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ABSTRACT

A heterogeneous data ensemble approach for the classification of Sac-
charomyces cerevisiae proteins under ‘mitochondrion organization’

Proteins are the real role players in keeping a cell healthy and well functioning. An

important group of proteins is the subset of mitochondrial proteins that engage in the

assembly, arrangement and disassembly of the mitochondrion. Several of them have

been identified to cause human diseases. Hence, annotating proteins under the ‘mito-

chondrion organization’ Biology process is vital for identifying disease causative factors

and for designing therapeutics. As manual annotation requires costly and laborious in

vitro methods, in silico function prediction is preferred nowadays. Recent studies iden-

tify the importance of incorporating data from various biological aspects, to formulate

a strong functional context for classification. In addition, many approaches from liter-

ature employ ensemble classifiers to attain a higher prediction accuracy. However, an

insightful approach for accurate classification; biological data utilization; and biological

data type significance determination; is still in need. This study presents an assessment

of a heterogeneous data ensemble to classify Saccharomyces cerevisiae proteins under

‘mitochondrion organization’. The ensemble consists of nine euclidean-distance based

nearest neighbour models and three affinity-based neighbourhood models; it utilizes

sequences, protein domains, peptide chain properties, gene expression, secondary struc-

ture and interactions. The base models were trained upon annotations from the Gene

Ontology, as well as from a publicly available benchmark gold dataset. They show

a substantial level of disagreement, implying their effectiveness in collective decision

making. Six combination schemes were evaluated for fusing the base model outputs. A

Genetic Algorithmically weighted ensemble gives the highest improvement to the best

performing base classifier, by displaying an average area under the Receiver Operating

Characteristic curve of 92.52%. Moreover, it is capable of determining the biological

importance of each data type. Overall, the proposed heterogeneous data ensemble is

capable of identifying eight disease related proteins and one disease related protein in

a strong and moderate sense, respectively.

Keywords: yeast; proteins; mitochondrion; weighted ensemble; data heterogeneity;

genetic algorithm; supervised learning
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Chapter 1

INTRODUCTION

This dissertation presents a research study carried out on mining heterogeneous

biological data, for predicting protein functions of a well-known and a well-studied

model organism: Saccharomyces cerevisiae. The primary functional class of in-

terest is the ‘mitochondrion organization’.

Proteins are the real role players in keeping a cell healthy and well functioning.

They often engage in various molecular, cellular and physiological activities that

are essential for the well-being of an organism [1]. It could be either to maintain

metabolism and cellular homeostasis under varying environmental conditions, or

to regulate and organize cellular reproduction, growth and development [2]. As a

standard, these functions are well-defined through species independent functional

classification schemes such as Gene Ontology (GO) [3] and MIPS FunCat [4]. Any

abnormality in protein folding, expression or regulation might cause a disruption

in their functions, impeding essential biological pathways and resulting in dis-

eases or other adverse phenotypes (e.g. breast cancer progression [5], sickle cell

anaemia [6]). Hence, revealing protein functions is vital for understanding com-

plex biological processes, for identifying disease causative factors and for designing

therapeutics.

1.1 Saccharomyces cerevisiae

Saccharomyces cerevisiae is one of the widely and commonly used single cellular

microorganisms for studying protein functions of higher order eukaryotes such as

humans. It is a species of yeast, categorized under the eukaryota domain and

belonging to the kingdom Fungi [7]. Figure 1.1.1 presents the microscopic and

cellular view of S. cerevisiae. Yeast is generally believed to be having the minimal

set of genes required to sustain the eukaryotic free living organisms [8]. Most
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(a) microscopic [9] (b) the yeast cell [10]

Figure 1.1.1: Saccharomyces cerevisiae

importantly, it is known to be substantially contributing towards understanding

eukaryotic biology. The main reasons are the evolutionary conservation of many

yeast genes in eukaryotes and the much higher feasibility of carrying out yeast

genome-scale experiments (i.e. the ability for quick reproduction and growth

under variety of conditions inside a laboratory [8]). For instance, a yeast protein

mutant which is responsible for a certain phenotype, could suggest the existence

of a human ortholog that causes a similar phenotype in humans [2]. Thus, ever

since the yeast genome got published in 1996 as the very first eukaryotic genome

to be sequenced, most of the GO annotations, eukaryotic gene/protein functions

and interactions have been derived through yeast genome wide studies [2]. Due

to this reason, quite a large number of data are available for S. cerevisiae.

1.2 Importance of ‘mitochondrion organization’

When it comes to human health, mitochondria plays an essential role by acting

as the cells’ power house. This cellular organelle maintains the cellular energy

balance and calcium signalling modulation, while giving house for many other sig-

nificant biosynthetic pathways [11]. According to the Gene Ontology, ‘mitochon-

drion organization’ (GO:0007005) is the cellular level process which is responsible

for the assembly, arrangement and disassembly of a mitochondrion (including the

replication of the mitochondrial genome; mitochondrial morphogenesis and dis-

tribution; and the synthesis of new mitochondrial components). If any protein

that is engaged in this process becomes impaired somehow, it would lead to a

7



disordered cell functionality, disabling the mitochondrial function [11]. Conse-

quently, the condition may get manifested as a disease. One in five mitochondrial

proteins are known to be human disease related [12].

Saccharomyces cerevisiae facilitates the understanding of many mitochondrial

human diseases. For instance, human orthologs of some S. cerevisiae proteins

affect mitochondrial respiration due to mutations in them [8]. Exploring the cor-

responding yeast proteins would be beneficial to decipher the disease causality

and develop treatment procedures. Nine proteins can be identified as involved

in GO:0007005, among the list of human disease related proteins given by Barri-

entos [8]. They are presented along with their related clinical manifestations in

Table 1.1. S. cerevisiae is an ideal model organism to examine such human dis-

eases, as mitochondrial biogenesis is one of the conserved cellular functions from

yeast to human. Hence, S. cerevisiae protein classification under ‘mitochondrion

organization’ functional class is much important for identifying and classifying

disease related human orthologs.

Protein/ortholog Clinical manifestations

SDH1/SDHA Leigh syndrome
BCS1/BCS1L Tubulopathy, encephalopathy and liver failure
COX10/COX10 Ataxia, tubulopathy
SCO1/SCO1 Hepatic failure, encephalopathy
CYC3/HCCS Microphthalmia with linear skin defects syndrome1

AAC1/ANT1 Progressive external ophthalmoplegia2

AFG3/SPG7 Spastic paraplegia
FUM1/FH Encephalomyopathy
MGM1/OPA1 Optic atrophy type I

Table 1.1: Disease related ‘mitochondrion organization’ proteins as listed in [8]

1X-linked dominant disorder
2Autosomal dominant disorder
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1.3 Need for Protein Function Prediction

High-throughput sequencing technologies have enabled the discovery of new pro-

teins at a brisk pace, eliciting the need for their function annotation at an equiv-

alent rate. Day by day, more and more human diseases are getting prevalent

and thus, efficient protein function annotation has become a necessity. However,

manual annotation practice requires costly and laborious in vitro methods such as

the purification of a protein of interest, gene knockout, fusion protein preparation

and conduction of various biological experiments (e.g. two hybrid screening) [13].

They need a huge experimental and human effort, often resulting in a low through-

put at a higher cost (in terms of time, effort and equipment); and an infeasibility

to reach the current discovery rate of unknown proteins. Moreover, only a single

protein can be focused at a time during this manual practice. Thus, the require-

ment for developing effective computational protein function prediction methods

has arisen. Such in silico protein function prediction not only reduces the overall

cost, but also acts as a guide to further experimental validation and biocuration

of inferred function annotations. An enormous amount of continuously prolif-

erating biological data and a considerable amount of manually annotated data,

pave the way to build supervised learning and prediction models. Biological data

types include nucleotide sequences; amino acid sequences; gene expression data;

molecular interaction data; protein structural data; biomedical literature; and

various other experimental data types. Thus numerous protein function predic-

tion models are being introduced, while global initiatives such as CAFA [14] are

in effect for collaboration, assessment and further effort encouragement.

1.4 Problem Definition

Protein function prediction is a widely addressed problem in Functional Genomics

research. The ultimate goal is to annotate proteins with their corresponding func-

tions as to understand the various kinds of biological processes and pathways that

these macromolecules are engaged in. The task is primarily categorized under su-
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pervised learning, and the protein functions are taken to be the target concepts

(i.e. the classes of interest). Due to a single proteins’ involvement in multiple

functions, the fundamental problem entails the multi-class, multi-label classifi-

cation need. In addition, the hierarchically structured functional classes; highly

skewed class distributions; elusive nature of negative examples; large number of

functional classes; different degrees of reliability for existing annotations [15]; and

the extremely large protein instance space, make the problem domain much more

intricate. Hence computational researchers tend to focus more on a single aspect

of the problem at a time. Further, Biologists often study a single protein function

at a time. Moreover, a generic learning model may not be effective for protein

function prediction, since different functional contexts require different learning

strategies under different concerns.

In the focus of a single protein function, the basic initial step is to gather the

set of proteins which have already been annotated (i.e. positive examples) under

the function of interest. It is also required to gather a set of proteins which do

not engage in the function of interest (i.e. negative examples). At this point, the

issue of class imbalance and the ambiguity at negative example selection should

be taken care of. The class imbalance is caused by the fact that only few proteins

engage in a particular function. In addition, the negative example selection is dif-

ficult due to the incompleteness of experimentally validated protein annotations.

This is because, not all non-annotated proteins are true negative proteins. Some

of them might not have been identified as engaged in the function of interest yet.

Ideally, an experimentally verified positive and negative protein set should be ob-

tained for training a classification model. Also a variety of biological data types

have to be incorporated as to formulate the functional context during the model

learning process. Next, a model is built to learn how to distinguish between a

positive protein and a negative protein with respect to the particular function

class. It can then be used to obtain a posterior probability value which indicates

the class membership of a functional-contextually unknown protein. Ultimately,

this model output can support annotation decision making and further experi-

10



mental validation.

The plethora of literature leverages different data types for protein function pre-

diction, as researchers identify their importance to the supervised learning setting.

The latent network of how varying biological aspects interconnect to form a func-

tional context, is convoluted and still not completely understood. Nevertheless,

it can devise the role of a protein at different levels of abstraction. For instance,

proteins do not usually operate in isolation, but interact or bind with other pro-

teins and molecules to perform the intended functions. Thus, the affinity between

two proteins can suggest that they are involved in the same biological process.

Moreover, homologous protein sequences have a chance of sharing a conserved

genomic region which is corresponding to the same function. Furthermore, the

presence of a certain structural motif can be evidential of a certain protein func-

tion as well (e.g. zinc finger structural motif for DNA binding). At the higher

level, the stable conformation of a protein in three dimensional space affects how

it carries-out functions by interacting with other molecules and the surrounding

environment. In addition, their subcellular localization, targeted molecules, the

level of expression in tissues and their role in the growth or the development of

an organism altogether form their functional context [13]. Integration of such

varying functional aspects can give a more confident clue about protein function-

ality. Hence, when determining the functions of a protein, those factors have to

be taken into consideration.

Overall, this supervised learning problem requires a more insightful approach

for attaining a higher classification accuracy, while effectively utilizing previously

mentioned biological data types, and determining each of their significance for

the functional context of interest.
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1.5 Research Objectives

The ultimate objective of this research was to assess the use of a properly engi-

neered heterogeneous data ensemble classification model for recognizing a Sac-

charomyces cerevisiae proteins’ engagement in the ‘mitochondrion organization’

biology process. The challenge introduces the need for reliable dataset selection,

data integration, data type specific quality control, preprocessing and effective

utilization. An important consideration was given to the methodology of har-

nessing a diverse range of heterogeneous biological data sets (often complex and

noisy), which together explain the ‘mitochondrion organization’ context..

The approach incorporates six types of biological data: amino acid sequences;

protein domains; gene expression; peptide chain properties; secondary structure;

and interactions. Each type undergoes specific preprocessing prior to data min-

ing, for an accurate protein instance representation. This is a crucial step for

dealing with complications, un-reliabilities, outliers, inconsistencies, varying data

ranges and varying data formats, introduced by these data. Especially the bio-

logical datasets produced by high throughput experiments may suffer from high

error rates and random noise [16, 17, 18]. Moreover, unreliable sources or data

instances should be avoided, as usage of such error prone data could lead to error

propagation, resulting in even more erroneous results.

1.6 Contributions

During the course of study, the following contributions were made.

• Evaluation of an LDA topic modeling approach for representing a protein

domain specific amino acid sequence

• Evaluation of a genetic algorithmically (GA) weighted heterogeneous data

ensemble approach

• Comparison with four other base-line combination schemes for fusing base

model outputs
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• Evaluation of a second level ensemble of different combination schemes

1.7 Organization

The rest of the chapters are organized as follow. Chapter 2 presents the basic

concepts and background knowledge related to Biological data mining, Functional

Genomics and proteins. Chapter 3 gives a comprehensive literature review in

terms of the existing protein function prediction methods. Chapter 4 elaborates

on the data material, computational methods and tools used for developing the

protein function prediction approach. Chapter 5 explains the experimental setup

and presents a result analysis with discussion, followed by conclusions and future

recommendations in Chapter 6.
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Chapter 2

BACKGROUND STUDY

In nature, biological systems are very complex in terms of their formation, exis-

tence, function and maintenance. Hence a background study was conducted prior

to the literature review, in order to understand the exact biological problem do-

main. Many online resources such as [19, 20] were referred and Biology expert

advice was received during the following domain knowledge acquisition process.

2.1 Bioinformatics and Biological Data Mining

High-throughput technologies enable the Biology research community to acquire

massive volumes of data, generated from various in vitro and wet-lab experiments.

Decoding what is concealed within, is the key to solve mysteries behind biological

systems and unravel the causative factors of diseases. These data contain all the

answers to the continually arising biological questions. The proliferation and the

growing complexity of such data introduce various challenges in terms of their re-

trieval, storage, management and analysis. Bioinformatics is an interdisciplinary

field emerged in early 1950s to address those key concerns and facilitate effec-

tive life science research. In brief, it engages in applying Computer Science and

Informatics to build pipelines, tools, techniques, algorithms and computational

models for the purpose. The name of the field itself is an umbrella term, coined

in 1970.

Ever since Watson and Crick suggested the double-helix structure of DNA in

1953, many important molecular biological discoveries were made in parallel to

the development of computer systems, programming languages and algorithms.

The first protein to be sequenced was Insulin. As more protein sequences were get-

ting sequenced, early researchers realized the potential of applying computational

methods to go beyond the existing understanding. For instance in 1951, a com-

14



puter program was developed to determine the structure of a protein for the first

time (i.e. Myoglobin). In early 70s, the famous sequence alignment algorithms:

Needleman-Wunsch local alignment and Smith-Waterman global alignment were

developed. The year 1977 marked a turning point when a highly accurate tech-

nique known as Sanger sequencing was introduced for DNA sequencing, outpacing

protein sequencing. Later in 1988, genome-level sequencing was initiated with the

embark of the Human Genome Project, which was completed in 2004 by pub-

lishing the complete human genome. Meanwhile, Haemophilus influenzae Rd

bacteria genome was the first to be completely sequenced using the shotgun ap-

proach, followed by the complete genome sequencing of E. coli and yeast. A new

turning point was defined when next generation sequencing (NGS) technologies

came into the existence in the year 2004. NGS allows fast and efficient sequenc-

ing of multiple individual genomes at once, ameliorating the earlier whole-genome

sequencing rate. Moreover, microarray technologies were introduced to overcome

obstacles present in conventional expression measuring methods, such as single

gene expression measurement at a time. However, these novel technologies intro-

duced many more challenges to the field, as the data generated by them tend to

contain many errors and noise. [19]

Every event across the historical Bioinformatics timeline so far, has resulted in

gathering an abundance of data in the form of sequences, structures etc. Many

repositories are maintained for accessing existing data and depositing new data.

Numerous collaborative projects are in effort to biocurate and to increase the

quality and reliability of these data. Moreover, a layered data generation can be

observed, as the researchers utilize available biological data to create new data.

The Bioinformatics and Computational Biology field is flourishing day by day,

introducing more and more novel approaches to analyze the extensive amount of

biological data and catch up with their unprecedented rate of generation. Due to

the data heterogeneity caused by varying biological aspects or the differences in

experimental platforms and methods, a need has arisen for specific quality control

and preprocessing, prior to data analysis and mining.
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Life scientists encounter diverse biological research problems related to organ-

isms, ranging from single cellular to higher order eukaryotes. It might be either

to accurately identify genes; to determine proteins encoded by genes; to anno-

tate proteins with their functions; to solve protein structures; to pinpoint disease

causing mutations; or to figure out evolutionary relationships shared by different

species. Before utilizing the wealth of heterogeneous biological data at hand to

address such problems, a researcher firstly needs to recognize the types of data

that are advantageous for the application. Once decided, next thing is to select

and retrieve appropriate datasets from reliable data sources. The data will then

undergo basic exploratory analysis for decision making regarding further quality

control and preprocessing steps. This is essential to remove inconsistencies, noise

and to make them adhere to certain standards and rules, as required by the par-

ticular research context. Moreover, some studies require comparability, enforcing

data normalization in certain ways. The diversity in data sources and biological

studies in literature makes the selections much challenging. Finally, the prepared

datasets can then be leveraged using different data mining techniques to answer

the research question at hand.

2.2 Overview to Functional Genomics and Proteins

Merriam Webster Dictionary defines Functional Genomics as the branch of ge-

nomics that uses various techniques to analyze the function of genes and proteins.

Today the field is majorly driven by the use of computational tools and tech-

niques alongside wet-lab experiments, to extract knowledge from vast amounts of

genomic and transcriptomic data. This area of study investigates functional roles

of genes/proteins, protein-protein/gene-protein interactions, gene expression and

their differential expression patterns in the presence of certain conditions [21].
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2.2.1 Basics of Proteins

A protein is a macromolecule, consisting of one or more peptide chains made

out of 20 types of amino acid residuals. The amino acids are covalently linked

as a chain by peptide bonds. The common chemical structure of an amino acid

has an amino group (NH2), alpha carbon and a carboxyl group (COOH), as

shown in Figure 2.2.1. R denotes the side chain, which is the only portion that

is different by the type. Figure 2.2.2 lists out all 20 amino acid types, along

with some of their chemical characteristics. Amino acid side chains have their

own physicochemical characteristics such as the electric charge (i.e. uncharged-

polar, positively-charged, negatively-charged), hydrophobicity and hydrophilicity.

Moreover, a side chain may be acidic (e.g. Asp and Glu) or basic (e.g. Lys, Arg

and His). Asn, Gln, Ser, Thr and Tyr are uncharged polar side chains, while

the rest are non-polar side chains. The start of an amino acid chain is called the

N terminus (i.e. terminated by a free -NH2 amine group), whereas the end is

denoted by C terminus (i.e. terminated by a free -COOH carboxyl group). The

amino acid sequence is conventionally written from N terminus residue to the C

terminus residue.

In a typical cell, the proteins generally account for about 50% of the cellular solid

matter and 15% of the cellular wet-weight [22]. A proteins’ primary task is to

carry out the instructions that have been encoded by the genome. In other words,

it is them who are responsible for building up the phenotype from the genotype

of an organism. Therefore, the abnormalities of their formation might cause cel-

lular dysfunction, which in turn could result in certain diseases and unfavourable

Figure 2.2.1: Amino acid residue [23] and peptide bond formation [24]
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Figure 2.2.2: List of 20 Amino acid types [25]

organismic characteristics. Thus, it is vital to understand their functions.

2.2.2 Structure of Proteins

In general, the structure of a protein refers to the conformation of all of its atoms

in three dimensional space to support its existence and function. This is defined

in four levels: the primary structure; secondary structure; tertiary structure; and

quaternary structure. [26]

1. Primary Structure

This is the amino acid sequence, referring to the linear polypeptide back-

bone with no shape.
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2. Secondary Structure

This is the local folding of polypeptide regions due to the nature of chem-

ical bonds within the chain. The specific local structural shape elements

are caused by the intermolecular and intramolecular H bonding of N-H and

C=O groups. A local region may get folded into one of the two commonly

folding patterns: alpha helix (α-helix) and beta (β) sheet. Alpha helix

structure is a spiral conformation in which, the backbone coils around an

imaginary helix axis in clockwise direction. Beta sheet refers to a confor-

mation consisted of beta strands which are connected laterally by at least 2

or 3 backbone H bonds, when backbone folds back on itself to make pleats.

Random coils with turn and interconnecting loops act as connectors of such

folding patterns within the structure. For some proteins, secondary struc-

ture is merely a set of alpha helices and thus, they are known as α-helix

proteins (e.g. Myoglobin). Similarly there exists β sheet proteins as well

(e.g. Antibodies, T cell receptors). Figure 2.2.3 shows example structures

for the two protein types. However, many proteins have both α-helices and

β sheets. There are 2 types of beta sheets: parallel beta sheets and anti-

parallel beta sheets. A parallel beta sheet is formed by two beta strands,

running in the same direction and are held together by hydrogen bonds

between them. If two beta strands that run in opposite directions are held

together by hydrogen bonds, it will result in forming an anti-parallel beta

sheet. [27] Figure 2.2.4 from [27] illustrates the difference between the two

types.

Figure 2.2.3: Example alpha helix protein (right) and beta sheet protein (left)
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Figure 2.2.4: Parallel and anti-parallel beta sheets [27]

3. Tertiary Structure

This refers to the three dimensionally folded structure of the peptide chain

into a specific conformation. Many forces (e.g. polar/non-polar interac-

tions, hydrogen bonds, van-der-waals forces, ionic interactions) act to hold

the peptide chain in this final configuration. This should be stable (i.e.

having the lowest energy state) under the corresponding physiological con-

ditions, for a peptide chain to function as a protein. A folded single peptide

chain may or may not be independently functional. For becoming func-

tional, it may require to get into the next level of structure.

4. Quaternary Structure

Quaternary structure describes the structural system of two or more pep-

tide chains which chemically bond to form a protein complex. The indi-

vidually folded chains (i.e. protein subunits) fold again into a structure in

3D space, allowing the required inter-chain physical interactions. The qua-

ternary structure explains how different subunits pack together to form the

overall protein structure. For instance, Haemoglobin protein has 4 subunits

(i.e. 2 alpha chains and 2 beta chains).

A protein structure can be visualized in terms of its space filling view (i.e. with

actual size and location of each atom), as well as of its secondary structure view

(i.e. polypeptide chain presented as a ribbon to show the locations of alpha he-

lices and beta sheets). The 3D protein folding is not solely based on the sequence,

as there are other external factors in the cellular environment which contribute

to the final conformation of a protein. For instance, the shape might depend on

the proteins’ localization (e.g. cytoplasm localized, membrane localized etc.). [26]
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Experimental protein structure determination through methods such as X-ray

crystallography and Nucleic Magnetic Resonance (NMR) are highly expensive in

terms of time and cost. Commonly used X-ray crystallography requires the pro-

tein to be crystallized prior to experimentation. Moreover, this technique cannot

capture the structural variances caused by the dynamic nature of proteins, when

they constantly undergo conformational changes. Furthermore, protein crystal-

lization is somewhat difficult, especially for membrane proteins. Membrane pro-

teins exist in lipid environments and their shape changes when they are not in

the original environment, leading to incorrect results for structure determination.

Thus computational structure prediction approaches are preferred. [20]

2.2.3 Protein Folding

Folding structure of a protein is very important, since it has a key impact over

the gaining of the proteins’ ability to perform the intended functions. The physic-

ochemical characteristics of its amino acid side chains affect the way they par-

ticipate in gaining a stable fold. For example, the hydrophilic residues fold in

such a way that the hydrophobic amino acids do not get exposed to H2O. Those

characteristics are also important for the type of functions they perform. Due

to the large number of possible protein primary structures and the variation of

bond angles between amino acids, theoretically there should be a large number of

different folds, making up a huge structural space. However, due to the physio-

chemical constraints, nature has limited the possible protein folding space. Thus,

even two unrelated proteins may fold into similar 3D structures. The same folding

type might be reused again and again to perform completely new functions. [28]

2.2.4 Protein Motifs

Protein motifs are of two types: sequence motifs and structural motifs. Sequence

motif is an amino acid sequence pattern that is widespread and conjectured to

have a biological significance. Structural motif is a super secondary structure,

defined by the connectivity between secondary structure elements (alpha helices
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and beta strands). It is formed by the folding of a consecutive sequence region

in the primary structure. Some common examples for protein structural motifs

include beta hairpin, helix-turn-helix and helix-loop-helix. A protein domain can

have a combination of protein motifs. [28]

2.2.5 Importance of Protein Structure Determination

Protein structure has quite a strong relationship with the functions it is intended

to perform. Therefore it is a key to understand the detailed functional mechanism

of a protein. Besides, it is said that the structure is more conserved than the se-

quence. Certain substructures and motifs may give clues about the function. For

instance, the helix-loop-helix structural motif plays an important role in DNA

binding and thus, it can be used to characterize transcription factors. However in

overall, there are very common structural motifs that cannot be used for distin-

guishing proteins with respect to their functions. In other words, the same motif

may appear in proteins with dissimilar functions. Hence, the structure should be

carefully exploited, for it to be a powerful evidence in functional inference.

Another important aspect of protein structure usage is in the context of drug

design. Drugs are usually small molecules that interact with proteins. The pur-

pose of a drug might be to get binded to a protein and disrupt or shut down its

function. Since this is a physical interaction between the targeted proteins and

the drug in three dimension, it is required to know the exact protein structure in

order to design the proper drug.

2.2.6 Protein Domains

A domain is a stable, independent folding unit of a protein, formed by a segment

of the corresponding polypeptide chain. It is usually responsible for a single, dis-

tinguishable function of the protein. DNA binding domain site, catalytic sites in

enzymes and ligand or other protein binding domains are some examples for pro-

tein domains. A domain is independent because they are often cloned, expressed
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or purified independently of the rest of the protein. In some cases, each domain in

a protein is encoded by a separate exon in the gene. A protein can contain several

domains (e.g. IE0T with 12 domains) or only a single domain (e.g. Myoglobin

and cytochrome complex). Usually the proteins from the same family have the

same set of domains. It is also possible to fuse several known domains artificially

into a protein molecule, creating a chimeric protein. [29, 30, 31]

2.2.7 Protein Families

Protein family is a group of proteins conjectured to be sharing a common evo-

lutionary origin, reflected by their related functions and similarities in sequence

or structure. Protein families can be organized in a hierarchy. When the related

sequences of a family are aligned, a consensus sequence (i.e. a sequence signature)

may be identified, reflecting a domain or a motif. The existence of a particular

motif or domain could give a signal of common functional families. [32, 33]

2.2.8 Origination of Proteins

Gene Expression is the process by which the proteins are originated within a cell.

This is often known as the central dogma in Molecular Biology. Figure 2.2.5 gives

an overview to the process.

Genes are the coding regions located on the genome (i.e. DNA) and they en-

Figure 2.2.5: Gene expression [34]
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code information necessary for the construction of a protein. During the process

of gene expression, a gene is transcribed into a messenger RNA (mRNA), which

is then translated into an amino acid chain. This peptide chain might be an inde-

pendent protein or a subunit protein of a protein complex. In DNA translation,

the template strand is read from 3’ to 5’, while mRNA is constructed in 5’ to

3’ direction. An intermediate step called splicing is carried out when split genes

are present (mostly in higher order organisms). A split gene is a gene where

non coding segments called introns appear in between the biological information

coding segments called exons. Splicing is done in order to discard introns and as-

semble only the exons into a messenger RNA. Sometimes, a phenomenon known

as alternative splicing can happen, where a different combination of exons gets

assembled to synthesize a different protein at each expression.

Even though every cell of an organism contains the same genome, not every gene

is expressed. This is the very reason for different cell types to act differently. For

example, a neural cell does not act in the same way as a stem cell does. The gene

expression could also differ from stage to stage within the cell life cycle, accord-

ing to the necessity of protein types. It can even happen in response to a certain

environmental condition or in the presence of a certain substance. For instance,

the plant cells switch-on genes whose products are related to photosynthesis, in

response to light [35]. This is gene expression regulation and there are specific

types of proteins that engage in this control mechanism, by binding themselves

to the genome. This ensures that only the required proteins are synthesized ev-

erytime. However, some genes are expressed all the time, since their products are

continuously required for certain cellular processes such as metabolism pathways.

They are commonly known as housekeeping genes. Irrespective of the gene ex-

pression regulatory mechanism, the entirety of proteins in existence throughout

an organisms’ life cycle is referred to as its proteome [35].
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2.3 Functions of Proteins

The definition of protein function is somewhat vague because, a broad range of

biological features at different levels of abstraction is required to describe a pro-

tein function. The protein functional space represents how proteins act to form

complex cellular functional components, for realizing the genotype into the phe-

notype. Thus, Bork et al. [1] describes a functional aspect through a hierarchical

representation of molecular, cellular and phenotypic functions. At the bottom

level of the hierarchy, a protein carries out elementary molecular functions such

as ligand binding, catalytic activity and conformational changes. In the next

higher level, the collective action of a set of proteins drives cellular functions

such as metabolic pathways and signal transduction cascades. The entirety of

such physiological sub-systems and their interaction with various environmental

factors determine the phenotype (morphology, physiology and behavior) of an

organism.

A protein obtains the appropriate structure and chemical characteristics for its

intended functions as per the instructions given by its corresponding gene. In

overall, different types of proteins are responsible for different functional contexts.

While some proteins regulate the gene expression, some involve in different stages

of the gene expression process. For instance, DNA transcription is done by RNA

Polymerase: a protein in the form of an enzyme. The mRNA translation is done

by ribosome: a protein complex known to be the protein synthesizer in a cell.

Proteins can have work inside the cell, as well as outside the cell. For instance,

some cells secrete proteins into their surrounding extracellular fluid.

Following are some distinct functions, that various protein types are responsi-

ble for.

• Constitution of tissues and organs (structural proteins)

• Facilitation and catalysis of biochemical reactions (enzymes)
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• Maintenance of the cellular environment (transmembrane proteins)

• Signal transduction (signal receptors)

• Carrying out substances throughout the body (e.g. Haemoglobin)

• Muscle contraction (e.g. Myosin, Actin)

• Immune system (antibodies)

• Physiological process regulation and growth control

• Transcription, translation and expression regulation (transcription factors)

2.4 Importance of Protein Function Annotation

The entire well existence of an organism depends on its proteins, as they are

responsible for performing cellular, molecular and biological functions that are

required to maintain a flawless and healthy biological system. Even though it

is the genome which encodes the instruction manual for building-up and main-

taining an organism, proteins are the actual workers to implement it. Hence,

the causative factor for a certain disease might be the changes in gene expression

regulation (overexpression/ reduced expression/ inhibition of expression), protein

misfolding or due to a mutant protein.

For instance, Sickle cell anaemia is caused by a nonsynonymous mutation (i.e.

point mutation that alters the amino acid sequence of the protein) in Haemoglobin.

Haemoglobin is the Oxygen carrier protein in red blood cells, by binding O2

molecules to itself. The steady supply of O2 is maintained by red blood cells

which circulate around the body, delivering O2 from lungs to the tissue cells.

The disk shape of red blood cells containing the Haemoglobin makes them to be

flexible in moving through large and small blood vessels. However, the cells con-

taining sickle Haemoglobin are of the shape of a crescent and thus, they become

inflexible. They can easily be sticked into blood vessels, causing a blockage in

the blood cell flow. The resultant poor O2 delivery could lead to organ damage,

chronic ongoing pains and severe pain attacks. Also sickle blood cell life span
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is lower than normal cell life, resulting in an anaemia condition in which, the

number of red blood cells in blood is lower than the normal. [6]

The reason behind a certain disease condition can be due to the malfunction-

ing of an already known protein, an already discovered but functionally unknown

protein or an undiscovered protein. In order to find drug targets for preventing,

curing, controlling or managing such a condition, it is important to know the

exact proteins which are in effect and what their functions are. Hence it is neces-

sary to conduct experiments as to discover the protein functional factors behind

regularities/irregularities in phenotypes, and to understand how they relate to

disease origination, progression and development. This could help to design and

develop the right kind of drug to be targeted at the responsible protein, or the

treatment procedure to control and manage the disease condition.

Today, there are many proteins which have been identified as biomarkers (i.e.

measurable indicators of the severity of the presence of some disease state). For

instance, HER2 receptors are receptor proteins in breast cells. Their task is to

control the healthy growth of a breast cell. However, this is a protein encoded

by an oncogene (i.e. a gene with a potential to cause cancer) called ERBB2

gene. In some breast cancer patients, this gene is amplified, resulting in HER2

protein overexpression. Such case is known as HER2 positive breast cancer and

they tend to grow faster and be more likely to spread and come back compared

to HER2 negative breast cancers. Hence this protein has become an important

biomarker and a therapeutic target. HER2 positive patients are given specific

kinds of medication. A common one is Herceptin which attaches itself to HER2

receptor proteins and blocks them from receiving growth signals. This could help

to slow down or even stop the growth of the breast cancer. [5]

Further identification of such biomarker proteins rely on protein function an-

notation. Thus, identifying and annotating them with their set of functions is an

extremely important task for further understanding of biology.
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2.5 Biological Data Sources for Functional Genomics

The recent advancements in omics technologies have produced an abundance of

data, which can be greatly leveraged for in silico protein function prediction.

Genomic data enables sequence analysis in terms of their homology and other

genomic context information such as motifs. Sequence comparison tools such as

BLAST can be used to identify homologous protein sequences. Moreover, pro-

tein domain data are available from databases such as InterPro, CDD, ProDom

and PROSITE. Protein structure data can be obtained from online sites such as

PDB (Protein Data Bank), CATH and SCOP. The structure data are usually

difficult to be processed and analyzed. Transcriptomic data captures differential

gene expression, enabling co-expression analysis. It helps in identifying function-

ally related genes, due to having similar expression profiles. Stanford Microarray

database, ArrayExpress and Gene Expression Omnibus provide gene expression

data repository platforms, in addition to individual research study platforms.

Interactome data includes physical interactions and genetic interactions. A phys-

ical interaction can refer to an interaction between two proteins, either to form a

protein complex or for performing a certain function together. However, physical

interaction data may often have false positive and false negative interactions. Ge-

netic interactions are evidential of gene pairs which exhibit either a suppression

or an enhancement of a phenotype, in the presence of mutations in both of the

genes. It would give an indication that the pair is involved in the same biology

process. However, relative to physical interactions, only a small amount of ge-

netic interaction data are publicly available due to the limited amount of genetic

interaction mapping studies. BioGRID (Biological General Repository for Inter-

action Datasets) is a well-known public data repository that archives interaction

data for model organisms, as well as for humans. Other databases include DIP

(Database of interacting proteins), MIPS Mammalian protein-protein interaction

database, BINDING, STRING etc. There also exists organism specific databases

(e.g. Saccharomyces Genome Database (SGD) and FlyBase) and protein family

specific databases (e.g. GPCRDB for G protein-coupled receptors; and BRENDA
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for enzymes). [36]

In addition to the above, more data types such as subcellular localization; phylo-

genetic profiles; transcriptional regulatory networks; gene co-expression networks

and biomedical literature can be useful as well. These various biological data

types could give a strong insight to protein functions, significantly supporting the

functional context analysis through their interrelationships. UniprotKB (Univer-

sal Protein Resource) is an ideal resource for browsing many common protein

data types at once. It has two main sections: SwissProt and TrEMBLE. Swis-

sProt has 549,008 proteins reviewed and manually annotated using information

extracted from literature and curator evaluated computational analysis, whereas

TrEMBLE contains 50,011,027 proteins with un-reviewed records that await full

manual annotation.

Many of the previously mentioned data sources allow researchers to collabora-

tively deposit new data, continuously bio-curate them and electronically record

their findings. Most of such sites also contain latest statistics on their data. How-

ever, an important consideration should be given to the reliability of data when

selecting the data sources. Many electronically annotated data are available for

use, but it is always important to retrieve only the bio-curated data.

2.6 Microarray Gene Expression

Microarray technology is a widely used experimental approach to study the ex-

pression of an entire genome in a tissue of interest at one go. Many biological

researchers conduct different genomic studies with the use of gene expression mi-

croarrays in order to analyze gene expression and regulation of a wide variety

of organisms under varying conditions (i.e. control vs. treatment/ normal vs

disease/ phases of a biological process such as cell cycle/ time stamps). These

experiments allow biomarker identification, treatment response analysis, pathway

analysis etc. through differential expression analysis, by identifying genes whose
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regulation is evidential of their engagement in a certain biological process [18].

A DNA microarray is a chip, having a matrix of microscopic spots on a solid sur-

face. Each spot contains a cluster of oligonucleotide sequences (i.e. many copies

of the same genomic DNA sequence), uniquely representing a gene. Affymetrix

Yeast Genome S98 array is an example for a commercial microarray used for Yeast

microarray experiments. There are different types of microarray experiments for

different purposes. For differential expression analysis, dual channel microarray

experiments are carried-out, where two conditions are represented by two color

channels: Red (R) and Green (G). Figure 2.6.6 gives an overview to the process.

For instance, two tissue samples are obtained from normal (i.e. reference/control)

and experimental conditions. Then for each sample, mRNA samples are extracted

and cDNA is synthesized by reverse transcription, while labeling them with the

corresponding fluorescent dye color (i.e. Cy5 for R; and Cy3 for G). The cD-

NAs are then hybridized onto the microarray, where each cDNA molecule gets

binded to the spot containing the corresponding complementary DNA sequence.

Then the microarray chip is excited with laser to view R and G fluorescent spots.

The amount of fluorescence emitted upon excitation corresponds to the amount

Figure 2.6.6: Microarray Technology [37]
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of bound cDNA, which in turn is directly proportional to the initial number of

mRNA molecules present for the particular gene. This can be captured as an

image using a microarray scanner and can be preprocessed as necessary, in order

to obtain a numeric matrix of raw pixel intensity values; each value accords to the

amount of fluorescence emitted upon excitation and corresponds to the amount

of cDNA in the spot. This raw data set should then be background corrected to

remove background fluorescence from the spot signal fluorescence, because the

spot signal is believed to be a sum of the fluorescences due to background and

the hybridized target cDNA.

Further steps require a quality control and normalization procedure for elimi-

nating systematic biases and artifacts. Such biases account for non-biological

variance which masks the true biological variance. Systematic biases can be

caused by dye bias (due to differences in heat/light sensitivity or in the efficiency

of dye incorporation), varying amounts of starting mRNA in the two samples,

variation across replication slides, variation across hybridization conditions, vari-

ations in scanning conditions and variations among lab technicians. These can

be introduced at different stages of the experiment (e.g. sample collection; prepa-

ration; and hybridization), under different experimental conditions and experi-

menter bias. Biasing factors are dependent on spotting, scanning and labelling

technologies. Such variations result in overestimated or underestimated gene ex-

pression level values. For instance, when an experimenter compares the gene

expression levels of a gene that should not change in reality between several con-

ditions (i.e. housekeeping genes), he may find that the mean expression ratio

of such genes deviates from 1. Also a deviation can be seen from the biologi-

cal assumption that the majority of the genes are not differentially expressed,

and the proportion of the up-regulated and down-regulated genes are almost the

same. Thus, to avoid biological assumption invalidations and to obtain correct,

reliable measures for detecting true biological differences, the raw data requires

a quality control and normalization before moving into further analysis. Such

preprocessing can ensure that the systematic variation is minimized and the ob-
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served expression differences reflect only the true differences. Gene expression

visualizations such as side-by-side boxplots, scatter plots and MA plots help in

identifying systematic biases and artifacts. [17, 18, 37, 38, 39, 40, 41, 42, 43]

2.7 Gene Ontology (GO) Functional Classification Scheme

Gene Ontology (GO) [3] is a structured, precisely defined, common and controlled

vocabulary for describing the roles of genes and gene products in any organism.

It has been developed by the Gene Ontology Consortium. The underlying fact

for the formation of such an ontology is the sharing of genes/proteins (i.e. or-

thologs) among a diverse range of organisms and having common core biological

processes (e.g. DNA replication, transcription and metabolism). It was presented

as to fulfill the requirement of a common language for annotation, which is to

be done in a species-independent and an inter-operable manner between different

genome databases. This kind of an ontology enables groupings, comparisons and

inferences to be made at different functional granularities [36]. Pandey et. al [32]

suggests GO as ideal for annotation due to its wide coverage, standardized for-

mat and the hierarchical structure. GO consortium is concerned of three main

aspects: the development and maintenance of ontologies; annotation of proteins;

and the development of tools that facilitates the creation, maintenance and the

use of ontologies.

Gene Ontology database is a relational database with GO ontologies and gene/

protein GO annotations. Originally, the GO was formed as a joint project of

three model organism databases: FlyBase, Mouse Genome informatics and Sac-

charomyces genome database. Later on, more databases joined the effort, while

extending the focus of coverage from general eukaryotic cell to both eukaryotes

and prokaryotes. GO presents three independent ontologies, as means of defining

the minimum information necessary for defining gene/protein functions [36]. The

structure of each GO ontology reflects a directed acyclic graph G, where each

node V refers to a GO term. An edge E between two nodes represent their rela-
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tionship. The root ontology term represents each GO domain out of the following

three.

Biological Process (BP) A biological process aims to achieve a certain biologi-

cal objective through an ordered assembly of molecular functions. It is often

involved in a physical or chemical transformation. Cell growth and main-

tenance, signal transduction are some examples for high level processes,

while translation, Pyrimidine metabolism are examples for more specific

processes.

Molecular Function (MF) This refers to a biochemical activity of a protein.

Examples range from broad functional terms such as enzyme, transporter,

ligand to narrower functional terms such as adenylate cyclase, toll receptor

ligand.

Cellular Component (CC) This refers to the place in the cell where a protein

is active. The terms reflect our understanding of the cell structure. (e.g

ribosome, nuclear membrane, golgi apparatus)

2.7.1 Standard Format

Every GO term has a unique, zero padded seven digit identifier (GO:XXXXXXX)

and a term name. The other essential elements are the namespace (which denotes

the ontology), the definition and relationships to other GO terms. Apart from

that, a set of optional elements including secondary IDs (in case of identical term

merge), synonyms, database cross references (pointers to the same entity in other

databases), comments and obsolete tag may be present.

2.7.2 Hierarchical Structure

The GO structure is hierarchical in which, the top level nodes are more general

and bottom level nodes are very specific. These nodes are connected to other

nodes through different biological relationships. Some of the commonly present
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relationships are is-a, part-of, has-part, regulates, negatively regulates and posi-

tively regulates.

The set of well defined GO terms and their relationships represent the current

biological knowledge, as organized into a well defined structure. This hierarchy

is somewhat complex because, further to a parent node having multiple children,

a single child node can also have multiple parents. For instance, ‘mitochondrion’

has two parents: cytoplasm and organelle, through part-of relationship and is-a

relationship, respectively. Nodes can have any number of and any type of re-

lationships to other nodes. The three ontologies are disjoint in terms of is-a

relationships. However, part-of and regulates relationships can occur between

ontologies. For instance, the molecular function term ‘cyclin-dependent protein

kinase activity’ is part-of the biological process ‘cell cycle’. Relationship of a

protein to a biological process/molecular function/cellular component is one to

many, reflecting the fact that a single protein can involve in several processes;

contains domains that carry out diverse molecular functions; and participates in

multiple alternative interactions with other proteins, organelles or locations in

the cell. [3]

2.7.3 Annotations

GO consortium stores GO gene product annotation data in tab delimited plain

text. Annotations are contributions from all around the world, with different

reliabilities. GO annotation process allows the submission of annotations from

two types of groups: bioinformatics database research groups and groups without

any long term commitments. First type of contributors are those who take an

ongoing responsibility to update annotation data upon policy changes and ontol-

ogy structure changes. The second type does not have any established database

nor funding for long term maintenance.

Each GO annotation should be tagged with an evidence code to indicate how

34



the annotation was made in the first place. There are 18 different evidence codes

under experimental evidence code, computational analysis evidence code, author

statement evidence code, curatorial statement evidence code and automatically

assigned evidence code. Except for the last type which has only the code IEA

(Inferred from Electronic Annotation), all the others are assigned by curators.

IEA is assigned automatically without any curatorial judgement. However these

evidence codes are not evidential of the annotation quality. [44]

2.8 The ‘mitochondrion organization’ GO Term

The ‘mitochondrion organization’ is defined in the GO Biology Process ontology.

The term has 5 ancestors as shown in Figure 2.8.7. This is a level 5 function

for which, the GO node has 163 offspring BP terms, including 21 direct child

nodes, comprising of 14 is-a, 4 part-of, 1 for each negatively regulates, positively

regulates and regulates relationships. The term has a synonym: ‘mitochondrion

organization and Biogenesis’. An example of a protein annotated with this GO

term is Dynamin-like GTPase MGM1. In addition, the following annotations are

present for MGM1 through manual curation.

• GTPase activity (MF - GO:0003924)

• membrane fusion (BP - GO:0061025)

• mitochondrial fusion (BP - GO:0008053)

• mitochondrial genome maintenance (BP - GO:0000002)

• extrinsic component of mitochondrial inner membrane (CC - GO:0031314)

• intrinsic component of mitochondrial inner membrane (CC - GO:0031304)

• mitochondrial crista (CC - GO:0030061)

• mitochondrial inner boundary membrane (CC - GO:0097002)

• mitochondrial intermembrane space (CC - GO:0005758)
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Figure 2.8.7: GO ancestor chart for ‘mitochondrion organization’ [45]
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Chapter 3

LITERATURE REVIEW

This chapter presents a detailed outline over the existing methods for protein func-

tion prediction. Numerous computational models continue to be introduced for

protein function prediction by many researchers. Often this problem is addressed

in the form of gene function prediction as well. The only difference is that the

protein space is much more larger than the gene space, due to splice variants and

post-translationally modified proteins. Nearest Neighbour (NN) models, network-

based models, kernel-based methods, decision tree models, Bayesian approaches

and Support Vector Machines (SVM) along with ensemble based approaches are

widely used in this context, either to obtain a local prediction of an individual

protein function class or a global prediction of multiple protein function classes.

Most approaches focus on addressing the multi-class hierarchical classification

need and data heterogeneity.

3.1 Homology based Protein Function Prediction

Earlier approaches considered sequence homology based annotation, which is not

always accurate in occasions such as gene duplication [9]. When considering

homology based annotation transfers, BLAST is quite an accurate and efficient

global prediction approach compared to local prediction approach, to be used

with highly similar sequences [46]. Another widely applied concept is guilt-by-

association. A function of a protein is predicted through a direct transfer of

functions, based on the functions of other proteins that it directly associates

with. This association could either be physical or conceptual (i.e. having a

shared feature). The functionally known protein is the knowledge donor and the

functionally unknown protein is the knowledge acceptor. [36]
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3.2 Multi-class Classification and Data Heterogeneity

The recent models focus on hierarchically consistent function annotation in the

context of multi-class classification. There are two ways to work around this

context: local prediction (also known as flat prediction) and global prediction.

Local prediction simply involves in building a binary classifier for each function

class. On the other hand, a single classifier is built for global prediction, where

all functions of a protein can be predicted at once. The problem also requires hi-

erarchically consistent classification which adheres to the True Path Rule (TPR).

The True Path Rule specifies that an annotation for a class in the hierarchy is

automatically transferred to its ancestors, while genes/proteins unannotated for

a class cannot be annotated with its descendant classes [47]. Various models have

been proposed to enforce this hierarchical consistency in gene/protein function

classification.

Further, a wide variety of biological data such as subsequences (i.e. motifs and

domains), amino acid features (i.e. molecular weights, isoelectric point, sequence

length, residue occurrences etc.), protein structure, subcellular localization, pair-

wise interactions, gene expression, phylogenetic profiles, post-translational mod-

ifications and biomedical literature, can be leveraged in the context of protein

function prediction. Valentini [47] emphasizes on the need of integrating multiple

data sources through methods such as an ensemble training with a base classifier

on each data source, a classifier training based on a weighted sum of kernels or a

simple concatenation of vectors from different data sources for training a single

classifier. This section describes some of the existing studies that address the

data heterogeneity in this problem context.

3.2.1 A True Path Rule Hierarchical Ensemble Approach

Valentini [48] proposes a TPR hierarchical ensemble approach for multi-label,

multi-path, tree structured hierarchical classification based on the true path rule.

The methodology firstly constructs a local base classifier, independently special-
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ized for each class in the hierarchy. Each base classifier outputs a probability of

a gene belonging to the corresponding class. At the next stage, those base mod-

els exchange information among them to arrive at a global consensus ensemble

decision, by correcting the local probabilities. This information flow is two-way

asymmetric in order to grant a node for influencing its ancestors upon its positive

prediction, as well as for influencing its offsprings upon its negative prediction.

The proposed approach scans the tree structure of classes in a bottom up fashion,

with a per level traversal. At each node scan, the algorithm checks if it is a leaf

node. If so, the local probability is presented as the consensus probability for that

particular class. If it is an internal node, firstly all the child nodes with positive

predictions are considered and the consensus probability is computed based on

both local probability and the child node probabilities. If the decision is nega-

tive, all child nodes are set to negative. The prediction is taken to be positive

if the probability value is above a predefined threshold. In case of a positive

local prediction for the current node, the consensus global estimate is computed

through Equation 3.1, where Φ set refers to the child nodes of the current node

which demonstrate positive predictions for the given test instance. In case of a

negative local prediction for the current node, the decision is propagated to its

sub tree. [47]

pi(x) =
1

1 + |Φi(x)|

(
p̂i(x) +

∑
j∈Φi(x)

pj(x)
)

(3.1)

On the other hand, a hierarchical top down approach [47] classifies an example x

with label yi, where di(x) is the output at node i and root(T) denotes the set of

nodes at the first level of the tree T.

yi =


di(x) if i ∈ root(T )

di(x) if i /∈ root(T ) AND ypar(i) = 1

0 if i /∈ oot(T ) AND ypar(i) = 0

In [48], the author evaluates the performance of three different ensembles (i.e.

flat ensemble, hierarchical top down ensemble and this true path rule hierarchical

bottom up ensemble), with 2nd degree and 3rd degree polynomial SVMs as the
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base classifiers. The approach has been tested for yeast gene function prediction

using 200 functional classes from FunCat (forming a tree of depth = 5) and using

four types of biomolecular data: protein domains; phylogenesis; gene expression;

and protein protein interaction data. The significant results have been observed

only with gene expression data. The author also claims that the results are not

significant since the class imbalance problem was not addressed.

Further, this TPR ensemble has been evaluated on S. cerevisiae upon seven

biomolecular data sources [47]. The method is able to enforce consistency in

both GO and FunCat. Valentini [47] also introduces a variant of the TPR called

weighted TPR (TPR-w), in order to balance the local prediction with positive

predictions from offsprings through a weight value. In this approach, if the weight

is 1, the node decision will solely depend on the local predictor. Otherwise, the

prediction is shared proportionally between local predictor and the set of its off-

spring predictors, in values w and (1-w), respectively. Here, the Equation 3.1 gets

modified into Equation 3.2.

pi(x) = w.p̂i(x) +
1− w
|Φi(x)|

∑
j∈Φi(x)

pj(x) (3.2)

The final observation is that the hierarchical methods largely outperform flat

methods. TPR-w performs better with both linear and gaussian SVMs. However,

Top down and TPR results are not significant. Flat methods tend to have the

highest recall, whereas the top down method results in the highest precision.

TPR-w performance is in the middle. It is also possible to tune the TPR-w by

changing the weight. With large weights, it has improved precision, whereas with

small values, it has improved the recall. The TPR concept can also be applied

with probabilistic classifiers other than SVMs.

3.2.2 Hierarchical Classification of G Protein-Coupled Receptors

Davies et al. [49] proposes a selective top down classifier for G Protein-Coupled

Receptors (GPCR) classification, with the objective of incorporating hierarchical
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structure relationships between predicted classes. Even though this involves in

assigning a GPCR protein into the correct GPCR family, the basic requirement

of hierarchical consistency is the same. The focus has been on human GPCR,

fungi (for class D) and Dictyostelium (for class E), with up to three levels in the

hierarchy (i.e. 8354 protein sequences in 5 classes A-E, 40 classes at subfamily

level and 108 classes at sub sub family level. Class F has been ignored due to the

low number of sequences).

The model is a tree of classifiers that reflects the structure of classes. The root

classifier is trained upon all training data. The sub classifiers are trained upon

specific train data subsets. In the presence of an unknown GPCR protein se-

quence, it will be firstly classified by the root classifier and then passed down

to the appropriate next level classifier, until it is assigned with all possible sub

family class labels. At each node, the training data is split into a train subset

and validation subset randomly. Then, eight different classifiers (Naive bayes,

Bayesian net, SVM, Nearest Neighbour model using euclidean distance, Deci-

sion list, J48 decision tree, Naive bayes tree, multi-layer neural net with back

propagation, AIRS2 classifier based on artificial immune system paradigm and

conjunctive rule learner) are trained upon the train subset data and are tested

upon the validation subset data. The node classifier is selected to be the one

which demonstrates the highest classification accuracy. Then the selected type of

classifier will be trained upon the original train dataset. The authors have com-

pared the method performance with standard top down approach and the results

have showed that this selective top down classifier performs better. 3-nearest

neighbour classifier has been chosen at the top level. Moreover, the comparisons

with three publicly available GPCR classifiers have also showed results in favour

of this approach. However, according to the authors, a notable disadvantage

in this approach is that the misclassified instance at one level has no possibil-

ity of being correctly classified at deeper levels. Thus, the misclassification rate

increases with the depth.
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3.2.3 Predictive Clustering Trees and their Ensembles

Unlike the common, local approach of constructing multiple binary classifiers,

CLUS-HMC [50] method uses a single tree structure known as the predictive

clustering tree (PCT) for multi-class, multi-label classification. The objective is

to predict all class labels associated with a gene at once, in a hierarchically con-

sistent manner.

A PCT regards the decision tree as a hierarchy of clusters. It can be constructed

by a standard top down decision tree induction algorithm (i.e. C4.5, CART). The

root node of a PCT represents a single cluster, containing all training examples.

The root cluster is then recursively partitioned into smaller clusters. A parti-

tioning criteria which depicts the attribute splitting criteria in a decision tree, is

used to split a node cluster into several clusters. The best split is chosen to be

the split which results in a significant maximization of the variance reduction (as

measured using a statistical F test). The key concept is that the maximum vari-

ance reduction could maximize the cluster homogeneity. If no test split provides

a significant variance reduction, the node is marked as a leaf.

In this method, the class memberships are presented as a binary vector for each

example. For instance, let [0, 0, 1, 1, 0.1, 1, 0] be a binary vector of size N. The

ith position specifies whether the example belongs to class i or not (i.e. 1 or 0,

respectively). The arithmetic mean of such binary vectors is an aggregate binary

vector, with each position giving out the proportion of total examples belonging

to the class corresponding to that position. The variance of a set of examples S

(given in Equation 3.3) is defined as the average squared distance between each

examples’ class vector vk and the sets’ mean class vector v̄.

V ar(S) =

∑
k d(vk, v̄)2

|S|
(3.3)
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The distance measure is the weighted euclidean distance as calculated by Equa-

tion 3.4. The weight is chosen according to the node depth in the hierarchy,

in order to give a higher importance to top level similarity than the lower level

similarity. Also w(c) = w0 · avgj
(
w(pj(c))

)
, where pj(c) denotes the jth parent of

class c and 0 <w0 < 1.

d(v1, v2) =

√∑
i

w(ci.(v1,i − v2,i)2) (3.4)

This weight value contributes to ensure the structured nature of class labels ac-

cording to the hierarchy. In this tree, each node keeps an account of the mean

class vector of all corresponding cluster examples. At the prediction phase, when

a new instance arrives at a leaf node, a threshold is applied to the mean vector

to determine the class vector for that particular instance. Moreover, whenever a

class is predicted, its super classes are also predicted at the same time for ensur-

ing hierarchical consistency.

Schietgat et al. [51] extends CLUS-HMC approach into an ensemble of PCTs

called CLUS-HMC-ENS, through bagging. Training examples are randomly sam-

pled with replacement in order to obtain the bootstrap samples of the same size

as the train set, upon which a PCT base classifier is trained. The base predic-

tions are combined by taking the average of all n class vectors predicted by n

base predictors in the ensemble. The threshold is then applied to arrive at the

final decision. When compared to CLUS-HMC, the performance is better and

the results also indicate that it performs particularly better for the less frequent

classes. However, the training time of the model is considerably high due to the

extra burden of bagging on top of PCTs.

3.2.4 Bayesian Hierarchical Correction

Barutcuoglu et al. [52] presents a Bayesian framework for achieving the hierar-

chical consistency over a local prediction approach for S. cerevisiae gene function

prediction. It comes as a way of collaborative error correction over all nodes.
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Firstly an SVM based flat prediction is done and secondly a hierarchical Bayesian

correction over the hierarchically inconsistent predictions is performed in order

to improve the accuracy. The idea is to find the most probable set of consistent

class label set, given the inconsistent class label set. Equation 3.5 gives the equa-

tion for posterior probability calculation. ŷ denotes an output by flat prediction

(possibly inconsistent class labels), whereas y denotes a most probable output. Z

is a constant normalization factor.

P (y1, y2, ....yN |ŷ1, ŷ2, ....ŷN) =
P (ŷ1, ŷ2, ....ŷN |y1, y2, ....yN)P (y1, y2, ....yN)

Z
(3.5)

In this proposed framework,

• y nodes are the binary valued hidden nodes, representing actual membership

to the class. They are conditioned on their child nodes.

• ŷ nodes are the corresponding observed classifier outputs for y nodes. They

are conditioned on the corresponding y nodes.

P (ŷ1, ŷ2, ....ŷN |y1, y2, ....yN) =
N∏
i=1

P (ŷi|yi) & P (y1, y2, ....yN) =
N∏
i=1

P (yi|ch(yi))

(3.6)

Hierarchical constraint imposition is made by having the appropriate conditional

probability values. A label will be 1 if any of its child nodes is 1. P (ŷi|yi) can be

estimated by validation. It is assumed that the distribution of classifier outputs

for both positive and negative examples separately is Gaussian. P (yi|ch(yi) can

be inferred from train data by counting.

In [52], an ensemble of 10 hard margin linear SVM classifiers are learned over

10 bootstrap samples, for each class. The output is taken to be the median. The

focus has been over the GO Biological process ontology with a coverage of 105

selected GO terms. The model evaluation has shown a performance increase in

terms of AUC for 93 nodes out of the 105, while implying larger improvements

at deeper nodes. The authors state that this is a generic ensemble method to be

used with any type of base classifier other than an SVM.
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3.2.5 HML Boosting

HML Boosting was introduced by Alaydie et al. [53] for outperforming local pro-

tein function prediction. It is another ensemble approach that exploits hierarchi-

cal class dependencies for performing class membership inconsistency correction.

Two versions: top down and bottom up prediction approaches, have been evalu-

ated in this context.

HML Boosting is a recursive algorithm from which, the hierarchy of nodes is

traversed. At each node, it checks whether it is an internal node or not. If so, an

ADABOOST.MH binary model is trained for each of its child nodes. Otherwise,

it will skip to the next node, as the authors state that there is no need of a clas-

sification if the leaf nodes are reached. The base classifier is a decision stump.

At the classification phase, the prediction is made based on the local prediction

of that class, as well as on the descendant node predictions. Equation 3.7 is the

formula for computing the consensus probability at each node.

P (x) =
Plocal(x) +

∑
Pchild(x)

1 + |children(x)|
(3.7)

Also each node classifier filters out the unsuitable examples from going down to

the lower levels of the hierarchy, by blocking the negative label assigned genes.

Thus, during the classification phase, a node classifier will only be presented with

instances that have been classified as positive by the parent node.

The authors have trained the ensemble over yeast bio-molecular data from [47]

and evaluated the method in comparison to flat ADABOOST.MH multi-label

classifiers. They have also analyzed the performance of HML Boosting at each

FunCat hierarchy level, covering the top 4 levels. With the increase in the number

of boosting iterations, HML Boosting outperforms flat classification with respect

to all data sets. Moreover, HML Boosting top down approach has outperformed

the other in most cases, in terms of precision and F measure. However, flat
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methods tend to show best results in terms of the recall. Moreover, the top down

HML Boosting accuracy gets reduced, when moving down from higher levels to

the lower levels. The main reason for such behavior is the effect made by higher

level classifiers on the lower level classifiers with regards to the instance propaga-

tion; especially in the presence of a higher level classifier misclassification. The

authors also state that they are interested in minimizing this misclassified instance

propagation by developing a mechanism to correct parent node misclassification

at a child node.

3.2.6 Label Similarity Incorporated kNN Algorithm

Pandey et al. [54] presents a way of incorporating the distant functional rela-

tionships, by not only attempting to leverage the hierarchical structure. This

is because the functional relationships might not always be hierarchical. The

authors recognize this as a very challenging task than the hierarchical consis-

tency enforcement problem, since there are many types of relationships between

functional class nodes than just the ancestor-descendant relationships. The key

idea is to identify the semantically similar GO terms and use the information for

better prediction. Semantic similarity in an ontology can be measured using an

appropriate method (e.g. an information theory based measure such as Lin’s) on

the basis of their relative position in the hierarchy and the associated content,

or both. In this research, the authors present a method that firstly evaluates

the semantic similarity between the nodes of the ontology, and then quantifies

and incorporates the interrelationships into a weighted variant of the K nearest

neighbour classifier. The focus has been made upon functional classes from GO

Biology process ontology.

Lin’s measure is used to form a label similarity matrix with dimensions |Labels|

x |Labels|. The computed raw label similarity matrix is then preprocessed by

applying a filter to avoid the observed significant deterioration of label similarity

incorporated classifier performances. For each class label, the experimenters have
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used leave-one-out cross-validation and grid search over the interval [0,1] in 0.05

steps, in order to decide on a filtering threshold based on the AUC score. The

threshold producing the highest AUC is chosen and all the labels with lower sim-

ilarity are converted into 0s. Another matrix: the likelihood score matrix with

dimensions |Proteins| x |Labels|, is derived using direct kNN. Finally, the product

of the likelihood score matrix and the label similarity matrix is taken as the final

likelihood score matrix.

The evaluations have been conducted by constructing classification models for

138 functional classes that have no parent-child relationships among them and

are convenient for testing in wet lab. A comparison has been made between the

Label similarity incorporated kNN and the base kNN. The results have shown an

average improvement for all classes, as well as for each class, without suffering a

significant loss of accuracy at any of the class nodes. The primary target to im-

prove the prediction accuracy of classes with insufficient training data, has been

achieved through this method. The concept can be extended to incorporate all

the useful GO classes for prediction, by computing the label similarity matrix of

|Labels| x |all GO terms|.

3.2.7 SVM based Ensemble Framework

Guan et al. [55] presents an ensemble approach for gene function prediction in the

context of GO, focusing on unicellular organisms (i.e. S. cerevisiae), as well as

multicellular organisms (i.e. lab mouse). Their model has been applied success-

fully to reveal functions of a novel Mitochondrial protein, which got experimen-

tally confirmed as well. The proposed ensemble consists of 3 different classifiers

as follow.

Bagged SVM classifier for each GO term of interest: A set of linear ker-

nel SVMs are trained for each GO term, upon bootstrap samples that were

derived from a single dataset, which is comprised of different datasets. As

the direct concatenation of all datasets may give more weight to datasets
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with more features, each of their contributions are normalized to the Gram

matrix. That is done by separating all feature vectors from different datasets

for a particular gene, normalizing each vector by its size, and then concate-

nating all normalized features for each gene in a single input matrix.

Bayesian hierarchical combination of SVMs: The bayesian network intro-

duced by [52] is used to correct the flat classification predictions to impose

hierarchical consistency across the GO terms. For the feasibility of bayesian

network inference, GO ontology is divided into subgraphs for each term

using one of the following two methods: HIER-MB and HIER-BFS. The

subgraph preserves the local neighbourhood around each GO term.

• HIER-MB

For each node, its markov blanket (i.e. the set of nodes containing

the parents, children and other parents of the children) is used as the

subgraph to construct a bayesian network.

• HIER-BFS

From each node, a breadth first search is performed to include all

descendants upto maximum of 30 GO node terms in the subgraph.

After obtaining the inconsistent set of GO term predictions, they can be

corrected by taking the bayesian network into account.

A naive bayes combination of SVMs, each trained per different dataset

This is a meta classifier in which, for each GO node, SVMs are trained for

each bootstrap fold, on each data set. A naive bayes classifier is built on

a held-out set to combine the prediction outputs from them. Linear kernel

SVMs have been used for the purpose, except for protein-protein interaction

data, where a diffusion kernel has been used due to its superior performance.

For each GO term, the above three classifiers are trained and the AUC measures

are taken. The best performing classifier for the particular GO term is selected to

give out the final prediction. According to the results, majority of the GO term

48



predictions depend on 2nd or the 3rd classifier. Naive Bayes is more likely to get

selected for larger GO terms, whereas the hierarchical classifier performs well for

every size. The results have also indicated that the bagged SVM performance

is robust across a wide range of GO terms, thus confirming its robustness as a

baseline method for the ensemble.

An approach is also presented by [64] for the same purpose of calibrating and

combining predictions to come up with a GO topology consistent set of proba-

bilistic predictions. In the presence of heterogeneous data sets, firstly per each

GO node, a kernel matrix is computed for each data set. Then an SVM is trained

with each kernel of the particular node. After obtaining predictions from those

base SVMs, they are combined and calibrated using a collection of logistic regres-

sions. Finally, the calibrated predictions are reconciled as to adhere with the GO

structure.

3.2.8 Hierarchical Bayesian Integration Algorithm

Alaydie et al. [56] modifies the approach in [53] to a Hierarchical Bayesian Inte-

gration Algorithm (HiBiN) for addressing data heterogeneity, through the inte-

gration of different data sources using Bayesian Reasoning. The authors attempt

to address the source diversity problem, multi-label classification problem and

hierarchical consistency in one go.

With the assumption of each dataset being independent, each boosting classifier

computes the likelihood of observing a particular gene associated with a certain

dataset, given a specific functional class. In HiBiN, firstly the prior probabilities

for all classes are computed. Then at traversal, an ADABoost.MH model is built

for each child class of the current class node, per each dataset. The integrated

Bayesian posteriors for each child class of the current class are then calculated.

The posterior probabilities for multiple independent data sets are integrated and

computed by using the Bayes formula.

49



The method has been compared with flat prediction and also with the hierar-

chical, single source method applied for each dataset separately. The results have

demonstrated that HiBiN provides a considerable improvement over the others.

Also there is no significant difference between hierarchical single source vs. flat

prediction. Authors have also observed that the performance degradation due to

the classifier depth, significantly decreases when data integration and hierarchical

constraint is imposed.

3.2.9 Semi Supervised Multi-label Collective Classification

Collective classification performs a joint classification of interrelated instances,

unlike the conventional supervised learning which takes unclassified instances in-

dependent of each other for classification. Such classifier makes the use of not

only the attribute features, but also the relational features. In this context, the

data is viewed as a graph and the task is to come up with a function that is

capable of predicting the classes of unlabeled nodes, by using the labeled nodes.

The basic concept is to make a prediction about an unannotated protein, in the

presence of known functional properties of its labeled neighbours.

Wu et al. [57] diversifies an ensemble upon different types of latent graphs that

can be built upon both labeled and unlabeled protein instances. They use 3

types of latent graphs: protein-protein interaction latent graph; random walk

latent graph; and prediction similarity latent graph (i.e. two nodes are linked if

one of them is among the k nearest neighbours of the other). This is a way of

exploiting the data representation diversity. In a latent graph, the nodes which

are closer to each other often tend to have the same functional labels, whereas

the nodes disconnected from each other have different ones. Those latent linkages

can be used to perform a knowledge propagation from labeled nodes to unlabeled

nodes, in terms of their functional classes. This is because a latent linkage may

exhibit a pairwise similarity.
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For each latent graph, a base learning model called GM-SMCC is learned. GM-

SMCC is a model which is designed to use probabilistic latent semantic analysis

with a network regularizer for exploiting network linkages and label correlations

effectively, in order to compute a label probability distribution. The authors

have not limited the application of this approach to protein function prediction;

it has been applied to protein localization prediction as well. The performance of

the method has been compared with four baseline methods, including SVM base

classifiers (LibSVM with linear kernel). The results show a better performance.

3.2.10 Ensemble based GPCR Class Prediction

Gu et al. [27] focuses on predicting classes for low homologous GPCR data (with

just 40% identity) by using an ensemble of 12 euclidean distance based fuzzy

kNN classifiers. Fuzzy kNN is a model that combines fuzzy set theory with kNN.

The output of each base predictors is a fuzzy membership matrix (for each class

membership). The final output is taken to be the weighted output fusion. Here,

each fuzzy kNN classifier is trained over pseudo amino acid composition (PAAC)

data representation of proteins with different lambda values. The weight factors of

the PAAC have been determined using an Immune Genetic Algorithm (IGA). In

addition, the model also uses a hybrid approach of predicted secondary structural

features, and approximate entropy as the feature selection method. Figure 3.2.1

is from [27], illustrating their framework.

3.2.11 Transductive Multi-label Ensemble Classification

Yu et al. [58] proposes and presents a Transductive Multi-label ensemble classi-

fication framework for data integration. In this method, a kernel is formulated

to represent each data source. It is then used for training a graph based Trans-

ductive Multi-label Classifier (TMC). TMC is a model that views proteins and

their functions as a directed bi-relation graph (e.g. Figure 3.2.2). This graph has

2 subgraphs: a protein graph and a function graph. These bi-relational directed
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Figure 3.2.1: Fuzzy kNN ensemble model by Gu et al. (2015) [27]

graphs have been used to capture relationships between protein-protein pairs,

function-function pairs and protein-function pairs. Thus it is evident that this

approach attempts to achieve hierarchical consistency imposition implicitly.

The model firstly transforms each kernel into a directed bi-relation graph and

then trains a TMC (graph based multi-label classifier) on each graph. Finally

the TMC predictions are combined using a weighted majority vote, by using the

confidence of the prediction. For an unknown protein instance to be annotated,

Figure 3.2.2: Directed bi-relation graph [58]
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the predicted likelihood vector which is outputted by the approach have to be

converted into a hard function assignment. The top k most probable function

assignments (i.e. functions associated with the k largest probability scores) are

selected for the purpose.

The common and traditional data source integration approach is to represent

each data source with a kernel function and integrate the kernels into a com-

posite kernel. In contrast, this method integrates the predictions of each base

model, built upon an individual data source. The results have shown that this

method outperforms the traditional method. They have also shown that the use

of directed graph achieves better accuracy than the use of undirected graph. An

advantage of this procedure is that a new data source can be utilized without

redoing the entire training process. In overall, the authors have been able to

justify the advantage of integrating classifiers instead of data.

3.2.12 MS-kNN for Multiple Data Integration

Lan et al.[59] presents a multi source k-Nearest Neighbour (MS-kNN) algorithm

for multiple data source integration in protein function prediction. It is also an en-

semble approach in which, a base kNN classifier is built over a single data source.

Three data types (i.e. protein sequence data, protein-protein interaction data

and microarray expression data) have been used for the purpose. The base clas-

sifier outputs a prediction score by taking the weighted average of its k-nearest-

neighbour functions. Then the authors have tested three combination strategies

(i.e. averaging, weighted averaging and GO term cluster-specific weighted aver-

aging) to combine base prediction scores, for arriving at an ensemble prediction.

Weights for different data sources are obtained by solving a convex optimization

problem. The authors conclude that the k-nearest neighbour algorithm is an ef-

ficient and effective model for protein function prediction, while being helpful in

integrating multiple protein data sources.
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3.2.13 Functional Association Network based Approaches

A typical approach for function prediction of proteins or genes is by applying the

principle of guilt-by-association. Even though this does not always work well,

the diverse association linkages between proteins/genes in terms of different data

types could give a good insight regarding their functional context.

This principle is usually used by constructing a functional association network

for representing each dataset from a certain biological datasource [60]. In such a

network, nodes denote proteins or genes, while the edges denote an evidence of

co-functionality as implied by the data. It is often represented by a kernel. The

edges can also be weighted according to the intensity of the functional association.

Usually the protein-protein interaction networks and gene co-expression data are

ideal to be represented through a functional linkage network. And most of the

time, the set of functional association networks are combined together in order

to generate a composite network. [60] Several approaches have been introduced

to utilize functional association networks in protein/gene function prediction.

GeneMANIA [60] is a gene function prediction server, which focuses on real time

protein function prediction with local prediction. It has a concern over the run-

ning time and the requirement of updating static databases with new functional

association information. For each function of interest, this model builds a func-

tional association network for each data source. Such network is assigned with

a positive weight to reflect its usefulness in predicting the function of interest.

Then a function specific, composite association network is constructed (using an

algorithm based on linear regression) by taking the weighted average of individ-

ual networks. Different genomic and proteomic datasets are used for the purpose.

There is also a seed list of genes which are known to have the particular func-

tion. The next step is to predict the gene functions using a variation of a label

propagation algorithm called Gaussian field label propagation algorithm. A label

propagation algorithm assigns a score named ‘discriminant value’ to each node
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in the network. The score reflects a nodes’ degree of association to the seed list

of genes that define the given function. A threshold value can be used upon this

discriminant value in order to make the prediction of whether the unknown gene

has the function of interest or not.

Zhao et al. [61] presents an algorithm for Annotating Genes with Positive Sam-

ples (AGPS), while integrating several heterogeneous data sources. The types

of data include yeast protein-protein interactions, gene expression profiles and

protein complex data. The PPI network is represented as a functional network,

having edges with distance values estimated using the Czekanowski-Dice (CD)

distance (i.e. an estimate of the functional similarity between a pair of genes).

Protein complex data is also represented by a functional network upon comput-

ing the CD distances. For gene expression profiles, firstly a binary network is

built by calculating the Pearson correlation coefficients (i.e. an edge is added

between two nodes if the absolute value of the correlation coefficient between the

pair of genes is over 0.7). Then the CD distance is computed over the network to

obtain the functional network. Finally, the above three functional networks are

merged to obtain the final functional linkage graph. After that, a method known

as singular value decomposition is applied for extracting the dominant structure

of the graph. It reduces the dimensionality, while removing the noise from data.

Then the AGPS algorithm is performed. AGPS is further explained in section

3.3.1. This approach also divides the multi-class classification problem into a set

of binary classification problems and computes a radial basis kernel for each SVM

classifier. The proposed method has been applied for S. cerevisiae gene function

prediction with annotation data under 13 general functional classes from FunCat.

3.2.14 BLAST based Local Prediction

Eisner et al. [46] presents CHUGO: a system which exploits the GO hierarchi-

cal structure in predicting the GO molecular function of proteins from sequence

data. CHUGO also uses local predictors to predict each single GO term. Their
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initial focus is on creating a hierarchically aware training set and then utilizing

it for reducing the computational cost of classification. In CHUGO, an ensemble

of the following 4 classifiers is used as the local predictor for each GO functional

class node of interest. They are: an SVM with PFAM features; an SVM with

proteome analyst features; Probabilistic suffix trees; and BLAST. A simple ma-

jority voting scheme has been used to give the final output of the ensemble. The

authors have also tested a weighted scheme by learning weights through SVMs,

but have not seen a performance difference from the simple voting scheme. At

overall prediction of functions, the positive predictions are upwardly propagated

for imposing the True Path Rule.

The method is compared with BLAST-Nearest Neighbour (BLAST-NN) clas-

sifier. BLAST-NN is a global predictor, as it is capable of assigning a protein

into multiple functions at one go. In the presence of highly similar sequences,

BLAST search is quite accurate and computationally efficient when compared to

local prediction. Each BLAST hit is assigned a score named the E value, which

reflects the similarity between two sequences. A higher E value indicates a lesser

match to the query protein. One important observation made by the authors

is that, in case of incorrect nodes being returned by BLAST-NN, they tend to

be much closer to the correct nodes. Thus, BLAST can be used to obtain a

set of candidate nodes in order to run the local predictors on. In other words,

BLAST results can be used as a seed to begin the search for correct annotations.

According to the authors, there are two options to decide the seed list.

• B-N-Union: taking the union of the top most BLAST hit annotations

• SearchN: searching in the neighbourhood of the top BLAST hit annota-

tions

The goal is to run local predictors only for the most likely GO nodes, which in

turn will reduce the computational cost.
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3.2.15 An Ensemble for ‘mitochondrion organization’ Prediction

Hibbs et al. [12] has carried out an experimental evaluation of an ensemble of

three computational methods (i.e. bioPIXIE, MEFIT and SPELL) to predict

gene/proteins involved in the ‘mitochondrion organization’ Biology Process. Each

method integrates high-throughput data sources and knowledge from GO and

SGD. The bioPIXIE and MEFIT methods perform Bayesian integration, target-

ting genomic data and microarray expression data, respectively. SPELL attempts

to identify groups of related genes through a similarity search algorithm over the

same microarray dataset. The model results are combined based on their esti-

mated precision. The authors have validated gene predictions using a laboratory

techinque.

3.3 Selection of Positive and Negative Examples

In supervised learning, the definition of positive and negative examples is im-

portant for learning how to distinguish an unknown instance from one class to

another. Learning a model with only positive examples will not reach the best

approximation of the true hypothesis. This is evident from the fact that, two

class SVMs outperform one class SVMs. Also with a small number of positive

examples, the model is most likely to underfit. [61]

In general, a positive example is a protein/gene which is known to be belong-

ing to the function class of interest (i.e. the positive class). Negative example for

a particular function class is a protein that is known to be not performing, nor

engaged in the corresponding function [62]. However, a major challenging aspect

of this learning process is the proper and an accurate definition of positive and

negative examples. While a positive example could be selected by intuition, the

same is not quite possible for negative example selection, as the current annota-

tion databases mostly and explicitly provide positive examples, but rarely stores

negative examples [61, 62]. This is because, if a protein is not annotated with

a function, it is either a true negative example or a protein yet to be discovered
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and to be annotated under the function of interest. Moreover, due to the multi-

ple annotations of a single protein, negative selection becomes more complex [63] .

Negative example verification is much difficult due to experimental constraints [62].

Moreover, with varying reliabilities in existing annotations (i.e. electronically in-

ferred annotations), there can be false positive examples as well. Thus, a learn-

ing model could suffer from both false positive and false negative examples [62].

Hence, taking the annotations as the complete truth might not work [46]. Many

researchers are being careful to select reliable positive examples.

The accuracy of a prediction model may rely on the reliable representation of

positive and negative examples. Thus it is important to make a wise positive

and negative example selection for supervised learning. The problem at hand

is commonly known as the positive unlabeled (PU) problem, where the known

labels are only the positive class ones. This leads the entire problem towards

somewhat a semi supervised learning problem [62]. In literature, most of the

gene/protein function prediction methods ignore this fact and choose all exam-

ples that are unannotated to the class of interest as negative examples. Much

attention has not been made to deal with this important decision making step,

prior to model learning. Some researchers have proposed several schemes and

heuristics for selecting negative examples. Most of them have been influenced by

text classification literature. NoGO database by Youngs et al. [62] is one such

attempt to come up with a reliable negative example set generation for protein

function. This database is said to contain high quality negative examples for GO

terms of humans, mouse, worm, yeast, rice and arabidopsis. However the server

is not currently available online.

3.3.1 Negative Example Selection Methods

The common positive example selection is to select the direct set of annotations

under the class of interest. All non positive examples can be taken as negative
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examples (e.g. [55]). Obozinski et al. [64] selects protein instances annotated with

the target GO term or its descendant, as positive examples. The remaining will

be the negative examples. Alaydie et al. [53] selects positive examples for an

internal node, by taking the superset of the positive example sets union of all of

its descendant classes. Negative examples can also be the examples that are not

being positive to the class of interest, but are being positive to the parent class.

They are considered as the most informative ones for training [53] .

Eisner et al. [46] introduces the notion of exclusive and inclusive classifiers, with

respect to the way of selecting positive and negative examples. An exclusive

classifier takes all targeted class examples as positives and the rest as negatives,

whereas in less exclusive method, the descendant nodes are removed out of the

negative examples. Inclusive classifier considers target class examples and their

descendants to be the positive examples. Inclusion of ancestor terms as positive

examples might be misleading, since there is no guarantee that a child node will

be positive, when the parent node is positive. Exclusive classifiers are more likely

to have TPR violations. When being more inclusive, the number of positive ex-

amples is increased and the noise is removed from the train set. Thus, it may

lead to a better negative example selection. [46]

Following are some other methods for negative example selection, as described

in [62].

ALBNeg with ALBias Youngs et al. [63] selects high confidence negative ex-

amples by using prior functional biases. A parameterizable Bayesian tech-

nique is used for prior functional biases computation of a gene (i.e. for using

available data to form prior beliefs about biological functions of a gene). An

empirical conditional probability of seeing an annotation c, given the anno-
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tation presence of m, is computed by Equation 3.8,

p̂(c|m) =
n+
mc

n+
m

(3.8)

where n+
mc = the number of proteins with both m and c annotations; and

n+
m = the number of proteins with m annotation. For protein i, let Di be its

set of GO term annotations. For a given function c, the conditional prior

probability of gene i having the function c is approximated by priori score,

as calculated from Equation 3.9.

priori =
1

|Di|
∑
m∈Di

p̂(c|m) (3.9)

To avoid redundant information from this score, all GO terms that have a

child in Di are removed from Di. Thus, only the most specific annotations

are used for calculating the bias. To avoid the large bias introduced by an-

cestral relationships, a weighted pseudocount is introduced to the empirical

conditional probability calculation, as in Equation 3.10.

p̂′(c|m) =
n+
mc

n+
m + γeλn

+
m

(3.10)

Parameter values can be selected by tuning with cross validation. For the

genes with no previous annotations in GO, the mean of all label biases are

computed for genes with GO annotations. Their label bias algorithm is

called ALBias. In this technique, the negative examples are chosen based

on the label biases calculated for each function. All gene instances with

an annotation in the same GO branch as the term being predicted, and

which have a priori score of 0 (computed across all the 3 GO branches)

for the function of focus, are considered as negative examples. If a specific

annotation does not ever appear alongside the function annotation of focus

for any other gene, it is a negative example for that function. The method

restricts the negative examples to have an annotation in the same branch as
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the GO term being predicted. The choice of pseudo counting has no impact

over the negative examples, as only the magnitude of the label bias will be

affected.

Selection of Negatives through Observed Bias Youngs et al. [62] also de-

scribes an extension to the ALBNeg algorithm. Given a function annotation

a, each gene instance is scored with the average of the conditional probabil-

ities P̂ (a|f1), P̂ (a|f2), P̂ (a|f3), ... ,P̂ (a|fn), where P̂ (a|fi) is the conditional

probability of a gene being already annotated with a function fi given a.

~αa is the vector having such score for all genes, with respect to the function

a. It can be easily computed through Equation 3.11,

~αa = W−1AP (3.11)

where W = the diagonal matrix, with Wii being the total number of annota-

tions for protein i; A = annotation matrix of the dataset (rows representing

genes and columns representing GO terms); and P = the conditional prob-

ability matrix.

The scores in the vector are then ranked according to their value. The

lower scores represent genes with a low probability of being positive exam-

ples, which in turn makes them to be more probable as negative examples.

Negative Examples from Topic Likelihood: In this method, a protein is vie-

wed as a document, while GO annotations are considered as the words in

the document. Then, Latent Dirichlet Allocation (LDA) is applied in order

to obtain the topic distribution for each protein. In Natural Language Pro-

cessing (NLP), LDA is a method for discovering topics of a set of sentences.

It takes documents as a mixture of topics, where each topic has its own

word distribution.

In the context of protein function prediction, LDA is performed on the
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protein data set (i.e. analogous to the document corpus), to identify the

parameters of Dirichlet topic distribution. Then the posterior topic distri-

bution is inferred from each protein, given its set of GO annotations. The

number of topics for each protein is taken as the total number of annotated

direct descendants of the root ontology terms. This is done to increase the

quality of latent topics, as well as to preserve the coverage of all GO cate-

gories. However, the correspondence between topics and GO terms are not

always 1 to 1. As some topic/GO term combinations may relate to each

other, it could be difficult for the LDA model to infer the exact probabil-

ity of a protein being associated with a certain GO term. One solution is

to represent the positive class by the average of Dirichlet posterior vectors

resulted for all the positive protein examples of the function of interest.

Next, a distributional-overlap score is computed for each unlabeled protein.

This score represents the similarity of the unlabeled proteins’ topic distri-

bution and the positive class average topic distribution. It is a symmetric

simplification of the Kullback-Leibler divergence metric and the value is in

[0,1]. A low score indicates the most probable negative examples, as they

are least likely to share topics with the positive class protein instances. Un-

labeled protein instances are ranked by the distributional-overlap score and

the negative examples can be selected accordingly.

Rocchio algorithm This again comes under NLP and Information Retrieval

context. However, it can be adapted to the protein function prediction

domain by treating each protein as a document, and the set of GO terms as

the lexicography. An annotation of a protein is a word. The term frequency

- inverse document frequency (tf-idf) vectors are produced for each protein

instance. A representative vector is then formed for the positive examples,

as well as the unlabeled examples. Next, the cosine similarity scores between

the tf-idf vector of each unlabeled protein and the representative vectors

are computed. The algorithm can then take the proteins that have a higher

similarity score with unlabeled example representative vector, compared to
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that with the positive example representative vector.

1-DNF This also comes under the context of text classification in which, the

enriched words among the positive class documents are identified. All unla-

beled documents without those enriched words, are taken as negative doc-

uments. Similarly, enriched words can be defined as the GO terms which

appear more frequently in positive examples than in unlabeled examples.

Negative examples are all the proteins that do not belong to positive class,

nor containing any term from the enriched word set.

Annotating Genes with Positive Samples AGPS [61] defines negative ex-

amples, solely using positive examples. The idea is to obtain a subset of

negative examples from unlabeled data, which can best recover the hidden

positive examples in unlabeled data. The approach uses SVMs for the task.

Firstly, the positive example set is divided into positive training set P1 and

validation set P2. Then P2 is combined with unlabeled data Ku to form a

new unlabeled dataset called U. The AGPS algorithm goes as follow.

• Initially, a positive class SVM is used to generate an initial decision

boundary. The examples that are not covered by this boundary are

taken as initial negative examples.

• Then, a two class SVM is trained over the initial negative example set

and the positive example set. It is used upon the unlabeled data to

retrieve a more refined and an expanded negative example set.

• This step is redone by using the positive train set and the negative

example set obtained from the previous iteration, to retrieve a new

negative example set. The procedure continues until it reaches a stop-

ping criteria.

• The SVM classifier and the generated negative set at each iteration

are recorded.

• Finally, the best classifier; and the negative example set, which recov-

ers the largest number of positive examples from the unlabeled dataset;
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are chosen.

However, an error in a previous step can affect the current step, as the

procedure is sequential. Cross-validation method can be used to arrive at

a more accurate set of negative examples.

Sibling Heuristic In this method, a protein is negative, if it is annotated only

with the parent of the function of interest. This can also include the proteins

that are annotated with the sibling categories. This heuristic produces

different number of negative examples for different GO terms.

3.4 Class Imbalance

In a binary classification problem, the class of interest is usually the positive

class, whereas the other class is referred to as the negative class. When the class

proportions do not match, it results in a class imbalance, which is a challenge to

traditional classifiers [65]. Usually the positive class is the minority class, imply-

ing a rare case. Such scenario can result in a misleading figure of accuracy. A

classifier may correctly classify all the negative examples due to learning all the

relevant classification rules from the majority class train instances, but may give

false negatives for almost all truly positive majority class instances. Yet it will

produce a false higher accuracy figure. Hence, overcoming class imbalance and

providing the learning model with the opportunity to learn positive and negative

instances in a well balanced manner is very important. Training over balanced

data improves performance [61]. Also when it comes to model evaluation tech-

niques such as cross-validation, the fold balance is the case of having the same

positive-example:negative-example ratio at each fold. This can ensure that, each

classifier trained upon each fold behaves as closely as possible to the final classi-

fier, which is being constructed by training all the folds [46] .

Various approaches have been introduced in literature, to handle and reduce

the class imbalance effect. Some of them are as follow.
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• Biasing a classifier towards learning the minority class more accurately

• Preprocessing data to convert them into balanced data using a technique

such as,

– random undersampling (random elimination of majority class instances)

– random oversampling (random addition of more copy instances of the

minority class by sampling with replacement) or creating novel syn-

thetic instances to represent the minority class (i.e. SMOTE)

– hybrid approach of jointly reducing the majority class instances, while

increasing the minority class instances

– random subsampling from majority class instances together with mi-

nority class instances

• Cost sensitive learning method by assigning a different cost to each class

(i.e. assigning a higher penalty for a mistake made on minority class, while

not modifying the data distribution [66])

• Ensemble learning [65]

– Partitioning majority class train data into disjoint segments and con-

structing a model for each positive class segment, joined with the entire

set of minority class instances

– Random Balance ensemble: randomly varies the imbalance ratio of

train data for each base model using two techniques: SMOTE and

random under-sampling without replacement

– RB-Boost: combines Random Balance with AdaBoost.M2 (random

class proportion enforcement plus the instance reweighting). It can

also be combined with bagging (BaggingRB).

– SMOTEBagging (combines bagging with SMOTE), SMOTEBoost (com-

bines boosting with SMOTE), RUSBoost (modification of Adaboost.M2

where random undersampling is applied at each iteration)
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Unlike algorithmic and cost sensitive methods, data level and ensemble approaches

can be applied independent of the base classifier and thus, they are more versa-

tile [67]. It should also be noted that, instance synthesis for minority class aug-

mentation could result in adulterating the train data, while elimination might

lead to discarding important and potentially useful data.

3.4.1 Class Imbalance and Feature Selection

Often the class imbalance can adversely affect feature selection, as applying fea-

ture selection methods might result in a set of features that favours a single class

over another. Yang et al. [66] presents an ensemble solution for wrapper feature

selection, in the presence of a highly imbalanced class distribution. A wrapper

algorithm generally consists of three main components: a search algorithm; a

fitness function; and an inductive algorithm [66]. The key idea in their proposed

approach is to sample several balanced datasets from original train data and to

evaluate feature subsets through an ensemble of base models, each trained over

a balanced dataset. For sampling a balanced dataset, a hybrid approach is fol-

lowed from which, a simultaneous increase and decrease is done to achieve a

balanced distribution (i.e. the minority class is increased using SMOTE and the

majority class is decreased using random undersampling). At each feature set

evaluation stage, an ensemble is trained over the balanced train data. The base

classifier predictions are then normalized and combined. The fitness function for

the search algorithm procedure is taken to be the area under the ROC curve. The

method has been tested upon five highly dimensional and imbalanced datasets

for greedy forward selection, as well as for the genetic algorithm. The results

have demonstrated that the ensemble with greedy forward selection is more ro-

bust in the presence of high dimensionality and class imbalance. Improvements

with genetic algorithm are mostly moderate, being evident of the fact that it is

less sensitive to the ensemble component. According to the overall results, the

ensemble method has been significantly better than the feature selection wrapper

with single inductive algorithm upon imbalanced data.
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Chapter 4

METHODOLOGY

The primary focus of this study was to assess the effectiveness of a weighted het-

erogeneous data ensemble, for the purpose of classifying Saccharomyces cerevisiae

proteins under ‘mitochondrion organization’. All preprocessing, model construc-

tion and experimental work were carried out using R programming environment

(version 3.2.2).

The goal was to employ as many important functional aspects as possible. Thus,

six data types: sequence data; protein domains; peptide chain properties; gene

expression; secondary structure; and interactions, were used along with existing

annotations to construct a supervised learning model. This chapter describes how

each type of dataset was retrieved and preprocessed, followed by methods used

for building the prediction model that utilizes those heterogeneous data types.

4.1 Data Retrieval and Preprocessing

An important consideration was given to select a reliable and an appropriate

set of data to begin the model construction with. Reliable data selection and

preprocessing is crucial in any knowledge discovery process. Unreliable sources or

data instances should be avoided, as usage of such error prone data could lead to

error propagation, resulting in even more erroneous results. Moreover, biological

datasets produced by high-throughput experiments may suffer from high error

rates and systematic variations. Thus they require data type specific, standard

preprocessing and quality control procedures to be performed prior to feeding

them into a learning model [16, 17, 38]. Following sections describe how data

were retrieved and preprocessed for this study. Preprocessing was also guided by

the produced data visualizations available in Appendix A.
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4.1.1 Protein Annotation Data

A reliable set of 32 current S. cerevisiae protein annotations under GO:0007005

(i.e. positive examples) were obtained from the Gene Ontology Consortium [68].

They include only the manually curated annotations, excluding the electronically

inferred annotations (IEA). In addition, annotations were also obtained from a

benchmark gold dataset published by Huttenhower et al. (2009) [69]. The original

gold set includes 135 annotations guided by literature curation and 100 exper-

imentally validated proteins which participate in ‘mitochondrion organization’.

Moreover, it provides a confident list of 4500 proteins which have been verified

as not being engaged in the process (i.e. negative examples). The following steps

reduced the amount of positive examples and negative examples up to 239 and

3880, respectively.

• Seven redundant and un-reviewed negative examples were discarded by

manual inspection

• Five annotations found to be in both positives and negatives, were removed

• Negative proteins without protein domain information were discarded for

later experimental purposes

The final set is a reliable set of annotations, as they include only the manually

curated annotations, excluding the electronically inferred annotations.

4.1.2 Sequence Data

Amino acid sequence data of proteins were obtained from the Saccharomyces

Genome Database (SGD). They were available in FASTA format, as shown through

an example in Figure 4.1.1. R Package seqinr [70] allows sequence extraction from

a FASTA file. In addition, domain specific sequences were extracted by using start

and end positions specified in domain data which will be described in the next

section.

68



4.1.3 Domain Data

Domain data were retrieved from the InterPro database [71] which has InterPro

domain annotations for all UniProtKB proteins. Initially the S. cerevisiae ORF

specific domain data were downloaded from SGD. However only 618 proteins

seemed to have InterPro domains. Thus the complete InterPro domain data file

with 299,626,886 lines was downloaded to extract only the yeast protein domain

data. The file is a tab delimited file containing the domain annotations for each

protein, in the form of their InterPro IDs and names, along with the start and end

loci within the corresponding amino acid sequence. This large file of a size around

3.9GB was accessed by splitting it into portions of 1,000,000 lines. InterPro uses

UniProt IDs and thus, ‘Retrieve/ID mapping’ online tool from UniProt was used

to manually obtain the InterPro - SGD ORF mappings for the focused list of

protein SGD IDs. Further, for 23 proteins (i.e. with UniProt IDs P16547, P16965,

P32858, P36038, P38305, P38325, P40207, P40451, P40491, P47157, P50945,

P53140, P87275, Q01926, Q02783, Q02888, Q03429, Q03798, Q04964, Q06820,

Q08223, Q3E731, Q99299) domain data had to be obtained from Uniprot that

presents domains based on publications, as InterPro did not have any domain

records for them.

Figure 4.1.1: Example FASTA sequence of a protein
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4.1.4 Properties Data

A protein properties dataset with important peptide chain features, was obtained

from the SGD. They include molecular weight, isoelectric point (pH value at

which a molecule carries no net charge), protein length, N terminal sequence,

C terminal sequence, GRAVY score (hydropathicity of the protein), Aromatic-

ity score (frequency of aromatic amino acids; Phe, Tyr, Trp), codon adaptation

index, codon bias, FOP score (frequency of optimal codons), Composition of Car-

bon, Hydrogen, Oxygen, Nitrogen, Sulphur elements, Instability index, Aliphatic

index, ‘assuming all Cys residues appear as half Cystines’ and ‘assuming no Cys

residues appear as half Cystines’ for all proteins. Molecular weight has a highly

skewed distribution which ranges from min 1978 to max 559,100 with a mean of

50,860. Thus, log10 transformation was performed.

4.1.5 Gene Expression data

Four types of microarray gene expression datasets [72, 73, 74, 75] often used in

literature, were downloaded from their corresponding sites.

Mnaimneh et al. (2004) [72] Expression data: This study is the explorat-

ion of essential gene functions via titratable Promoter Alleles. Gene expres-

sion data are from cDNA microarrays which measure the expression of all

S. cerevisiae genes under a set of 215 titration experiments. The values are

log expression ratios of mutant vs wildtype. Authors have examined 215 of

the TetO7-promoter strains by microarray expression profiling (where 215

mutant strains represent 215 different TET mutants).

Chu et al. (1998) [73] Expression data: This study is the transcription pro-

gram of sporulation in budding yeast. Authors have used DNA microarrays

containing 97% of the known or predicted genes of S. cerevisiae, to explore

the temporal program of gene expression during meiosis and spore forma-

tion. Changes in the mRNA transcript concentrations from each gene,

have been measured at 7 successive intervals (i.e. t0, t0.5, t2, t5, t7, t9,
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t11.5) after transfer of wild type (SK1 strain) diploid yeast cells to a Ni-

trogen deficient medium which induces sporulation. In their experiment,

the sporulation channel is R and the wild type channel is G. For each time

stamp: red; red background; green; and green background intensity values

are provided. They have also examined consequences of expressing Ndt80

(i.e. YHR124 - Meiosis specific transcription factor), ectopically in vege-

tative cells; and of eliminating Ndt80 during sporulation, during 3 stages:

gal.ndt80; Ndt80.delete.early; and Ndt80.delete.mid.

Gasch et al. (2001) [74] Expression data: This study is on genomic expres-

sion responses to DNA-damaging agents, and the regulatory role of the

Yeast ATR Homolog Mec1p. The authors have used DNA microarrays to

observe yeast gene expression in the presence of 2 different DNA damaging

agents: methylating agent methyl methanesulfonate; and ionised radiation.

Purpose is to characterize the role of MEC1 pathway in modulating cellular

response to DNA damage. Their analysis includes wild type and mutant

cells (defective in MEC1 signaling) under normal growth conditions vs in

response to the 2 DNA damaging agents, identifying specific features of

gene expression responses that depend on MEC1. The expression dataset

includes time course data. Used mutants are mec1, dun1, and crt1.

Spellman et al. (1998) [75] Expression data: This study is on how tran-

script levels of each gene vary within the yeast cell cycle. According to the

authors, the cell cycle regulated genes belong to 5 classes during yeast cell

cycle: M/G1, G1, S, G2, and M. There are 4 experiments with time course

data for each. Three independent methods: alpha factor arrest; elutriation;

and cdc15 temp-sensitive mutant arrest, have been used with cdc28. Av-

erage fluorescence intensities have been taken, background corrected and

finally the ratios have been included in the dataset.

These four datasets are also referred by the names: Expressions 1; Expressions

2; Expressions 3; and Expressions 4; respectively, for results reporting purposes
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in Chapter 5. As explained in Chapter 2, microarray gene expression data has to

undergo a quality control and normalization procedure.

Preprocessing Methods

The raw expression data should undergo specific quality control and normalization

with following methods, as clearly described in [17, 18, 38].

• Background correction

The simplest form of background correction is to subtract the background

intensities from the foreground intensities. One way to do this is by sub-

tracting the background pixel median value from the spot pixel median

value. Bioconductor Package Limma [76] provides a more sophisticated

correction through an adaptive background correction method known as

‘normexp’. It adjusts the foreground adaptively for the background inten-

sities and results in positive adjusted intensities. This is done by fitting

a convolution of normal and exponential distributions to the foreground

intensities using the background intensities as a covariate. The expected

signal given the observed foreground is taken as the corrected intensity.

Resultant is a smooth monotonic transformation of the background sub-

tracted intensities such that, all the corrected intensities are positive. An

offset is used to damp the variation of log ratios for very low intensity spots

towards zero. [76]

• Expression ratio transformation

Expression levels across two conditions (i.e. experimental condition (R) and

control/reference condition (G)) cannot be compared in their absolute units,

as the starting amounts of mRNA might be different. This becomes a ma-

jor concern, especially for dual channel microarray experiments. A relative

expression measure should be computed to intuitively represent expression

differences. Thus, gene expression level for the experimental condition is

normalized by that of the reference condition, as in Equation 4.1,
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Tk =
Rk

Gk

(4.1)

where Rk = spot intensity of red channel; and Gk = spot intensity of green

channel.

However, the expression ratio alone cannot give much information about

differential expression. For instance, a gene up-regulated by a factor of 4,

has a ratio of 4; but if it is down-regulated, the ratio is 0.25. Thus, the ratios

have to be transformed for having a more intuitive and consistent differ-

ential expression measure. One way is to perform inverse transformation,

where it simply changes the ratio to fold-change. However, its mapping

space is discontinuous. The best and the common method is to perform

logarithmic transformation with base 2, where the magnitude directly gives

the fold-change, and the sign represents whether it is an up-regulation (+)

or a down-regulation (-). Log transformation also makes the expression

value distribution to be closer to a normal distribution, while the multi-

plicative noise becomes an additive noise. However, this transformation is

not in favour for analyzing differential regulation of expression.

• Normalization

Within-array and between-array normalization are required to remove sys-

tematic biases in expression data. Global normalization assumes the red

and green intensities to be related by a constant factor, and shifts the cen-

ter of the log ratios to 0 [38]. Equation 4.2 presents the normalization step.

Common choice for c is the mean or median of log ratios.

log2(
R

G
)←

[
log2(

R

G
)− c = log2(

R

kG
)

]
(4.2)

For this study, median centering was preferred, as it is a more reliable mea-

sure than the mean in the presence of outliers. The goal is to enforce all

sample expression profiles to have the same median. The exact median
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value is not important, but the conventional choice is to have zero median,

as any value above-zero and below-zero reflects an up-regulation and down-

regulation, respectively.

A stochastic process may cause variance of the measured log ratios to differ

from one region of array to another, or between arrays [17]. Thus vari-

ance regularization (scale normalization) has to be performed to adjust the

measures for gaining the same variance. Yang et al. [38] recommends scale

normalization for expression ratio values after median centering.

As [17] describes, firstly a scaling factor ak should be computed for each

subgrid k, by dividing the variance σ2
n of the particular subgrid n by the

geometric mean of the variances for all subgrids. Afterwards, all log expres-

sion ratios within each subgrid k is divided by the corresponding scaling

factor ak, as in Equation 4.3.

log2(Ti)←
log2(Ti)

ak
(4.3)

[41] describes the following procedure. Consider the expression matrix X

with i genes and j samples. Let xij denote the expression of ith gene at the

jth sample.

1. Determine sample medians mj = median(x1j, x2j, ......xij)

2. Find median absolute deviations

MADj = median(|x1j −mj|, |x2j −mj|, .......|xij −mj|)

3. In order to scale normalize each sample j, multiply all of its values

by C/MADj where C = n
√
a1 ∗ a2 ∗ ....an (geometric mean of median

absolute deviations)

In the case of this study, individual sample expression profiles were taken as

subgrids and the variances were adjusted across the samples by performing
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scale normalization.

Another important normalization known as lowess normalization should be

performed to remove dye effects from dual channel expression values. Yang

et al. [38] recommends this prior to median centering and scale normaliza-

tion. The non linear bias due to systematic artifacts such as dye effect and

print tip effect, can be identified through a log fold-change (M) vs average

expression (A) plot (i.e. MA plot). M and A are defined in Equation 4.4.

M = log2(R)− log2(G) and A =
log2(R) + log2(G)

2
(4.4)

In a realistic MA plot, genes with similar expression must appear around

M = 0 line, and a cloud should symmetrically distribute all data points.

This is expected under the biological assumption; the majority of genes

are not differentially expressed, and the proportion of the up-regulated and

down-regulated genes are almost the same. Any deviation from that na-

ture is evidential of a systematic artifact. Lowess method can identify such

systematic deviations and correct them through a local weighted linear re-

gression as a function of log10 expressions, and subtracting the calculated

best-fit average log2 ratio from the experimentally observed ratio for each

data point [17]. If xi = log10(Ri ∗ Gi) and yi = log2(
Ri

Gi
), the method

initially estimates y(xk): the dependence of the log2 ratio on the log10 in-

tensity. Then the aforementioned function is used to correct the measured

log2 ratio values, point by point as in Equation 4.5.

log2(T́i) = log2(Ti)− y(xi) = log2(Ti)− log2(2
y(xi)) (4.5)

As a more specialized method, cyclic loess normalization [77] method nor-

malizes two arrays at a time, by applying a correction factor obtained from

the loess curve fit through the MA plot of the two arrays. This can be

applied for between-array normalization. Moreover, Robust spline normal-

75



ization method is said to be more robust than lowess at lower and upper

intensities. Bioconductor Package aroma.light [78] has an implementation

for Robust spline, which can be applied as a curve fit normalization between

R and G channels for within-array normalization.

Lastly, another technique called quantile normalization can be applied as a

calibration process, which improves the expression array comparability [41].

It enforces each sample profile to have the same quantiles. The procedure

is to find the smallest log2 intensity on each channel at first; average those

values; replace each value of those earlier smallest log2 values with the

computed average; and repeat the steps again for the second smallest, third

smallest and so on.

Preprocessing Steps

Preprocessing steps were guided mainly by the side-by-side box plots and MA

plots. The plots were obtained for visualizing the non-biological and systematic

artifacts present within the expression datasets. To remove those non-biological

variance and systematic artifacts, methods explained in [17, 18, 38] should be

applied over these expression datasets prior to model construction. Thus, we

performed median centering, followed by scale normalization and quantile nor-

malization, as a calibration process that improves the comparability among mi-

croarray experiments. Missing values contained in both Expressions 3[74] and

Expressions 4[75] data were imputed using kNN imputation from R Package Im-

pute [79]. Here, rows with more than 50% missing entries were imputed using

mean imputation. For Expressions 2 [73] dataset, some initial quality control

was done as follow. YDR273W negative ORF had an additional expression pro-

file, where the euclidean distance between the two profiles is ∼ 0.2198. They

were averaged into a single expression profile. Moreover, the foreground intensi-

ties were adjusted adaptively for the background intensities using Bioconductor

Package Limma [76]. This method adjusts the foreground adaptively for the back-
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ground intensities and results in strictly positive adjusted intensities. Further,

within-array normalization was done using Robust spline method in Bioconduc-

tor Package aroma.light [78]. Between array normalization was done using cyclic

loess normalization in Limma [76] for two arrays at a time. All expression values

are log2 fold-changes.

4.1.6 Secondary Structure Data

The secondary structure for all positive proteins and negative proteins were pre-

dicted using NetSurfP-1.1 [82]: an online server developed and hosted at the

Technical University of Denmark. Given a set of amino acid sequences in FASTA

format, the server process them and outputs the probabilities of a residue be-

longing to one of the 3 main secondary structural elements: alpha helix (H);

beta strand (E); and Coil( C). These data can be used to obtain a 3 category sec-

ondary structure assignment, by annotating each residue with H,E and C, creating

a secondary structure sequence. The results also carry more predictions over the

surface accessibility (i.e. relative surface accessibility with Z-fit score, and abso-

lute surface accessibility). Residues are getting classified as ‘buried’ or ‘exposed’

with a 25% exposure threshold. NetSurfP uses: a neural network approach intro-

duced previously in [83] for secondary structure prediction; an ensemble of neural

networks over Position Specific Scoring matrices; and the predicted secondary

structure to predict the relative exposures.

4.1.7 Interaction Data

Protein interaction data were downloaded from BIOGRID through SGD. There

are two interaction types: genetic interactions and physical interactions. The data

have been generated from 27 different bait and prey experimental approaches.

The complete dataset has 336,198 interaction records. 16.65% interactions are

manually curated, and 83.35% have been identified from high throughput inter-

actions. 66.38% are genetic interactions, while the rest (33.62%) being physical

interactions. Some genetic interactions (24.3%) are tagged with 3 phenotypes:
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inviable; decreased vegetative growth; and normal vegetative growth. Physical

interactions do not have any phenotypes. In this study, phenotype was not taken

into account. There are 0.60266% self interactions (i.e. bait = prey), which ac-

count for proteins whose two or more copies can interact with each other. Some

self interactions are in both physical and genetic level (e.g. YAR019C). 69,213

duplicates (in terms of bait, hit, genetic/physical interaction) were identified and

removed.

Complementary interaction record pairs exist in which, both (bait A, hit B)

and (bait B, hit A) pairs refer to the same interaction. A reasonable thing is to

retain only one of them and remove the complementary as a duplicate. However,

if the complementary interactions are from 2 types of interactions, they should

be kept. The complementary duplication removal was performed separately for

the genetic and physical interaction sets. After removing the complementary in-

teractions, we have 79,575 (34.42%) physical interactions and 151,599 (65.58%)

genetic interactions. For physical interactions, the average number of neighbours

for a vertex is 4.9482 and the maximum number of neighbours is 128. Network

object creation was done using package igraph [84].

4.2 Protein Instance Representation Methods

For effective supervised learning, each individual positive or negative example

should be properly represented. Selection of the most suitable and accurate pro-

tein instance representation is important and challenging. This depends on the

data types at hand. Primary structure based and secondary structure based rep-

resentation methods usually focus on discrete modeling of the protein sequence.

Different sequence features can be taken into consideration.

4.2.1 Pseudo Amino Acid Composition (PAAC)

Amino Acid Composition (AAC) is the simplest discrete model for representing

an amino acid sequence. Let P be the protein with the amino acid sequence
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R1R2R3...RL of length L, where Ri represents residue i. Then the AAC vector is

[f1, f2, f3, .f20], where fAA is the normalized occurrence frequency of each of the

20 types of amino acids within the sequence. This was commonly used to model

sequences in earlier approaches. However, it does not contain any sequence order

information which may be evidential of a certain biological importance. Pseudo

Amino Acid Composition (PAAC) numerical representation scheme was intro-

duced by Chou et al. [80], to represent an amino acid sequence by considering

different amino acid properties. It is an attempt to retain the sequence order

information, unlike AAC which is solely based on amino acid frequencies. The

final output is a numeric vector with each value representing a quantity based on

combining the aforementioned amino acid properties.

Suppose there are n amino acid property types. A generic correlation function

Θ(Ri, Rj) can be defined for two amino acid residues: Ri and Rj, where Hk(Ri)

is the kth property of Ri, as in Equation 4.6.

Θ(Ri, Rj) =
1

n

n∑
k=1

[Hk(Ri)−Hk(Rj)]
2 (4.6)

Then, a set of descriptors called sequence order-correlated factors are defined as

in Equation 4.7,

θλ =
1

n− λ

n−λ∑
i=1

Θ(Ri, Ri+λ) for λ = 1, 2, ...., λ < L (4.7)

where λ is a parameter to define the maximum distance between a pair of residues [85];

and L is the length of the sequence.

The correlation pairs are determined according to the λ value. When λ = 1,

all the most contiguous residue pair correlations are taken along the sequence.

When λ = 2, it will be the second most contiguous residue pairs. As λ increases,

the pattern continues with third most, fourth most and so on. The PAAC numeric

vector contains these 20 + λ descriptors (Xc for c = 1, 2, ......20, ...λ), as given in
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Equation 4.8. The first 20 descriptors (X1 - X20) are based on the normalized

occurrence frequencies (fc) of each amino acid type. The rest (i.e. λ descriptors)

are the sequence order-correlated factors. A weight factor w is applied to the

sequence order correlation effect.

Xc =
fc∑20

r=1 fr + w
∑λ

j=1 θj
(1 < c < 20) and

Xc =
wθc−20∑20

r=1 fr + w
∑λ

j=1 θj
(21 < c < 20 + λ)

(4.8)

R Package protr [81] provides an implementation to compute the PAAC vector

for a peptide chain by considering 3 key amino acid residue properties: hydropho-

bicity; hydrophilicity; and side chain mass. Let HO
1 (i), HO

2 (i) and MO(i) for i =

1 from i = 20 be the original hydrophobicity, hydrophilicity and side chain mass

values, respectively, corresponding to each amino acid type out of the 20 types.

Firstly, they undergo normalization/standardization as per the Equation 4.9, 4.10

and 4.11.

H1(i) =
HO

1 (i)− 1
20

∑20
i=1H

O
1 (i)√∑20

i=1[H
O
1 (i)− 1

20

∑20
i=1H

O
1 (i)]2

20

(4.9)

H2(i) =
HO

2 (i)− 1
20

∑20
i=1H

O
2 (i)√∑20

i=1[H
O
2 (i)− 1

20

∑20
i=1H

O
2 (i)]2

20

(4.10)

M1(i) =
MO

1 (i)− 1
20

∑20
i=1M

O
1 (i)√∑20

i=1[M
O
1 (i)− 1

20

∑20
i=1M

O
1 (i)]2

20

(4.11)

The correlation function is defined by the Equation 4.12.

Θ(Ri, Rj) =
1

3
([H1(Ri)−H1(Rj)]

2[H2(Ri)−H2(Rj)]
2[M(Ri)−M(Rj)]

2) (4.12)

4.2.2 Quasi-Sequence-Order Descriptor (QSOD)

This is another representation proposed by Chou [86], which can be derived using

a physicochemical distance matrix that has been defined over the 20 amino acid

types. Pairwise distances are calculated for each pair of amino acid residues that
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are at most separated by a maximum lag (maxlag). The separation is reflected

by rank d which ranges from 1 to maxlag. The sequence-order coupling number

is defined as in Equation 4.13, and is calculated for each d.

τd =
N−d∑
i=1

(di,i+d)
2 d = 1, 2, ....,maxlag (4.13)

The QSOD numeric vector contains 20 + maxlag values. Just as in PAAC, the

first 20 values correspond to the 20 amino acid types, and are computed based

on their normalized occurrence frequencies (fr). The rest refer to the quantities

computed using sequence-order coupling numbers for each d. Equation 4.14 and

4.15 define the two QSOD sub vectors: Xr and Xd.

Xr =
fr∑20

r=1 fr + w
∑maxlag

d=1 τd
r = 1, 2, ....20 (4.14)

Xd =
wτd−20∑20

r=1 fr + w
∑maxlag

d=1 τd
r = 21, 22, ....20 +maxlag (4.15)

R Package protr [81] provides implementation of this descriptor by incorporat-

ing Schneider-Wrede physicochemical distance matrix, as well as the Grantham

(1974) distance matrix.

4.2.3 Conjoint Triad Descriptors

Shen et al. [87] proposed conjoint triad method, which firstly classifies the 20

amino acid types into 7 classes based on their dipoles and side chain volumes.

Then, a numeric vector with features called conjoint triads is obtained for a se-

quence. The goal is to reflect the residues which participate in electrostatic and

hydrophobic interactions with other proteins. Figure 4.2.2 gives the classification

table, with dipole scale in Debye (Dipole < 1.0 (-), 1.0 < Dipole < 2.0 (+), 2.0 <

Dipole < 3.0 (++), Dipole > 3.0 (+++), Dipole > 3.0 with opposite orientation

(+’+’+’)); and volume scale in angstrom (Volume < 50 (-), Volume > 50 (+)).

It should be noted that the amino acid residue Cys is separated from class 3 due

to its ability to form disulfide bonds.
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Figure 4.2.2: Amino acid residue classification [81]

A triad is a unit of three consecutive amino acid residues. Triads are differ-

entiated as illustrated in Figure 4.2.3, according to its composition in terms of

the previously defined 7 classes. Since there are 3 residues, 7x7x7 (= 343) dif-

ferent combinations of classes can be found. In this representation, the sequence

features are considered to be the triad frequencies. Following gives mathematical

notion of the method. Define sequence feature vector V = (vi; for all i = 1 to

i = 343 triad type); and frequency vector F = (fi; for all i = 1 to i = 343 triad

type). A protein can be represented by its F .

Since fi could correlate to the sequence length, the F vector should be nor-

malized using Equation 4.16, in order to compare 2 proteins in terms of their F

representation. This normalization enforces the final representation vector D to

have values in [0,1] interval, where D = (di; for i = 1 to i = 343 triad type).

di = fi −
min(f1, f2, .......fn)

max(f1, f2, .......fn)
(4.16)

Figure 4.2.3: Conjoint triads [87]
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The authors in [87] have used CTD representation to model PPI between two

proteins: A and B, by concatenating DA and DB. R Package protr [81] also

provides an implementation to compute the CTD vector.

4.2.4 Secondary Structure based Representation

Another numeric representation for a protein can be constructed with 11 widely

applied secondary structure based features, as used in [27]. The vector S contains

features computed upon a predicted secondary structure sequence, as defined in

Equation 4.17.

S = (ConH , ConE,
AvgH
N

,
AvgE
N

,
MaxH
N

,
MaxE
N

,
Altn
N

,

PNE

PNE
+ APNE

,
APNE

PNE
+ APNE

, CMVH , CMVE)
(4.17)

ConH = alpha helix residue occurrence

ConE = beta strand residue occurrence
AvgH
N

= normalized average length of Alpha helices
AvgE
N

= normalized average length of Beta strands
MaxH
N

= maximum normalized length of Alpha helices
MaxE
N

= maximum normalized length of Beta strands
Altn
N

= alternating frequency of Alpha helices and Beta strands
PNE

PNE
+APNE

= normalized parallel beta sheet count
APNE

PNE
+APNE

= normalized anti-parallel beta sheet count

CMVH = composition moment vector of alpha helices

CMVE = composition moment vector of beta strands

4.2.5 Latent Dirichlet Allocation (LDA) Topic Representation

For sequence representation, a common approach is to exploit k-mers, as they

retain sequence order information [88]. Since a protein sequence is a text string

over an alphabet of 20 letters corresponding to the 20 amino acid residue types,

the k-mers can be considered as words. Thus, a protein instance can be regarded
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as a document under the ‘bag of words’ concept, creating the possibility to apply

text document mining approaches.

Latent Dirichlet Allocation (LDA) is a generative probabilistic model of a doc-

ument corpus, proposed by Blei et al. [89] for text mining. It is a method to

identify the most recurrent, but hidden topics shared by a corpus [90]. Following

its success in the document mining domain, the model has made its way into

Computational Biology very recently. For example, Blei et al. [91] uses LDA for

biomedical text mining. Konietzny et al. [92] identifies Biological Process func-

tional modules of protein families from microbial genome annotations, by using

LDA topic modeling to model a gene as a document, and the words as its gene

family annotations.

As for genomic sequence modeling using topic modeling, some recent studies sug-

gest different ways of word segmentation. For instance, Rosa et al. [90] applies

LDA with 8-mers, for predicting the taxonomic class of barcode DNA sequences

belonging to 16S housekeeping bacterial and archaeal rRNA genes. Upon LDA

model building, a one-to-one mapping of a topic to a taxonomic label is per-

formed, by assigning the label among the majority of sequences which have the

particular topic as their highest probable. Then the fitted model is used upon a

new DNA sequence, by firstly decomposing it into k-mers and then retrieving the

topic distribution, as to assign the most probable topic to the sequence. Final

output is the taxonomic label corresponding to the particular topic. Compared to

DNA/RNA sequences, the k-mer space is much larger for amino acid sequences.

Nevertheless, several researchers have used the approach, while looking for ways

to reduce the k-mer space. For instance, Yang [88] models protein sequences for

predicting type III secreted effectors (T3SEs) using non-overlapping 2-mers and

3-mers. They also pick only the informative k-mers by referring to their term

frequencies or the tf-idf value. Pan et al. [93] used 3-mers as well. However Yang

et al. [94] refers to the fact that, the typical longest distance between amino acid

local interactions is four. It is also important to note that the k-mers should not
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be too long, as longer ones tend to be less informative.

LDA topic modeling process

The LDA topic modelling process can be described as follow. An LDA model

considers a text document as a random mixture of latent topics, where each topic

has its own word distribution. Suppose a document W is a sequence of N words

(w1, w2, .....wN); a corpus D is a collection of M documents (W1,W2, .,WM); θd

is the topic proportions vector for document d; and k is the term distribution for

topic k. Blei et al. [89] defines the following generative process for each document

w in the corpus D.

Choose N ∼ Poisson(ξ)

Choose θ ∼ Dir(α)

For each of the N words wn,

(i) Choose a topic zn ∼ multinomial(θ)

(ii) Choose a word wn from p(wn|zn,n)

The topic proportion vector θ of a document is drawn from Dirichlet distribution

given its parameter α, as in Equation 4.18.

p(θ|α) =
Γ(
∑k

i=1 αi)∏k
i=1 Γ(αi)

θα1−1
1 .....θαk−1

k (4.18)

Given the parameters α and β, the joint distribution of θ (a topic mixture), z (a

set of N topics) and W (a set of N words), is defined by the Equation 4.19.

p(θ, z, w|α, β) = p(θ|α)
N∏
n=1

p(zn|θ)p(wn|zn, β) (4.19)
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By integrating over θ and summing over z, the marginal distribution of the doc-

ument is obtained, as in Equation 4.20.

p(w|α, β) =

∫
p(θ|α)

( N∏
n=1

∑
zn

p(zn|θ)p(wn|zn, β)
)
dθ (4.20)

Finally the probability of the document corpus can be defined through Equation

4.21. It is the product of the marginal probabilities of single documents.

p(D|α, β) =
M∏
d=1

∫
p(θd|α)

( Nd∏
n=1

∑
znp(zdn|θd)p(wdn|zdn, β)

)
dθd (4.21)

Only wdn is fully observable. Hidden variables are inferred often using Gibbs

sampling [88].

In the protein function prediction context, a positive annotation and a negative

annotation can be taken as two different topic representations. An LDA model

represents each document by a posterior Dirichlet over the topics [88]. Thus it

can be used to obtain a probability vector for a protein under the 2 cases: ‘the

protein belongs to the function class’ and ‘the protein does not belong to the

function class’.

4.2.6 Gene Expression Profile Representation

Gene expression profiles obtained from microarray experiments allow the iden-

tification of differentially expressed genes between two or more conditions (i.e.

control vs. treatment/ normal vs disease/ phases of a biological process such as

cell cycle/ time stamps), or genes whose regulation is evidential of their engage-

ment in a certain biological process [18]. A protein instance can be represented in

terms of its gene expression profile, which may carry information regarding differ-

ential expression and differential expression regulation. As explained in Chapter

2, a microarray experiment outputs a set of images with spot colors, reflecting

the level of gene expression. They are processed to obtain a raw expression data

matrix of spot intensity data, where rows represent genes; and columns repre-
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sent samples. A gene expression profile is simply a raw expression vector in the

expression data matrix, corresponding to the gene.

4.3 Ensemble based Classification

An Ensemble learning model amalgamates several diverse base predictors with

expertise in different input regions. That is to attain more accuracy than at least

the best performing base predictor. The behind motivation for such an approach

is the human nature of drawing conclusions based on several expert opinions.

In the context of social sciences, it is evident that if a committee is consisted of

individuals with a reasonable competence, the overall judgement of the committee

is superior to those of the individuals [95]. Following is proof by Dietterich [96],

that an ensemble has better results than each of its single classifiers. Suppose a

dichotomic classification problem for which, there are L hypotheses constructed

with each of their error being less than 0.5. Then, as long as the errors of the

base learners are uncorrelated, a majority voting ensemble shows an error lower

than that of single classifiers. The overall ensemble error rate Perror is given by

the Equation 4.22. It is the area under a binomial distribution, where more than

L/2 hypotheses are wrong.

Perror =
L∑

i=dL/2e

(
L

i

)
pi(1− p)L−i [95] (4.22)

As there is no single learning algorithm which could achieve the best accuracy

for all kinds of scenarios [97], it is a wise approach to develop a multiple learning

system, which can make each constituted base learner to cover a different aspect

of the problem domain. A different hypotheses space can be obtained with each

classifier [98], leading to an ensemble of the complementary prediction models

that misclassify completely separate parts of the input space [99]. Hence individ-

ual errors can be corrected by the other base models. When base models have

different data learning focuses, their combination tends to handle data changes

in a much more relaxed manner. Thus, unlike a single model which may overfit,
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an ensemble tends to reduce the variance of classifiers, which in turn reduces its

generalization error [100]. In certain situations, they can also reduce the bias

error [101].

To achieve an effective ensemble model with a good generalization capability,

the base model diversity should be enforced carefully. Re-sampling methods;

different feature sets; different parameter choices; different architectures; and dif-

ferent learning algorithms; can be used for the purpose. Diversity determines how

capable an ensemble would be to outperform its best base model. However, it

should be balanced with accuracy, in order to gain a well-performance [102]. Fu-

sion of base model predictions is the stage where the final prediction is presented

by the ensemble. Various combination strategies (i.e. uniform/weighted vot-

ing methods, arithmetic aggregation methods such as weighted mean, Bayesian

probabilistic methods, fuzzy methods [95]) have been introduced for the purpose.

Simple combination schemes are much effective than sophisticated schemes in cer-

tain contexts [55]. In addition, an ensemble model can be enforced to lean on an

optimal set of base classifiers, by selecting them using an appropriate optimiza-

tion algorithm (exhaustive or heuristic). The goal can be to achieve a significantly

high accuracy and diversity.

Nowadays, many Computational Biology applications rely on widely used ensem-

ble methods such as bagging, boosting, random forests, meta learning methods

(e.g. stacking, arbiter trees and combiner trees), and Error Correcting Output

Code [101, 103, 104]. Yang et al. [98] presents an excellent review on the most

widely used ensemble learning methods and their future trends in Bioinformatics.

However, utilizing an ensemble requires careful design in terms of the construction

method (i.e. serial, parallel, hierarchical), diversity enforcement, and the combi-

nation strategy. A general theoretical framework for ensemble methods have not

yet been developed, since the hidden commonalities among different approaches

are still unknown [95].
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4.3.1 Heterogeneous Data Ensemble

This study focuses on implementing a heterogeneous data ensemble, comprised

of 12 base models. They include 3 affinity-based neighbourhood models and 9

nearest neighbour models.

4.3.2 Affinity-based Neighbourhood models

This type of model takes a proteins’ affinity with another protein into account,

when predicting the protein function. Affinity between two proteins can indicate

an engagement in the same biological process. Thus, this is an application of

‘guilt-by-association’ concept. A protein is classified under ‘mitochondrion orga-

nization’, only if the majority of its interacting proteins are also engaged in the

same functional process. In a probabilistic sense, the posterior probability that

a protein engages in the biology process of interest, is simply the proportion of

positive proteins in its interaction neighbourhood. Such a model was built for

the case of combined physical and genetic interactions, as well as for each case of

individual interaction types. At training, only the interactions among proteins in

the train dataset were taken into consideration.

In addition, another affinity-based neighbourhood model called the Domains

model was also evaluated. This model firstly obtains the list of InterPro do-

main annotations for all the proteins. At prediction, the neighbourhood will be

the other proteins that share protein domains with the protein of focus. The

posterior probability is simply the fraction of positive neighbourhood proteins. If

there are no positive proteins in the neighbourhood, the function is not predicted.

This is because, a perfect neighbourhood cannot be guaranteed due to missing

information.

4.3.3 Nearest Neighbour Models

A nearest neighbour (NN) model outputs for a particular protein, the frequency

of its positive example neighbours, as the posterior probability of belonging to
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the ‘mitochondrion organization’ class. The neighbourhood is defined by a dis-

tance function and the number of neighbours (k) to be considered. The distance

function for this study was taken to be the Euclidean distance. The Euclidean

distance d between two data vectors: x = (x1, x2, ....xn) and y = (y1, y2, .....yn),

is defined by the Equation 4.23.

d(x, y) =
√

(x1 − y1)2 + (x2 − y2)2 + ......(xn − yn)2 (4.23)

During experimentation, the optimal number of neighbours was empirically de-

cided. The most closest k proteins according to the euclidean distance are taken

to be a proteins’ neighbourhood. Using R Package kknn [37], NN models were

trained individually over the peptide chain properties, each of the four expression

datasets, secondary structure data and each of the three amino acid sequence

representations (i.e. PAAC, QSO and CTD). Further, Epanechnikov kernel was

specified to weight the neighbours according to their distance.

PAAC representations (i.e. based on hydrophobicity, hydrophilicity and side

chain mass) for the PAAC NN model, were obtained using package protr [81]

for all positive and negative protein instances. The sequence of target is the

protein domain specific amino acid sequence, which is the concatenation of all

domain specific subsequences in the protein primary amino acid sequence. The

protr PAAC implementation uses w=0.05 by default as originally used by Chou et

al. [80]. λ was set to 12. Unlike in PAAC model, QSOD vectors were computed for

the protein subsequences made out solely of structurally exposed residues. This

was decided upon the observation made by Naani et al. [85], suggesting that a

residue-couple scheme is better at encoding surface amino acids. The surface ex-

posure sequence was extracted from the original sequence, based on the exposure

classification given by NetSurfP-1.1 [82]. An interesting observation was that, all

exposed sequences start from residue M. CTD model was also built upon exposed

amino acid sequences. Again, package protr [81] was used to obtain QSOD and

CTD representations.
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For the secondary structure model, the 11 length vector was computed, con-

sidering only the alpha helices and beta strands. Coil elements are ignored.

Figure 4.3.4 illustrates how the two beta sheet based features are derived. If two

beta strands are separated by alpha helices, the pair is considered to be forming

a parallel beta sheet. Otherwise they are taken to be forming an anti-parallel

beta sheet. [27] The alternating frequency was computed as the number of times

α→ β or β → α happens. The 4 different gene expression NN models were built

upon Mnaimneh et al. [72], Chu et al. [73], Gasch et al. [74] and Spellman et

al. [75], covering some important aspects of S. cerevisiae gene expression which

lead to differential expression of proteins in certain circumstances. Expressions

1 measures the expression of all S. cerevisiae genes under a set of 215 titration

experiments. Expressions 2 covers the transcriptional program of sporulation in

budding yeast. Expressions 3 provides expression measures upon how yeast genes

respond to DNA-damaging agents and how the regulatory role of yeast ATR ho-

molog Mec1p is performed. Expressions 4 dataset gives the yeast cell cycle related

expression through 4 time series experiments.

LDA based Model

In addition to the above main base models, an attempt was made to use LDA

topic modeling for amino acid sequence representation. The number of topics was

set to be two, as this is a binary classification task. All 2-mers, 3-mers and 4-

mers (both overlapping and non-overlapping) were considered. It should be noted

that, only the protein domain specific amino acid sequences were used for k-mer

segmentation. Moreover, Yang et al. [94] incorporates motif patterns as words

for further domain knowledge incorporation. Following a similar concept, this

Figure 4.3.4: Parallel and anti-parallel β sheet formation [27]
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study also tested the usage of protein domain tags and motif patterns as words,

obtained from Gibbs sampling method. Gibbs Sampler method from package tcR

[105] can find frequent motifs, by splitting each string in a string set, to k-mers

of a given k. For this study, motifs of length 4 were considered.

All together, 8 word representations were individually applied for LDA topic

modelling. Furthermore, the document term matrix was subjected to weighting

with term frequencies (normalized). The decision was made upon the observa-

tion made by Yang [88], that the term frequencies give better results compared

to tf-idf. R Package TopicModels [106] provides an implementation for construct-

ing the term document matrix and modelling LDA. For each protein, the LDA

model outputs two topic probabilities. These two topic probabilities along with

true protein class labels were fed into an SVM classifier, for meta learning. SVM

was decided to be the meta classifier due to its usage in [88]. It gives the final

probability of a protein instance belonging to the positive class.

4.3.4 Base Model Combination Scheme

Initially, five combination schemes: equal-weighted scheme; genetic algorithmi-

cally weighted scheme; AUC-weighted scheme; maximum posteriori probability

hypothesis selection; and Bayesian network based combination scheme; were ap-

plied, in order to see each of its effectiveness in the context. Weight schemes assign

a weight to each base model and take the weighted average of their individually

outputted posterior probabilities as the final ensemble output. Maximum poste-

riori probability hypothesis selection scheme simply outputs the highest posterior

probability given by a base model. Bayesian network based scheme combines base

model outputs by referring to a Bayesian network. Finally, the 5 combination

scheme ensembles are taken as individual base models for a second level ensemble

(i.e. Ensemble of different combination schemes). It is simply the equal-weighted

average of the base ensemble models.
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Genetic Algorithm based Base Model Weighting

Genetic Algorithm (GA) [107] is an evolutionary computing approach that mim-

ics evolution with basic darwinian concept of natural selection. Just as the species

population of several variants undergo a natural test of fitness from generation

to generation, where only the most fittest variants survive, a population of solu-

tions to a problem can be made to go through a similar process. Chromosome

crossovers and mutations decide a new generation to be tested for survival, allow-

ing new parts of the target regions in the solution fitness landscape to be tested

in successive generations. A crossover operation combines two parent solutions

according to a certain combination scheme, in order to produce an offspring so-

lution(s). The algorithm ensures that, only the offsprings of the fittest solutions

will be passed on to the next generation. A mutation causes random part(s) of

a solution to get mutated as to introduce a solution to be tested from a com-

pletely new region in the solution space. Ultimately, the possible solution space

is searched in a heuristic manner to attain the optimal solution.

The basic steps of the algorithm go as follow. Firstly a random set of solu-

tions are generated as the initial population. Then, each solution is tested for

fitness using an appropriate fitness function. Solutions with a low fitness value

will not be forwarded to the next generation. The rest undergoes crossovers and

mutations, in order to have new offsprings (variants) present in the new genera-

tion. The same procedure is repeated with new generational population until a

best or a good enough solution is reached within the population. The pseudocode

is as follow.

1. Generate a population of random chromosomes

2. Repeat (for each generation)

3. Calculate fitness for each chromosome

4. Rank the chromosomes according to their fitness

5. Repeat
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6. Select pairs of parents

7. Generate offspring with crossover and mutation

8. Until a new population gets produced

Using GA as an optimization algorithm, the set of base models of an ensem-

ble can be weighted to arrive at the final prediction [108]. In this context, a

solution is a weight vector. The fitness function can be a performance evaluation

function such as accuracy, precision, recall or the area under the ROC curve. An

optimal weight vector can be obtained by running GA over the possible weight

space.

In this study, the ga function in package GA [109] was used to search through the

base model weight space for an optimal weight vector. The fitness was defined

to be the Area under the ROC curve value. For this real valued solution space,

following experimental setting was applied.

• Local arithmetic crossover with 0.8 crossover probability: Given two weight

vectors w1 and w2, local arithmetic crossover firstly comes up with a random

weight vector v from a uniform distribution. Then, the offspring weight

vectors o1 and o2 are calculated as shown in Equation 4.24.

o1 ← vw1 + (1− v)w2 and o2 ← vw2 + (1− v)w1 (4.24)

• Uniform random mutation with 0.05 probability: It selects a random weight

position in the parent vector and changes the corresponding weight into a

new weight, drawn from a uniform random distribution.

• Fitness proportional selection with fitness linear scaling

• 1000 maximum number of generations

• 100 population size
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• 5% elitism (the percentage of the best solutions in a generation to be carried

out to the next generation without any alteration)

• Minimum base model weight = 0; and maximum model weight = 1

• Optim = TRUE, specifying the algorithm to perform local search using a

general-purpose optimization algorithm (i.e. L-BFGS-B)

Bayesian Network based Base Model Selection

This combination scheme firstly constructs a bayesian network over discrete base

model predictions (i.e. positive -1; negative -0). Here, the threshold probability of

a model is taken to be the value corresponding to the best optimal ROC point (i.e.

closest top left point the in ROC curve). For a threshold t, if base model output >

t, the protein instance is given 1 as the prediction. Otherwise it is given 0. The

Bayesian network infers relationships between base models and the true label,

considering their outputs for all the proteins in a training data set. R Package

bnlearn [110] provides a variety of bayesian network learning methods. For this

study, a network was learned using bnlearn [110] via a score based method in

which, the score is the Bayesian Information Criterion; and the learning algorithm

is the tabu search metaheuristic local optimization method. This network was

used to select the set of base models which should be incorporated at ensemble

combination. It selects only the direct parents and children of the true label

node. For example, Figure 4.3.5 shows a Bayesian network derived over a train

set. Here, all models except for PAAC, PPI_g and SS, are selected for giving

a prediction to a test protein. The final probability is the average of: the mean

of selected base model outputs; and the conditional probability of the true label

being 1, given those selected base model discrete predictions.

4.3.5 Performance Measures

Following basic performance measures were reported for individual base models

and ensemble models. They take into the account the True Positives (TP), True

Negatives (TN), False Positives (FP) and False Negatives (FN), at classification.
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Figure 4.3.5: Example bayesian network

• Specificity/true negative rate = TN
TN+FP

• Sensitivity/true positive rate/Recall = TP
TP+FN

• Accuracy = TP+TN
TP+FN+TN+FP

• Positive predictive value/Precision = TP
TP+FP

• False positive rate = FP
FP+TN

• False negative rate = FN
TP+FN

• Negative predictive value = = TN
TN+FN

The primary performance evaluation measures were the Receiver Operating Char-

acteristic and kappa statistic.

Receiver Operating Characteristic (ROC) [111]

When a binary classification model gives a prediction in the form of a probabil-

ity, it is a continuous value which is also an estimation of the class membership.

Given this classifier and a set of instances, the classifier probability outputs can

be discretized upon a certain threshold, in order to decide the class of the in-

stance. The confusion matrix upon classifier outputs specifies the number of true
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positives, number of true negatives, number of false positives and the number of

false negatives. When the threshold is varied, the confusion matrix values vary

too. Thus, at each different threshold, a different TP rate/FP rate is observed.

An ROC plot is a two dimensional graph in which, TP (in y axis) is plotted

against FP (in x axis). TP is the sensitivity, while FP is (1-specificity). As

the threshold can vary from 0 to 1 over the classifier probability outputs, a dis-

tinct pair of <TP,FP> can be obtained for each threshold value. These pairs

are reflected through points on an ROC plot. Since the threshold is also a con-

tinuous value, the final ROC plot contains an ROC curve made out of such points.

The optimal threshold corresponds to the ROC point with the best possible trade-

off between TP rate and FP rate. There are certain regions on the ROC plot that

recognizes different degrees of the classifier performance. The upper right most

point accounts for TP = 1 and FP = 0, denoting a perfect classification. Any

point on the diagonal denotes the case where TP = FP, which reflects a random

performance. The upper triangular region includes points where a classifier per-

formance is better than random chance, while the lower triangular region includes

points where a classifier performs worse than random guessing. Therefore, only

the classifiers which fall on the upper triangular region are considered as effective.

In overall, ROC curve shows the ability of a classifier to identify positive ex-

amples relative to negative examples. And the Area Under the Curve (AUC)

reflects the classifier performance: whether it is better than random chance or

not. An AUC value closer to 100% simply indicates a very good classification,

with a high sensitivity and high specificity.

Kappa Statistic

Kappa statistic is a statistical measure to evaluate the inter-rater agreement

between multiple raters. There are various versions of this measure to be used
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in different scenarios. Kappa statistic value of 0 indicates poor agreement, while

value 1 indicates a perfect agreement. Viera et al. [112] provides a common scale

as in Figure 4.3.6. The commonly used statistic is the Cohens’ kappa statistic

which evaluates the agreement between two parties. Fleiss kappa statistic [113] is

a generalization of the unweighted Cohens’ kappa. This statistic is based on the

difference between the observed agreement and the expected agreement among

base models [112]. Suppose N = the number of proteins; m = the number of base

models; ni+ = the number of base models that assign ith protein to the positive

class; and ni− = the number of base models that assign ith protein to the negative

class. Then, the observed agreement Po is defined by the Equation 4.25.

Po =

∑N
i=1 pi
N

where pi =
n2
i+ + n2

i− −m
m(m− 1)

(4.25)

The expected agreement Pe is defined by the Equation 4.26.

Pe = P 2
(+) + P 2

(−) where P(+) =

∑N
i=1 ni+
Nm

and P(−) =

∑N
i=1 ni−
Nm

(4.26)

Finally the Fleiss Kappa statistic is obtained by the Equation 4.27. [113]

kappa =
Po − Pe
1− Pe

(4.27)

Figure 4.3.6: Kappa scale [112]
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Chapter 5

EXPERIMENTATION, RESULTS, ANALYSIS AND

DISCUSSION

This chapter discusses the results and observations, obtained from the carried-out

experimentation to assess a properly engineered heterogeneous data ensemble, for

classifying Saccharomyces cerevisiae proteins under ‘mitochondrion organization’

Biology process. After a thorough background study and literature review, the

explained methodology in Chapter 4 was applied to evaluate the effect of diverse

biological data incorporation, in formulating the particular functional context

for supervised learning. Six data types: amino acid sequences; protein domain

data; gene expression; peptide chain properties; secondary structure data; and

interaction data, were utilized for the purpose. Specifically, a Genetic Algorithm

based weight scheme was compared with four baseline combination schemes, in

order to fuse base model probability outputs. In addition, an LDA topic modeling

based sequence representation and a second level combination scheme ensemble

were evaluated as well. The rest of the sections describe the experimental setup at

first, followed by a result analysis and discussion of the performance evaluations.

5.1 Experimental Setup

The objective of setting up experiments was to come up with a technique that

gains a fairly high accuracy in Saccharomyces cerevisiae protein classification un-

der ‘mitochondrion organization’, utilizing a variety of data types. The concern

was not on the computational complexity, but on the classification ability of the

approach. Experiments were performed mainly to validate the Genetic Algorith-

mically weighted heterogeneous data ensemble. It was done with regards to a

comparison with four other combination schemes and a second level combination

scheme ensemble. Prior to ensemble model construction, a topic modeling based
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approach was employed as described in Chapter 4, in order to validate its ca-

pability to accurately represent a protein instance (in terms of the amino acid

sequence).

The experimental setup was decided upon its suitability to address the high class

imbalance, the need for an appropriate performance measure, and the ability to

provide a strong measure of the true classifier performance. As the initial step,

the high class imbalance issue was addressed by preparing 10 annotation data

samples with 1:1 positive to negative example ratio. Each sample contains all

239 positive examples and a randomly selected 239 negative examples out of the

3880, from the benchmark gold dataset published by Huttenhower et al. [69].

Thus, the samples vary only in terms of the negative example representation.

Experimental evaluation of a model was carried out by performing leave-one-out

cross-validation for each of the 10 samples. A cross-validation technique supports

model evaluation in terms of its generalization capability, avoiding over-fitting to

some extent. In leave-one-out cross-validation, each data instance in the sample

is left out and a model is trained over the rest. Then the trained model is used to

predict the class for the particular left-out data instance. The model is evaluated

upon such predictions made for all the data instances in the sample.

The primary performance measure was taken to be the Area Under the Curve

(AUC) value of the Receiver Operating Characteristic (ROC). The measure is

equivalent to the probability of ranking a randomly chosen positive instance

higher than a randomly chosen negative instance [111]. It was decided to be

used for several important reasons. Firstly, ROC is considered and widely used

as a standard classifier performance measure nowadays. Thus, the results from

this study could be used as a baseline for comparison by future researchers in

the area. Moreover, the ROC space facilitates the exploration of different ROC

points to obtain the optimal threshold for classification. Further, the measure is

insensitive to the changes in class distribution. Davis et al.[114] proves that a

100



curve dominates in ROC space, if and only if it dominates in the Precision Recall

(PR) space.

The other measures included specificity, sensitivity, accuracy, true negative rate

(tn), true positive rate (tp), false positive rate (fp), false negative rate (fn), pos-

itive predictive value (ppv), negative predictive value (npv) and kappa statistic

where applicable. The final performance measure vector in any model evaluation

was taken to be the average measure vector, which was observed over the 10

samples.

Experiments were conducted for the following tasks using the described experi-

mental setup.

• Evaluation of the LDA topic modeling based approach to incorporate do-

main specific amino acid sequences in protein function prediction: to see its

effectiveness in giving an accurate representation of a S. cerevisiae protein

in the context of ‘mitochondrion organization’.

• Finding the optimal number of neighbours to be used in nearest neighbour

models: to ensure that a nearest neighbour classifier scans the most optimal

set of neighbours which may strongly adhere to the ‘guilt-by-association’

concept.

• Evaluation of the individual base model performances and their inter-rater

agreement: to check their eligibility in ensemble formation and to decide

on individual contributions for collective decision making.

• Running the standard Genetic Algorithm to obtain the optimal weight vec-

tor for the heterogeneous data ensemble: to optimize the classification ac-

curacy, while receiving an insight to the importance of each data type.

• Evaluation of the heterogeneous data ensemble under different combination

schemes and the second level ensemble scheme: to compare the perfor-

mance of Genetic Algorithm based weight scheme with a set of baseline
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combination schemes, and to evaluate the extent of accuracy an ensemble

of combination schemes can achieve.

5.2 LDA Topic Modeling based Approach

The Latent Dirichlet Allocation topic modeling approach for protein sequence

representation was evaluated using the aforementioned experimentation setup. A

model was constructed according to the method described in Chapter 4. Eight

word representations: Domain tags; motif tags; and both overlapping and non-

overlapping k-mers for k=2,3 and 4, were tested. Figure 5.2.1 presents ROC plots

of each representation, for all 10 samples. Corresponding performance measures

are presented in Table 5.1.

Accordingly, LDA topic modelling based approach has not been able to accu-

rately model a protein sequence in the functional context of ‘mitochondrion or-

ganization’. Even though literature such as [88] suggests a higher sensitivity and

specificity gain from LDA topic modeling for sequence representation, the results

of this study suggest otherwise. All average AUCs are in the range of 50%-59%,

indicating that the model is only slightly better than random chance. Non-

overlapping 4-mer representation gives the highest mean AUC value of 58.74%,

the highest sensitivity of 63.43% and the highest accuracy of 59.51%, implying

the importance of considering 4 adjacent amino acid residues. However, it is not

Table 5.1: LDA model based approach evaluation results

Model AUC threshold specificity sensitivity accuracy

Domains 51.8768 0.5000 57.5127 54.2260 55.8694
2-mers 54.3161 0.5015 56.3356 54.2260 55.2827
2-mers (ovlp) 50.7832 0.5001 49.1484 55.5230 52.3331
3-mers 57.1135 0.5009 52.0708 63.0962 57.5846
3-mers (ovlp) 53.9766 0.4970 51.6522 57.6569 54.6558
4-mers 58.7402 0.5057 55.5823 63.4310 59.5078
4-mers (ovlp) 51.5816 0.4996 47.0110 60.6695 53.8403
Motifs 52.3257 0.4973 52.3290 56.2762 54.2991
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a significant AUC value for incorporating the model as a base model in an en-

semble. The least performing model is the overlapping 2-mer topic model with a

50.78% AUC. It is almost a by-chance model. The highest specificity of 57.51%

was gained by the Domains tag representation, while the least (i.e. 47.01%) was

given by overlapping 4-mer representation. All threshold values are around 0.5.

Further, some samples show unexpected improvements with some representation

types. For instance, sample 3 and sample 6 non-overlapping 4-mer representa-

tions give a much higher AUC value than the rest. Similar observation can be

made from sample 4 non-overlapping 3-mer representation as well.

Observations from this domain-specific sequence representation by LDA topic

modeling is quite surprising, since similar proteins are somewhat expected to

share functional domains. However, functionally unrelated proteins can also have
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Figure 5.2.1: ROC plots for the LDA model based approach

the same domain. Such domains usually account for a common and essential

function. Thus, not all domain information will be useful for function predic-

tion. Moreover, some domains may act as lock-key pairs. When a certain biology

process requires two proteins to interact with each other, those two proteins may

have two different domains, which account for each of their interaction site. Thus,

even though it is the same function, the proteins can have different domains for

the purpose. The same explanation can be given with regards to motifs, as se-

quence and structural motifs tend to repetitively appear in functionally unrelated

proteins as well. Furthermore, the selection of two topics might be inaccurate. It

can be the case that the positive class and the negative class is represented by

different number of topics.

5.3 Optimal Number of Neighbours

An experiment was also carried-out to empirically decide on the number of pro-

teins k in the neighbourhood, to be covered by the nearest neighbour models as

explained in Chapter 4. The optimal k for all nearest neighbour base models

was decided upon the performance of their equal-weighted ensemble (with the

104



Figure 5.3.2: k vs mean AUC

weight of each base model as 1) when varying k from 1 to 25. In this case, the

ensemble only consists of kNN models. Figure 5.3.2 shows the k vs mean AUC

for each NN model, as well as for the Equal-weighted ensemble. As expected, the

mean AUC increases with the increase of k. All models show a significant rise

in their mean AUCs from k=1 to k=3. Starting from k=3 to k=25, all models

gradually arrive at a stable AUC value. The significant gap between base model

performances and the ensemble performance proves the promising nature of the

ensemble approach. Expressions 4 model surpasses the QSO model at around 10

neighbours, and becomes the best performing nearest neighbour base model. The

least performing NN base model is the Secondary Structure (SS) model. PAAC

model is getting much better than the SS model with the increase of k, as their

gap gets wider.

For the Equal-weighted ensemble, the highest mean AUC of 90.2140% with speci-

ficity 84.2200% and sensitivity 82.74557%, is given by 17 neighbours. The accu-

racy at that point is 83.4828%. Therefore 17 was selected as the optimal number

of neighbours to be used in NN models.
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5.4 Base Model Evaluation

An ensemble performance relies on the performances of its base models. Just

as the literature states, a diverse set of base models with each of its error rate

being less than 0.5 is required to arrive at a ensemble high performance. There-

fore, the individual model performance measures were obtained prior to forming

the ensemble. Table 5.2 and Table 5.3 present the individual model performances.

Accordingly, the best performing base classifier is the Genetic plus physical in-

teractions model with an average AUC of 78.86%, specificity of 74.21% and a

sensitivity of 76.21%. When comparing the three affinity-based neighbourhood

models, the Physical interactions model shows a significant increase of AUC

compared to the Genetic interactions model. This may indicate that physical

interactions are better than genetic interactions at identifying the protein func-

tional context. However, only a small amount of genetic interactions are publicly

available due to limited genetic interaction mapping studies. Therefore, it may

also be the case that, a set of genetic interactions that are good indicators of

‘mitochondrion organization’ were not present in the used interaction dataset.

Model AUC threshold specificity sensitivity accuracy

CTD 72.15 0.27 70.92 62.89 0.67
Domains 50.36 0.96 27.53 75.98 0.52
Expressions 1 75.66 0.53 70.22 69 0.7
Expressions 2 70.97 0.52 62.47 68.12 0.65
Expressions 3 72.96 0.55 66.98 68.41 0.68
Expressions 4 77.73 0.55 70.01 72.59 0.71
PAAC 67.93 0.5 59.16 68.12 0.64
Genetic interactions 71.72 0.6 66.56 72.28 0.7
Genetic plus physical 78.86 0.59 74.21 76.21 0.75
Physical interactions 77.14 0.57 72.62 77.32 0.75
Properties 73.14 0.51 66.99 70 0.69
QSO 76.46 0.36 73.64 66.86 0.7
Secondary Structure 65.27 0.51 59.49 62.76 0.61

Table 5.2: Individual base model performance results I
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Model tn tp fn fp npv ppv

CTD 169.5 150.3 88.7 69.5 65.67 68.63
Domains 65.8 181.6 57.4 173.2 53.47 51.18
Expressions 1 166.7 164.9 74.1 70.7 69.33 70.03
Expressions 2 149.3 162.8 76.2 89.7 66.28 64.54
Expressions 3 156.2 158.7 73.3 77 68.16 67.35
Expressions 4 162.3 168.4 63.6 69.5 71.88 70.86
PAAC 141.4 162.8 76.2 97.6 65.04 62.62
Genetic interactions 130.9 155.3 59.6 65.5 68.72 70.44
Genetic plus physical 165.9 176.7 55.2 57.6 75.07 75.55
Physical interactions 132 157.9 46.6 49.8 74.08 76.09
Properties 159.7 167.3 71.7 78.7 69.09 68.07
QSO 176 159.8 79.2 63 69.02 71.86
Secondary Structure 142.18 150 89 96.82 61.56 61.09

Table 5.3: Individual base model performance results II

The Genetic plus physical interactions model surpasses both of those interaction

models as expected, because it takes into account both physical and genetic in-

teractions which can give a much stronger clue. For further evaluation, one-way

ANOVA test (DF1=2, DF2=27) was performed and the F-statistic of 15.39 was

observed, implying significant difference among the three affinity-based neigh-

bourhood models. The highest significance of difference is between the combined

interaction model and the Genetic interactions model, with a 0.0000380 p-value

according to the post hoc Tukey’s test.

The least performing base model is the Domains model with a mean AUC of

50.3608%. It is worse than random chance and thus, it was not incorporated into

the ensemble as a base model. The next least performing base models are the

Secondary Structure model with a 65.27% mean AUC and PAAC model with

67.93% mean AUC. Secondary Structure model was expected to perform better,

as it utilizes 11 types of secondary structure element information. Rest of all the

models display a mean AUC above 70%.

Out of the sequence representation models, QSO is the best performer with a

107



mean AUC of 76.46%. PAAC may have been the least performing sequence

model due to its full domain specific amino acid sequence coverage. Both QSO

and CTD models are based on exposed structure based sequence. Thus, it is

clear that the incorporation of amino acid residue exposure details is necessary

to effectively represent functional details from a sequence. One-way ANOVA test

(DF1=2, DF2=27) yielded a very high significant difference among the 3 sequence

models, with an F statistic of 58.76. Tukey’s HSD showed that the most signif-

icant difference lies between QSO model and PAAC model, with a p-value of 0.

The difference between QSO and CTD is also significant with p=0.0000248.

Among gene expression data models, Expressions 4 model is the best performing

model with an average AUC of 77.73%, implying the importance of yeast cell

cycle details for ‘mitochindrion organization’ function. The rest of the expression

models also show a considerably good mean AUC for a base model. One-way

ANOVA test (DF1=3, DF2=36) gave an F statistic of 15.57 with a 0.00000118

p-value, indicating a very high significance of difference between the 4 expression

models. Tukey’s test showed that Expressions 4 and Expressions 2 models dif-

fered most significantly at p = 0.0000014. Expressions 3 and Expressions 2 are

the least significantly differed pair with a p value of 0.2586336.

All the models except for the Domains model, show a diverse range of AUC

values, indicating their potential to be incorporated into an ensemble that can

give a significant improvement of performance. Moreover, CTD, Expressions 1

and QSO models are better at identifying true negative protein examples, than

the rest of the models that are better at true positive protein example recognition.

5.5 Evaluation of the Inter-rater Agreement

The diversity between all base models can be measured through the Fleiss kappa

interrater agreement statistic measure [113]. The inter-rater agreement was eval-

uated for the Equal-weighted ensemble as to obtain an unbiased measure of the
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agreement between the base models. Fleiss kappa statistic was obtained for all 10

samples using R Package irr [115]. Table 5.4 presents the kappa values received

for each sample. They were measured by considering only the protein instances,

for which all raters give an output. On average, all 12 base raters give a predic-

tion to 333.9 proteins (69.85356% of all proteins in a sample). At classification,

the best threshold value which corresponds to the closest top-left ROC point,

was taken for each base model. For the 12 base raters, a mean kappa of 0.2352

with standard deviation 0.0162, mean z value = 34.9020 and p-value = 0 were

observed. The null hypothesis is that the kappa = 0. According to the common

scale given in [112], a value between 0.21 to 0.40 implies a fair agreement between

the base models. Hence it can be concluded that the heterogeneous data models

in this ensemble are in a fair agreement.

5.6 Genetic Algorithm based Weight Optimization

Aforementioned experimental setup was also used to retrieve the optimal weight

vector, by running the standard genetic algorithm under the specification men-

tioned in Chapter 4. Figure 5.6.3 (a) presents the optimal weights allocated to

each base model in the GA-weighted ensemble, accordingly. Figure 5.6.3 (b)

presents the mean ROC AUC values of each base model.

Sample Number of proteins Kappa Z-value

1 334 0.2348 34.8618
2 327 0.2326 34.1640
3 359 0.2454 37.7744
4 321 0.2239 32.5847
5 326 0.2485 36.4507
6 328 0.2039 29.9946
7 312 0.2657 38.1286
8 350 0.2334 35.4796
9 335 0.2308 34.3180
10 347 0.2330 35.2641

Table 5.4: Kappa measure for individual samples
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There were 21 weight vectors that got resulted from running GA over each

(a)

(b)

Figure 5.6.3: (a) GA optimized weights (b) mean ROC AUC of base models

Figure 5.6.4: Best fitness value over each sample
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of the 10 samples, as sample 1 and sample 7 gave multiple optimal weight vectors

(i.e. 3 vectors and 10 vectors, respectively). Figure 5.6.4 shows the bar chart

of best fitness values in each sample. Table 5.5 presents all sample-wise weight

vectors. The GA experiment has taken 45.1 average number of iterations with

72 maximum and 20 minimum iterations. The fitness function is the AUC un-

der ROC of the GA-weighted ensemble. The average, attainable fitness over the

10 samples is 92.939% with a 0.7677 standard deviation. The maximum fitness

shows to be 94.6307%, while the minimum fitness is 92.038%. The final optimal

weight vector for the base models is taken to be the mean weight vector of all 21

vectors. Figure 5.6.4 shows only slight variations among the attained best fitness

values for each sample, positively supporting to take the average weight vector.

Accordingly, the most weighted model is the Expressions 2 model, while the

Secondary Structure model being the least weighted model. The most weighted

base model reflects the importance of the temporal program of gene expression

during meiosis and spore formation, when predicting proteins in the context of

mitochondrion biogenesis. The least weighted model is the Secondary Structure

model, indicating the lowest support for the functional context formation from

the alpha helices and beta sheet based 11 feature vector.

An important observation is the mismatch between the base model rankings

that are visible in GA weights and the mean AUCs. It somewhat provides a

contradiction, as both: numeric weight and performance rate can be taken as

indicators of the biological data type significance. As the Figure 5.6.3 illustrates,

only three base models (i.e. Secondary Structure, Properties and QSO) hold the

same rank, leading to a fair acceptance of their relative standings. Others dif-

fer vigorously. The reason might be perhaps the lack of decision making ability

in the affinity-based neighbourhood models; they do not always provide a pre-

diction for a protein due to missing interactions. The weights might have been

adjusted at GA optimization, in order to cater for that. Moreover, we cannot

guarantee to receive a global optimal weight vector from GA. The resultant dif-
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ference might have been caused due to that as well. The mismatch can also be

due to the implicit difference between the two indicators (i.e. weight and AUC

measure). While AUC provides each base models’ individual capability to form

the functional context, perhaps GA numeric weights are more evidential of each

others’ tendency to contribute towards collectively carrying-out the actual func-

tion. However, this is a very convoluted interconnection and needs more biology

expertise, experiments and verification for gaining a fair understanding.

Nevertheless, a strong conclusion can be made regarding the Secondary Structure

model, since it is the least performing base model, as well as the least weighted

base model. The secondary structure feature vector does not effectively capture

the biologically significant structural variations among the positive and negative

protein examples. Moreover, according to the results from Section 5.4, the model

sensitivity is greater than specificity (i.e. 62.76% > 59.49%), indicating that the

feature vector is better at capturing positive structural variations than the neg-

ative structural variations.

During the iterations of running GA over sample 7, it finds 10 weight vec-

tors which give the highest AUC value (i.e. the maximum fitness) across all 10

samples. It should also be noted that the order of weights was always the same

when multiple optimal vectors are present for a sample. If the average weight

order is compared with the maximum fitness giving weight vector, Figure 5.6.5

illustrates a fair observation that can be made regarding the relative importance

Figure 5.6.5: Order of data types with respect to both average and maximum
fitness giving weight vectors
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of each data type. Table 5.5 includes the 10 weight vectors obtained for the

maximum fitness giving sample (i.e.sample 7). The average of those were taken

for the comparison. It can also be argued that the average order of weights is

more biased towards the order of weights resultant from sample 7. However, the

bias could be justified under the assumption, that it has a good representation of

positives and negatives, indicated by its highest performance.

When models of the same type are trained over the 10 samples, the varied behav-

ior of each model can be considered due the random and varying negative example

representations. Hence, the best fitness sample could be the best representation

of a negative sample with respect to the positive set (current GO annotations).

In a hypothetical scenario, the change in weight vectors will also be due to the

same reason, given the assumption that the GA gives a global optimal solution.

The weight of each base model is getting adjusted to arrive at the best fitness

value. However, we cannot guarantee a global optimal from GA and thus, weights

might not be completely reliable for decision making.
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5.7 Ensemble Classification Performance

Firstly the 12 base models were incorporated into five ensembles, through the 5

combination schemes as described in Chapter 4. The performance of each ensem-

ble was evaluated using the previously described experimentation. Furthermore,

a second level ensemble of these five ensembles was also evaluated. Table 5.6 and

Table 5.7 give out the obtained performance measures. Figure 5.7.6 illustrates

the sample-wise ROC plots of each base model, compared with the GA-weighted

ensemble. Figure 5.7.7 presents the sample-wise ROC plots for the 5 ensemble

classifiers and the second level ensemble classifier.

Accordingly, the GA-weighted ensemble gains the highest mean AUC value of

92.52% with 86.44% specificity, 85.36% sensitivity and an accuracy of 86%. It im-

proves the best performing base classifier (i.e. 78.86% AUC of Genetic + physical

interactions model) by 17.32%. The same accuracy as the GA-weighted ensem-

Model auc threshold specificity sensitivity accuracy

AUC-weighted 92.03 0.52 86.36 84.35 0.85
Bayesian net 91.3 0.5 85.4 83.26 0.84
Combination scheme 92.02 0.6 86.78 83.1 0.85
Equal-weighted 91.97 0.51 86.32 84.73 0.86
GA-weighted 92.52 0.5 86.44 85.36 0.86
Highest probability 77.92 0.9 68.28 83.43 0.76

Table 5.6: Ensemble performance results I

Model tn tp fn fp npv ppv

AUC-weighted 206.4 201.6 37.4 32.6 84.69 86.16
Bayesian net 204.1 199 40 34.9 83.65 85.1
Combination scheme 207.4 198.6 40.4 31.6 83.75 86.42
Equal-weighted 206.3 202.5 36.5 32.7 85.03 86.21
GA-weighted 206.6 204 35 32.4 85.52 86.38
Highest probability 163.2 199.4 39.6 75.8 80.53 72.56

Table 5.7: Ensemble performance results II
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ble, also obtained by the Equal-weighted ensemble, except for its 91.97% AUC.

It improves the best base model by 16.62%. The least performing ensemble is

the Highest probability ensemble with a 77.92% AUC, which is significantly lower

than that of the rest and also lower than the best base model. AUC-weighted

ensemble gives an AUC of 92.03%, which is even better than the equal-weight

scheme. The improvement is 16.7%. However, its accuracy has dropped by 1%.

Bayesian net ensemble improves the best base model by 15.77%. These results

suggest that the best ensemble is the GA-weighted ensemble. However, the sec-

ond level ensemble does not seem to be effective. Its mean AUC of 92.02% is lower

than both, AUC-weighted and GA-weighted ensembles. This suggests that the

ensemble models are not diverse in their predictions, leading to poor capability

in correcting each others’ mistakes.

The one-way ANOVA test (DF1=4,DF2=45) was performed to evaluate the sig-
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Figure 5.7.6: ROC plots of base models and GA-weighted Ensemble

nificance of difference between the combination schemes, except for the least

performing ensemble. The test gave an F statistic of 1.841 with Pr(>F) =0.138,

which did not yield an indication of a significant difference. This also support the

observation made regarding the second level ensemble, proving the less diversity

among the second level base models.
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Figure 5.7.7: ROC plots of Ensemble models

Further, PR curve AUCs were obtained for all six ensemble classifiers. The

average PR curve AUC values are presented in Table 5.8. The consistency of

numerical order in AUC values between ROC and PR curves, partially solidifies

the proof given by Davis et al. [114]. That is: a curve dominates in ROC space

if and only if it dominates the PR space.

5.8 Identification of Disease Related Proteins

As mentioned in Chapter 1, this study evaluated nine disease related proteins

that are identified to be involved in ‘mitochondrion organization’ biology pro-

cess. They are COX10, SCO1, AFG3, AAC1, FUM1, MGM1, BCS1, SDH1 and

CYC3. Figure 5.8.8 illustrates the disease related protein identification matrix,

along with the number of samples in the experiment that lead to correctly iden-

tifying each disease related protein, by each base model. It is a heat map where

Model Precision Recall AUC

AUC-weighted ensemble 92.46
Bayesian net ensemble 91.99
Combination scheme ensemble 92.6
Equal-weighted ensemble 92.39
GA-weighted ensemble 93.03
Highest probability ensemble 70.6

Table 5.8: PR curve AUC values of ensemble models
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right-end of the color scale (i.e. green) indicates all 10 samples, while left-end

(i.e. red) indicates 0 samples. Not all proteins are correctly identified as positive

by all 10 samples. Also it should be noted that, a base model may not give any

prediction to a protein. For instance, Physical interactions model does not give

predictions for CYC3 and FUM1 in 6 samples and 9 samples, respectively. This

is due to the absence of relevant data.

The matrix clearly shows a significant difference in identifying disease proteins by

base models and their ensembles. For instance, three base models can strongly

predict MGM1 to be negative, while four base models also give a considerable

support towards the protein being negative. However, there are three other base

models that can strongly suggest otherwise. The overall result can conclude

that the ensemble models are able to strongly predict MGM1 as positive. This

observation clearly depicts the effectiveness of a diverse ensemble in accurate clas-

sification.

Overall, ensemble models are significantly better at identifying all disease pro-

teins, except the CYC3 protein. Although three base models (Genetic + physical

interactions, Genetic interactions and Expressions 1) strongly suggest that it is

positive, none of the ensembles could give a very strong prediction. Perhaps, the

expert knowledge in Biology is required for a discussion regarding the reason be-

hind this observation. It should also be noted that three disease related proteins

(i.e. COX10, AFG3 and AAC1) are identified by every ensemble model in all

10 samples, suggesting a strong functional context formulation for them by the

incorporated data types.

Figure 5.8.9 gives a bar chart of the average number of samples out of the 10

that recognizes each disease related protein. Accordingly, the GA-weighted en-

semble and the AUC-weighted ensemble have the highest disease related protein

identification rate of 9.6667, while the lowest rate of 5.2222 is held by the PAAC

base model. The highest rate for a base model is given by the Expressions 1
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Figure 5.8.8: Disease protein identification matrix

model (i.e. 8.5556).

Figure 5.8.9: Disease related protein identification over the 10 samples
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Chapter 6

CONCLUSIONS AND RECOMMENDATIONS

Protein Function Prediction is a supervised learning problem, focusing the anno-

tation of a functionally unknown protein with its intended functions (i.e. biology

processes, molecular functions). A key challenge is to constructively incorporate

different biological data types that capture various functional aspects of the pro-

teins, in order to formulate a strong functional context in classification. Hence,

this study addressed the data heterogeneity in a single function prediction con-

text, while eliminating the high class imbalance issue and the elusive nature of

negative examples. The focus was to assess the effectiveness of a heterogeneous

data ensemble approach for classifying Saccharomyces cerevisiae proteins under

‘mitochondrion organization’ biology process. Nine positive proteins are known

to be human disease related and thus, it is important to annotate proteins under

this particular Biology process.

Twelve base models were incorporated for the purpose, including nine euclidean-

distance based nearest neighbour (NN) models and three affinity-based neighbour-

hood models. A reliable set of annotations were obtained from Gene Ontology,

as well as from a publicly available benchmark gold dataset containing experi-

mentally verified positive examples and negative examples. The class imbalance

was addressed by preparing 10 annotation samples, each with a 1:1 positive to

negative class ratio. Each base model was trained over a different biological data

representation. The NN models contain 3 amino acid sequence models, 4 gene

expression models, a peptide chain properties model and a secondary structure

data model. Affinity-based models are the genetic interactions model; physical

interactions model; and a combined genetic + physical interactions model. Five

combination schemes were evaluated for fusing the base model outputs. The main

purpose was to evaluate the standard Genetic Algorithm based weight scheme
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with four other baseline combination schemes. Further, a second level ensemble

was also evaluated, by taking the five different ensemble models as the base mod-

els. The results showed that a Genetic Algorithm based weight scheme is ideal

for this classification purpose. Initially, the study also looked at representing a

domain-wise protein sequence through an LDA topic model, and observed that it

is ineffective in this context. Overall, the ensemble model substantially improves

the prediction accuracy, due to the diverse set of heterogeneous data models. The

approach has been able to give coverage to most of the important functional as-

pects, through the 12 different data representations. The kappa statistic depicts

their potential to correct each others’ mistakes at final prediction. More data

types such as phylogeny profiles can be added in future for further performance

enhancement. Moreover, the heterogeneous data ensemble is capable of iden-

tifying eight disease related S. cerevisiae proteins (i.e. COX10, AFG3, AAC1,

SCO1, FUM1, MGM1, BCS1, SDH1) in a strong sense and one disease protein

(i.e. CYC3) in a moderate sense. One aspect to look at in future, is the reason

behind the moderate inaccuracy of ensemble models, in identifying CYC3 as a

disease related protein.

The four baseline combination schemes for an ensemble are the Equal-weighted

scheme; AUC-weighted scheme; Highest probability scheme; and the Bayesian

network based combination scheme. The GA-weighted Ensemble performance

was compared to their performances, and the best combination scheme was ob-

served to be the GA-weighted combination scheme, with an average ROC AUC

of 92.52%. This gives a 17.32% improvement to the best performing base classi-

fier (i.e. Genetic + physical interactions model). The GA-weighted approach is

ideal for achieving an optimal classification of proteins under the targeted protein

function class, while approximating the contributions of different biological data

types. The most weighted base model reflects the importance of the temporal

program of gene expression during meiosis and spore formation, when predicting

proteins in the context of Mitochondrion biogenesis. However, we cannot com-

pletely rely on the average optimal weight vector for several reasons. Firstly,
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we cannot guarantee to receive a global optimal weight vector from GA. More

improvement may be gained by further experimental tuning of the GA hyper-

parameter settings. Moreover, modified versions of the standard Genetic Algo-

rithm such as the Immune Genetic Algorithm can be tested for their effective

usage in this context. Secondly, weights had been adjusted by the algorithm as

to optimize the ROC AUC. These adjustments are affected by the base models

that do not predict the functional class membership for some proteins, in the

presence of missing data. Consequently, a mismatch was observed between the

base model rankings in terms of the GA weights and mean AUCs. Since both

are independent indicators of the biological importance of each data type, the

mismatch could be justified. It can be concluded that, the optimized GA weights

are more evidential of each others’ tendency to contribute towards the biology

process, while AUC provides each data types’ individual capability to form the

functional context. The complex interrelationships between these different data

types is yet to be understood by Biologists.

Even though the GA-weighted scheme was observed to be the best ensemble

classifier, the other combination schemes except for the highest probability en-

semble, were also able to give high accuracy rates, implying no significant differ-

ence among their performances. The second-level combination scheme ensemble

did not yield an improvement, due to the low diversity among the five ensemble

models. It is also evidential from the result obtained through a one-way ANOVA

test over the ensemble models, except for the highest-probability ensemble which

did not improve the best base classifier. There is no significant difference between

their average ROC AUC values over the 10 samples. Hence, it can be concluded

that in general, more diverse combination schemes will be required for imple-

menting a successful second-level ensemble.

One obstacle for this study was the lack of a benchmark study to compare the

results with. There is a wide range of protein function prediction studies in litera-

ture. However they use diverse datasets, preprocessing methods and approaches,

124



making it somewhat difficult to carry-out a thorough comparison. Hence the

primary focus of this study was to solely assess the heterogeneous data ensem-

ble performance, along with the comparison of different combination schemes. A

very abstract and generic level comparison can be made with model accuracies

presented by Hibbs et al. [12]. They have evaluated an ensemble of three diverse

computational methods for predicting genes/proteins that involve in ‘mitochon-

drion organization’. The overall prediction accuracy has been observed to be

67.21% (123/183). In comparison, this study observed an 86% mean accuracy.

However, this cannot be taken as a good comparison, since the datasets and ex-

perimental setting are not the same.

This heterogeneous data ensemble approach however did not address the multi-

class, hierarchical classification. In future, the GA-weighted heterogeneous data

ensemble can be extended to a hierarchically consistent classification ensemble as

well. Initially, the method can be tested upon the sub hierarchy, which includes

offspring Biology Process GO terms of ‘mitochondrion organization’. The method

can also be tested upon other GO terms with appropriate strategies for hierarchi-

cal multi-label classification. However, the performance could vary, as different

functional contexts require different data utilizations. Further, data types can

be more refined at selection. For instance, more domain knowledge can be con-

sulted to select relevant microarray expression datasets. For interaction data,

more network analysis can be incorporated to enhance the capability of achieving

a neighbourhood that reflect the true functional context. Another important data

type to be considered is the tertiary or quaternary protein structure. Utilizing 3D

structural data for the purpose would indeed give more clues about the functional

context, with respect to structural exposure, molecular dynamics, protein energy

states and stability.

In conclusion, this ensemble based heterogeneous data mining approach enables

an accurate classification of Saccharomyces cerevisiae proteins under ‘mitochon-

drion organization’ Biology Process in Gene Ontology.
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Appendix A

Exploratory Data Analysis

A.1 Initial Analysis of GO Annotations

There are 98,957 protein annotations with 17 variables, for 6381 distinct pro-

teins from SGD database. 5530 distinct GO IDs have been used for annotation.

32,015 annotations were found to be duplicates (32.35% out of all). 232 anno-

tations are explicitly noted as not being associated with the GO term. Under

18 different evidence codes: 25,412 annotations are with experimental evidence

code; 5628 are with computational analysis evidence code; 481 are with author

statement evidence code; 4838 are with curatorial statement evidence code; and

30,583 annotations are with IEA (Inferred from Electronic Annotation). There

are 26,140 Biological Process GO term annotations; 19,129 Molecular Function

GO term annotations; and 21,673 Cellular Component GO term annotations, in

total. The annotations have been assigned by 8 parties: CACAO, GO Central,

GOC, HGNC, InterPro, MGI, SGD and UniProt. Out of them, SGD stands

for most of the annotations. All annotations belong to same database object

type: ‘gene’, and the same taxon: ‘taxon:559292’, which indicates S. cerevisiae.

Annotations have been made during the time period of 2000 - 2015. Most of

the annotations have been made in 2015. All 30,583 IEA annotations have been

made in 2015. However, the amount of curated annotations (36,359) surpasses

the amount of electronically inferred annotations.

A.2 Data Visualizations

Following data visualizations were obtained using R graphic packages: ggplot2

and RColorBrewer.
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(a) First 20 experiments (b) Last 20 experiments

(c) First 20 experiments (d) All experiments

(e) All log2(ratio) values (f) Median distribution

Figure A.2.1: Expressions 1 - Before normalization/preprocessing
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(a) Expression ratio profiles of first 10 genes
for the first 4 experiments

(b) Expression ratio profiles of first 10 genes
for all experiments

Figure A.2.2: Expressions 1 - After normalization/preprocessing

Figure A.2.3: Expressions 2 - MA plots before background correction
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Figure A.2.4: Expressions 2 - MA plots after background correction

Figure A.2.5: Expressions 2 - MA plots after within/between array normalization
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(a) Expressions 2 - log2(G) vs log2(R)

(b) Side-by-side boxplots of log ratios

(c) Side-by-side boxplots of log2(R) and
log2(G)

(d) Side-by-side pair boxplots of log2(R)
and log2(G)

Figure A.2.6: Expressions 2 - After normalization/preprocessing
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(a) After median centering and scale normalization

(b) After quantile normalization

(c) Final Gene expression ratio profiles of
first 10 genes

Figure A.2.7: Expressions 2 - After further normalization
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(a) Before normalization (b) After median centering

(c) After scale normalization (d) After quantile normalization

(e) After normalization, expression ratio profiles of first 10 genes for the time series over
each major experiment

Figure A.2.8: Expressions 3 - before & after normalization/preprocessing
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(a) Before normalization (b) After median centering

(c) After scale normalization (d) After quantile normalization

(e) After normalization, expression ratio profiles of first 10 genes for
the time series over each major experiment

Figure A.2.9: Expressions 4 - Before & after normalization/preprocessing
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Figure A.2.10: Expression profiles of housekeeping genes
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Figure A.2.11: Properties Data
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