
ITRU RESEARCH SYMPOSIUM, 2015: FACULTY OF INFORMATION TECHNOLOGY, UNIVERSITY OF MORATUWA, SRI LANKA

Sinhala Handwriting Recognition Mechanism Using Zone Based Feature Extraction

K.A.K.N.D. Dharmapala1, W.P.M.V. Wijesooriya2, C.P. Chandrasekara3, U.K.A.U. Rathnapriya4, L. Ranathunga5

Department of Information Technology, University of Moratuwa
Katubedda, Sri Lanka

{naleendhanushka1, vpowerrc2, chinthakacccc3, amdevex4}@gmail.com, lochandaka@uom.lk5

Abstract
Identification of Sinhala characters is considerably more difficult than other wide-spoken languages because

of the complex shapes and similarities that are present within characters. With the addition of modifiers to the
core characters, the recognition becomes increasingly more difficult. Most of the present systems only address the
identification task of core characters which has potentially less real life applicability. The proposed solution tries to
identify characters with or without touching and non-touching modifiers which can be effectively used in multiple
applications.

Key Terms:
Sinhala, Handwriting Recognition, Preprocessing, Character
Segmentation, Classification, Neural Networks, Image Pro-
cessing.

1. INTRODUCTION
Sinhala language is currently more widely used in comput-
ers than it was a few years ago. Operating systems and
computer applications provide support for Sinhala language
interfaces and the conventional inputs through keyboard is
more straightforward and hassle-free unlike the early days
with the introduction and the widespread use of the Sinhala
Unicode character scheme. Conversion of handwritten scripts
to machine-recognizable characters remains as natural as in-
teracting with a keyboard and real world applications vary
from archiving existing handwritten documents to augmented
reality based word translators [1].

In the Sinhala language, the character set is represented
by 16 vowels, 2 semi-consonants, 40 consonants and 13
consonant modifiers. Modifiers are also known as strokes of
characters [2]. These modifiers can be used in conjunction
with consonants which can be positioned at different locations
around the character. This addition of modifiers results in
a very large number of possible shape combinations for an
individual character symbol. Most of the current research in
this area focuses only on a very limited number of characters,
mostly without considering the character modifiers.

This limits the possible real world applicability. In this
research we are trying to correctly identify characters with
or without the presence of modifiers.

2. SINHALA HANDWRITING
When it’s comes to Sinhala handwriting, touching and over-
lapping characters can be seen quite frequently, and automated
segmentation of these types of characters can be a very
complicated task. Unlike English, Sinhala characters have
curves, which make it harder to find segmenting points. Apart
from individual characters, there are character modifiers in
the Sinhala language which need to be segmented too. Most
of the time, modifiers and their related characters are touched
or overlapped when written by hand.

Several research papers have been written on Sinhala char-
acter segmentation and recognition, but very few of them
address the problem of segmentation of overlapping characters

and characters with modifiers. Other papers are more focused
on character classification rather than segmentation, and there-
fore they consider core characters which are not overlapping.
But there are some suggested methods for touching and
overlapping character segmentation which are quite complex
and time consuming [3].

Figure 1: Different characters with similar shapes [2]

There are certain characters in the Sinhala alphabet which
look mostly alike but which are actually different characters.
Some examples are shown in Figure 1. Vast variations of writ-
ing styles of individuals also make it difficult to successfully
implement a Sinhala character recognition and classification
method. Figure 2 gives an example for writing variations.

Figure 2: Similar characters with different shapes

Additionally, there are certain modifiers which are very
difficult to distinguish only based on their features. These
characters have to be identified with respect to their context.
Furthermore, different writing styles make it even more diffi-
cult to identify the characters based only on the context.

3. RECOGNITION SYSTEM
This section describes the implemented experimental hand-
writing recognition system in four major sections. The first
section deals with the preprocessing which followed by seg-
mentation. Feature extraction and classification are the other
two sections that are explained.

3.1 Preprocessing
A4 sized white papers were used to collect sample hand-
writing. A single document typically includes 10 lines with

10



ITRU RESEARCH SYMPOSIUM, 2015: FACULTY OF INFORMATION TECHNOLOGY, UNIVERSITY OF MORATUWA, SRI LANKA

7-8 words in each line. The documents are scanned at a
resolution of 300 dpi and stored as 8-bit grayscale images.
Before segmenting the characters, the images should undergo a
pre-processing stage in order to reduce noise and fix character
alignment issues. Several methods and techniques are used
in this stage such as contrast equalization, noise reduction,
binarization and skew correction of text lines which are
explained below.

3.1.1 Contrast Equalization
Contrast limited adaptive histogram equalization (CLAHE) [4]
technique is used to equalize the intensities throughout the
image. This will improve the accuracy of the binarization
step. Unlike in traditional histogram equalization, the CLAHE
technique creates separate histograms for multiple segments
of the image which increases the accuracy of the equalization
process.

3.1.2 Noise Reduction
This step is critical because accuracies of text segmentation
and classification are directly dependent on it. There are
mainly two types of noises to deal with which are called
"Gaussian noise" and "Salt & Pepper noise". To minimize the
Gaussian noise "Non-Local Means Denoising" [5] algorithm
is used. Mean filter is used to deal with salt and pepper noise.
Filtering is done by applying a 3×3 or similar filter mask.
The mask is passed over the entire image and the value for
the center pixel is calculated.

3.1.3 Binarization
Binarization is the technique of converting an image to binary
format containing only 2 values. This can be achieved by
applying a threshold function. In simple thresholding, a global
threshold value will be used for the whole image. But it may
produce bad results in certain conditions where image has
different lighting conditions in different areas. The solution
is to use “Adaptive Thresholding”. This algorithm calculates
separate threshold values for different regions of the image and
will give better results for images with varying illumination.

3.1.4 Skew Correction
When an image is captured it could be slightly angled. So
it’s necessary to compute the skew angle and to rotate the
text before further processing. There are several methods
which can be used to detect the skew angle such as using
"Probabilistic Hough Transform" [6]. It generates imaginary
straight lines across the image according to the distribution of
the black pixels which can be used to calculate the skew angle
and rotate the image afterwards.

3.2 Segmentation

Character segmentation is done after pre-processing the image.
The main objective of this module is to segment characters and
their modifiers. The segmentation process is done using var-
ious image processing algorithms to distinguish the different
letters and words in the input text sample. As the output of this
module, segmented characters are generated as images which
are given as inputs to the character classification module.

Figure 3: Character segmentation flow chart

3.2.1 Segment Text Lines
Segment Text Lines: Horizontal projection profile of the image
is used to segment text lines. As seen in Fig. 4, gaps between
the lines can be clearly identified using the horizontal projec-
tion profile of the entire image. Valleys of the graphs represent
the horizontal gaps between text lines. In the projection profile,
if there exist a run of at least a certain number of consecutive
0’s then the midpoint of that run is considered as the boundary
of a text line. In order to ignore noise and touching segments
between text lines, if the aggregation of the pixel values of a
horizontal line is less than a certain value it will be replaced
with 0. That way it is assured to detect accurate local valleys
of the projection profile.

Figure 4: Horizontal projection profile

3.2.2 Segment Horizontal Characters
Vertical projection profile of a text line can be used as the
base method of segmenting character, character modifiers and
words. As shown in the Fig. 5, similar to identifying the text
lines, gaps between the vertical lines can be clearly identified
and can be used to identify boundaries of characters and words.
But this technique can be only used when characters are sepa-
rated clearly from each other. When there are overlapping and
touching characters present, analyzing the vertical projection
profile won’t be enough because there won’t be gaps between
characters when they are connected or overlapped. Further
processing is needed in order to segment these characters.

3.2.3 Count Number of Horizontal Text Segments
Contours are curves joining all the continuous points in
the boundary having the same color or intensity. They are
useful for shape analysis and object detection and recognition.

11



ITRU RESEARCH SYMPOSIUM, 2015: FACULTY OF INFORMATION TECHNOLOGY, UNIVERSITY OF MORATUWA, SRI LANKA

Figure 5: Vertical projection profile

Contours are identified from the binary image using the "find-
Contours" function from OpenCV python library [7]. When
counting the number of character segments, only external
contours should be considered, else the same character will
be counted multiple times. External contours only include
"outer" contours, so for example; if one contour is enclosing
another (as concentric circles), only the outermost is given. If
the number of contour groups is more than one, it is safe to
assume that the text segment contains overlapping characters.

3.2.4 Segment Overlapping Characters
Overlapping characters and their locations are identified in the
previous step. But exact horizontal margins cannot be calcu-
lated for overlapping characters because they are overlapping
with each other. The solution is to retrieve all the contours
of each character and redraw the character using them on
an empty image canvas. Contours should be retrieved with a
two level hierarchical structure where the top level contains
external boundaries of the characters and the bottom level
contains boundaries of the holes inside characters. Combining
all of those points and then filling the space between bound-
aries will construct the characters again in their original form.
Using this method, overlapping characters can be separated
and reconstructed separately (Fig 6.).

Figure 6: Segment characters using contours

3.2.5 Vertical Character Segmentation
In the character classification module, classification is done
using three separate neural network models aimed at three
zones of a character. Any given character lies well within
upper, middle and lower zones defined for the input image
for the character classification module. Some character units
are written such that it is dispersed within all the three zones
while some other character units may be written only in one
or two of the zones. In most of the cases, the middle zone
of any given character remains unchanged while most of the
modifiers are being added to either the upper or lower zone
[8] [9]. Table I shows typical examples of zonal representation
of Sinhala characters.

In order to identify boundaries of each region vertical
segmentation has to be done for each character. Characters
are divided into three zones using two bases. Top and bottom
character modifiers need to be segmented to top and bottom
regions in order to classify them correctly. So base lines should
be calculated accordingly.

In order to find the correct positions of the vertical segments,
firstly, contours are used to find if there are any vertical
modifiers attached to the character. If any are found, their

Table 1: CHARACTER UNITS IN ZONES

positions are used to segment the character into vertical
segments easily and accurately.

If there are no vertical modifiers found, several other
methods have to be followed in order to find the segmentation
positions. Firstly, the base line locations for the whole text line
are calculated and kept as preliminary measures of baseline
locations. It is found that positions of the top two highest
horizontal pixel density lines are similar to the positions of
the required base lines. “Argrelextrema” function from Scipy
Python library is used to find all local maximas in the image
[10]. From them, points which are lower than a certain value
are ignored. Then the two points which are situated farthest
from each other are selected as the base line locations (Fig
7.).
After calculating the base line locations for the whole text

Figure 7: Identify the base lines of text lines

line, baseline locations for each character are calculated too
because baseline locations calculated for a text line may not be
the most accurate baseline locations when considering a single
character. The same method will be used to calculate baseline
locations in a single character. But previously calculated
baseline locations will also be used in order to find the best
possible locations for the baselines. Lower baseline calculated
from the text line is correct for most of the scenarios. But
calculating the upper baseline location will be tricky since
there can be modifiers above the characters. In those cases the
upper baseline should be calculated in such a way that any
modifier falls above the baseline.

3.3 Feature Extraction
After the character segmentation process, to increase the clas-
sification accuracy, it is essential to choose the most suitable
feature extraction method. Feature extraction is performed
separately for the three zones as shown in Fig 8. The features
that are extracted for any given zone are independent from the
features of the other two zones of the character unit except for
the width and height features.

12



ITRU RESEARCH SYMPOSIUM, 2015: FACULTY OF INFORMATION TECHNOLOGY, UNIVERSITY OF MORATUWA, SRI LANKA

Figure 8: Feature Extraction and classification flowchart

Figure 9: Character unit within the zones

Each zone is divided into two vertical blocks and their
vertical projection histogram is taken as a feature vector. The
horizontal projection of two horizontally divided blocks is also
taken as a feature vector. These feature vectors are considered
for all the three zones.

Additionally, the middle zone is resized and a sparse matrix
representing the character’s shape is considered as well. The
image is resized using the nearest neighbour interpolation
method.

3.4 Classification
Once the features are extracted separately for the three zones,
those features are used to train three artificial neural networks
with back propagation to perform the classification based
on new inputs later on. Each of these neural networks only
evaluates and classifies the respective zone to which it is
assigned and they are not dependent on the features of the
other zones other than certain features of the character as a
whole (e.g. - height, width of the character as a whole). For this
training process 30 samples from the data set are used, which
includes the 48 characters without modifiers and a selected set
of characters with modifiers that has unique upper and lower
zone representations.

Figure 10: Zone representations of characters

Once the neural networks are trained they can classify new

input features attributing them to the respective labels of upper,
middle and lower zones. Neural networks for each of the zones
provide an approximate probability for every input data set
giving an idea on how much a given input feature set can be
attributed to an existing label. This approximate probability is
calculated by using the sigmoid transfer function of the output
nodes which is mapped from [-1, 1] to [0, 1].
These approximate probability values are then used to calcu-

Figure 11: Sigmoid Error Function

late the joint probabilities given that P(L), P(M) and P(U) are
independent of each other [11] for every possible combination
of values.
P(U) : probability of getting the label "u" for upper zone
P(L) : probability of getting the label "l" for lower zone
P(M) : probability of getting the label "m" for middle zone
Given that the probabilities of each zone are independent;

P (L,M,U) = P (L)× P (M)× P (U) (1)

P(L,M,U) values are calculated for all the combinations of
lower, upper and middle zones along with their joint proba-
bility values. The joint probability values are then matched
against a map of all the possible character combinations
starting from the highest joint probability value and then
proceeding to lower joint probability values if a match is not
found in the map at higher values. This map of possible zone
combinations will avoid the chances of generating a character
unit which is not present in the Sinhala alphabet. For example,
the probability values for different zones may return a very
high joint probability values for a character like which is
not valid in the Sinhala language. In such a case the character
map would consider the next highest joint probability value
because that character unit is not available in the character
zone map.

4. EXPERIMENTAL RESULTS
Accuracy of the segmentation can be measured in
different stages such as line segmentation, single character
segmentation, overlapping character segmentation and vertical
character segmentation. The dataset which was used in the
testing stage contained 12 text lines written by 35 different
people. It doesn’t contain touching characters or touching
horizontal modifiers, but it contains overlapping characters
and touching vertical modifiers. Furthermore, text lines
in the dataset are well separated from each other without
overlapping or touching vertically. Table II given below
shows the test results obtained.

The classification accuracy is evaluated for each neural
network of each zone. The classification accuracy is the
number of correct predictions made divided by the total
number of predictions which is then multiplied by 100 to take
a percentage value. This gives a numeric measurement on

13



ITRU RESEARCH SYMPOSIUM, 2015: FACULTY OF INFORMATION TECHNOLOGY, UNIVERSITY OF MORATUWA, SRI LANKA

Table 2: SEGMENTATION ACCURACIES
Stage Accuracy

Text line segmentation 100%
Single character segmentation 98%
Overlapping character segmen-
tation

95%

Vertical character segmentation 84%

how the classification accuracy changes for different zones.
To calculate the classification accuracy 10 samples are used
which were not used in the training set. For each of these
zones there might be one or more characters that have the
same lower, middle, or upper character representation. For
example, and has the same middle zone character
representations.

Table 3: CLASSIFICATION ACCURACIES FOR
DIFFERENT ZONES

Zone Classification
Accuracy

Lower 0.746
Middle 0.661
Upper 0.744

The final output character unit is generated only after the
best matching character unit is selected from the character
zone map. The accuracy of correctly mapping the zones to
matching character unit is calculated by the same method
of calculating the classification accuracy where the correctly
classified character unit instances are divided by the total
number of character unit instances tested. To calculate the
output character accuracy, 10 samples are chosen from the
initially collected dataset which were not already used in the
training set.

Table 4: CLASSIFICATION ACCURACIES FOR OUTPUT
CHARACTERS

5. CONCLUSION

In this paper, a system to classify Sinhala Handwritten Char-
acters is developed using a pre-classification approach. First,
the text document is preprocessed using several methods such
as contrast equalization, noise reduction, binarization, skew
correction of text lines, etc. Then the text lines and charac-
ters and horizontal character modifiers are segmented using
methods such as horizontal/vertical projection profile analysis
and contour analysis for identifying overlapping characters.
Afterwards, each character is segmented into three vertical
zones as upper, lower and middle using contour analysis and
vertical projection profile analysis.

After the segmentation process the feature extraction is
performed on the three zones separately to extract the relevant
features. The classification is also performed separately on the
three zones to classify the zones attributing them to respective
character units with probability values measuring how relevant
a prediction is to the real character. Then the calculated joint
probability is used to select the best matching character from
a map of possible character unit combinations which contains
the full Sinhala alphabet.

The main issue faced in the segmentation process is the
abnormal writing styles, which are not according to the
standard Sinhala writing style. This makes it harder to do the
vertical segmentation accurately. For example; most people
would write letters such as etc.
smaller compared to other letters. Originally, the top part of
these letters should be segmented as the upper zone, but since
letters are written smaller they would be wrongly segmented
into the middle zone. Another issue is handling touching
characters, which is not yet resolved in this system due to
the complexity in Sinhala letters. However, touching vertical
character modifiers are segmented to a certain extent.

From the classification test results it can be noticed that
there are confusions between characters like and .
Their middle zone representation is dense with features that
make it difficult to identify it from characters like
and . Additionally, lower character modifiers in cases like

are difficult to classify accurately due to the
similarity of the modifiers and the individual writing styles of
those modifiers. The classification accuracies are considerably
better in cases like , where the upper character mod-
ifiers have more signifying features than the lower character
modifiers. Characters like have very high
classification accuracies because their lower, middle and upper
zone features are considerably different to the other characters.

Currently this system cannot segment characters which
are touching horizontally, although it can segment touching
vertical character modifiers. That feature can be added as
an extension to this system. Furthermore spelling correction
module can be used to increase the accuracy of the predicted
words and sentences. In addition to that a template based
recognition method to identify the characters based on the
basic character symbols is under investigation to avoid the
discrepancies that occur due to abnormal writing [12]. This
approach can be highly recommended for optical character
recognition where the printed characters would be written
strictly adhering to the three zone framing.

14



ITRU RESEARCH SYMPOSIUM, 2015: FACULTY OF INFORMATION TECHNOLOGY, UNIVERSITY OF MORATUWA, SRI LANKA

References
[1] Tabish Khan, Rishisingh Hora, Ashwin Bendre, Prof. Sneha Tirth, “Aug-

mented Reality Based Word Translator”, International Journal of Innovative
Research in Computer Science & Technology (IJIRCST), vol. 2, no. 2,
2014.

[2] M. A. P. Chamikara, S. R. Kodituwakku, A. A. C. A. Jayathilake,
K. R. Wijeweera, “Fuzzy Neural Hybrid method for Sinhala Character
Recognition”, International Journal of Advanced Research in Computer
Science and Software Engineering, vol. 4, no. 9, 2014.

[3] M.L.M Karunanayaka, N.D Kodikara, G.D.S.P Wimalaratne, "Off Line
Sinhala Handwriting Recognition with an Application for Postal City
Name Recognition", University of Colombo School of Computing, 6th
International Information Technology Conference on From Research to
Reality, pp. 23-29, 2004.

[4] Zuiderveld, K., "Contrast Limited Adaptive Histogram Equalization",
Chapter VIII.5, Graphics Gems IV, Cambridge, MA, Academic Press, pp.
474-485, 1994.

[5] A. Buades, B. Coll and J. Morel, "Non-Local Means Denoising", Image
Processing On Line, vol. 1, 2011.

[6] N. Kiryati, Y. Eldar, A.M. Bruckstein, "A Probabilistic Hough Transform",
Pattern Recognition, vol. 24, issue 4, 1991, pp. 303-316.

[7] Suzuki, S. and Abe, K., "Topological Structural Analysis of Digitized
Binary Images by Border Following", Computer Vision, Graphics, and
Image Processing, vol. 1, no. 30, pp. 32-46, 1985.

[8] S. Hewavitharana, Dr. N.D. Kodikara "A Statistical Approach to Sinhala
Handwriting Recognition", International Conference on Advances in ICT
for Emerging, 2015.

[9] B. Jayasekara and L. Udawatta, “Non-Cursive Sinhala Handwritten Script
Recognition: A Genetic Algorithm Based Alphabet Training Approach”,
Proc. of the International Conference on Information and Automation
ICIA2005, Colombo, Sri Lanka, pp. 292-297, 2005.

[10] P. Du, W. Kibbe and S. Lin, ’Improved peak detection in mass spectrum
by incorporating continuous wavelet transform-based pattern matching’,
Bioinformatics, vol. 22, no. 17, pp. 2059-2065, 2006.

[11] Encyclopediaofmath.org, ’Joint distribution - Encyclopedia of Mathemat-
ics’, 2015. [Online]. Available: https://www.encyclopediaofmath.org/index.
php/Joint_distribution. [Accessed: 31- Oct- 2015].

[12] Mo Wenying, Ding Zuchun Guangdong “A Digital Character Recognition
Algorithm Based on the Template Weighted Match Degree”, ASTL:
Advanced Researches on Computer and Applications, vol. 17, pp. 53-60,
2013.

15


