sos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-

learn: Machine learning in Python. Journal of Machine Learning Research,

12:2825–2830, 2011.

38


