REFERENCE LIST

- [1] "NDT cource material," [Online]. Available: http://www.ndt-ed.org/EducationResources/CommunityCollege/Radiography/cc_rad_index.htm.
- [2] K. Limited, Industrial Radiography, Kodak,, 1966.
- [3] L. E. Bryant and P. McIntire, Radiography and Radiation Testing ASNT Nondestructive Testing Hand Book Second edition volume 3, American Society for Nondestructive Testing, 1985.
- [4] ASME Boiler and Pressure Vessel Code Section V Nondestructive Examination, THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS, 2010.
- [5] I. A. E. Agency, Level 2 Radiographic Testing Level 2 Training Manual, International Atomic Energy Agency.
- [6] Czichos, Saito and Smith, Metrology and Testing, Springer Heidelberg Dordrecht, 201 University of Moratuwa, Sri Lanka.

 Electronic Theses & Dissertations
- [7] V. Zusman, K.W. and i George, and Modestructive Testing and Diagnostic Hand Book, Russian Society for Nondesructive Testing and Technical Diagnostics., 2004.
- [8] Specification for common bupnt clay building bricks SLS 39:1978, Sri Lanka Standards Institute, 1978.
- [9] B. D and B. I, "Non-Destructive Measurement of Moisture in Building Materials by Compton Scattering of gamma rays," *Romanian Reports in Physics*, p. 61–75, 2011.
- [10] C. G, S. E and E. K, "Influence of mineralogy and firing temperature on the porosity of bricks," *Journal of the European Ceramic Society*, vol. 24, p. 547–564, 2004.

- [11] M. N. J. ŠKRAMLÍK, "MONITORING OF MOISTUREIN BUILDING MATERIAL BY EMW RADIATION," *Slovak Journal of Civil Engineering*, p. 8 16, 2007.
- [12] M. N. 1. K. Š. 1. Jan ŠKRAMLIK 1, "Interaction of microwave radiation with porous materials," in *International Workshop of NDT Experts*, Prague, 2011.
- [13] K. Sedat, E. Sabit and G. Hikmet, "Firing temperature and firing time influence on mechanical and physical properties of clay bricks," *Journal of Scientific and Industrial Reseach*, pp. 153-159, 2006.
- [14] P. S and Theppaya, "A study towards energy saving in brick making," *RERIC Int Energy J*, vol. 17, pp. 145-156, 1995.
- [15] A. M. K, I. M. R, S. S, I. M. N and A. I. S. M, "Quality study of hand made brick-DK using neutron radiography technique," *Bangladesh Journal of Scientific and Industrial Research*, pp. 237-246, 2013.
- University of Moratuwa, Sri Lanka.

 [16] A. Michael Z. MA-T'Study of internal defects and water absorption behavior of single-layer Italian tides using neutron radiography facility of 3 MW TRIGA MARK II research reactor," J. of Bang. Acad. of Sci., vol. 31, pp. 213-222, 2007.
- [17] C. Udagani, "Gamma ray attenuation Study with Varying Moisture Content of Clay Brick," *International Journal of Engineering Science Invention*, pp. 35-38, 2013.
- [18] J. C. .. Oliveira, C. M. .. Vaz, K. Reichardt and D. Swartzendruber, "Improved soil particle-size analysis by gamma-ray attenuation,," *Soil Science Society of America Journal*, vol. 61, pp. 23-26, 1997...
- [19] J. C. Costa, J. A. R. Borges and L. F. Pires, "Soil bulk density evaluated by gamma- ray attenuation," *Analysis system geometry Soil and Tillage Research*, vol. 129, pp. 23-31, 2013.

- [20] U. EWERT, U. ZSCHERPEL and K. BAVENDIEK, "Strategies for Film Replacement in Radiography- Films and Digital Detectors in Comparison," *17th World Conference on Nondestructive Testing*, , *Shanghai*, *China*, pp. 1-8, 25-28 October 2008.
- [21] B. F. D. J.-S. R. L. M. Schreiner, "X-RAYS IN ART AND ARCHAEOLOGY AN OVERVIEW," *International Centre for Diffraction Data 2004, Advances in X-ray Analysis*, 2004.
- [22] W. Yoshio, M. Eiichiro and KozoShinoda, X-Ray Diffraction Crystallography, Springer Heidelberg Dordrecht London New York, 2011.
- [23] Handbook for the IAEA National Training Course on, DGZfP and IAEA, 2013.

APPENDIX 1

Table: 1 Water volume (cm³) and ln (intensity brick/intensity Al) of Set1 Brick 1

Water Volume cm ³	In (intensity brick/intensity Al)
0	0.46
157.78	0.55
233.97	0.55
283.42	0.61
438.08	0.64

Table: 2 Water volume (cm³) and ln (intensity brick/intensity Al) of Set1 Brick 2

Water Volume cm ³	ln (intensity brick/intensity Al)
0.00	0.4
University	of Moratuwa, Sri Lanka.
Electronic 7	Theses & Dls5ertations
w323:82b.m	rt.ac.lk 0.57
441.86	0.63

Table: 3 Water volume (cm³) and ln (intensity brick/intensity Al) of Set1 Brick 3

Water Volume cm ³	ln (intensity brick/intensity Al)
0	0.45
241.51	0.53
324.31	0.55
365.81	0.59
437.26	0.64

Table: 4 Water volume (cm³) and ln (intensity brick/intensity Al) of Set1 Brick 4

Water Volume cm ³	In (intensity brick/intensity Al)
0	0.41
234.26	0.46
348.32	0.52
408.17	0.62
464.98	0.64

Table: 5 Water volume (cm³) and ln (intensity brick/intensity Al) of Set1 Brick 5

Water Volume cm ³	In (intensity brick/intensity Al)
0	0.49
261.03	0.56
357.32 University	of Moratuwa, Sri Lanka.
w ⁴³ 2.3hb.m	Theses & Dissertations rt.ac.lk 0.65

Table: 6 Water volume (cm³) and ln (intensity brick/intensity Al) of Set2 Brick 1

Water Volume cm ³	ln (intensity brick/intensity Al)
0	0.48
167.12	0.51
235.61	0.55
284.04	0.58
414.59	0.65

Table: 7 Water volume (cm³) and ln (intensity brick/intensity Al) of Set2 Brick 2

Water Volume cm ³	ln (intensity brick/intensity Al)
0	0.49
242.72	0.55
331.93	0.64
380.39	0.65
406.35	0.69

Table: 8 Water volume (cm³) and ln (intensity brick/intensity Al) of Set2 Brick 3

	Water Volume cm ³	In (intensity brick/intensity Al)
	0.00	0.47
	154.20	0.51
	219.35 University	of Moratuwa, Sri Lanka.
		Theses & Dissertations
- Salar - Sala	w405.66b.m	rt.ac.lk ^{0.68}

Table: 9 Water volume (cm³) and ln (intensity brick/intensity Al) of Set2 Brick 4

Water Volume cm ³	ln (intensity brick/intensity Al)
0	0.43
155.51	0.49
221.89	0.55
270.57	0.57
411.79	0.65

Table: 10Water volume (cm³) and ln (intensity brick/intensity Al) of Set2 Brick 5

Water Volume cm ³	ln (intensity brick/intensity Al)
0	0.46
279.43	0.54
351.72	0.63
355.64	0.64
373.94	0.67

Table: 11Water volume (cm³) and ln (intensity brick/intensity Al) of Set3 Brick 1

Water Volume cm ³	In (intensity brick/intensity Al)
0	0.6
268.84	0.7
366.01 University	of Moratuwa, Sri Lanka.
Electronic	Theses & Dissertations
w416.99b.m	rt.ac.lk ^{0.82}

Table: 12 Water volume (cm³) and ln (intensity brick/intensity Al) of Set3 Brick 2

Water Volume cm ³	ln (intensity brick/intensity Al)
0	0.64
274.93	0.74
372.88	0.76
415.38	0.78
430.61	0.81

Table: 13 Water volume (cm³) and ln (intensity brick/intensity Al) of Set3 Brick 3

Water Volume cm ³	ln (intensity brick/intensity Al)
0	0.64
262.98	0.72
368.19	0.77
420.13	0.81
435.44	0.83

Table: 14 Water volume (cm³) and ln (intensity brick/intensity Al) of Set3 Brick 4

Water Volume cm ³	In (intensity brick/intensity Al)
0	0.65
187.36	0.75
267.85 University	of Moratuwa, Sri Lanka.
Electronic	Theses & Dissertations
w ³⁸⁵ .79b.m	

Table: 15 Water volume (cm³) and ln (intensity brick/intensity Al) of Set3 Brick 5

Water Volume cm ³	ln (intensity brick/intensity Al)
0	0.68
163.49	0.71
236.36	0.75
289.95	0.77
395.29	0.82