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ABSTRACT 

Modelling of the Deployment Behaviour of Highly Compacted Ultra-thin 

Membranes 

Space structures such as solar sails, solar reflectors, and sun shields have very large surface 
areas. Hence they require deployable methods to be stored and transported out of the earth’s 
atmosphere in limited cargo capacities available in launch vehicles. A deployable structure 
changes its shape and geometry to a compact state with the use of folding patterns for 
convenience in packaging and/or transporting. Ground testing of deployable structures using 
physical models requires a representative environment, i.e. a zero gravity environment, which 
can consume a lot of time, effort, and cost, giving rise to the requirement of simulations carried 
out in a virtual environment. This research develops a modelling technique which can be used 
to simulate the deployment behaviour of membrane type deployable structures using a 
commercial finite element analysis software. Commonly used spiral folding pattern was used 
to demonstrate the modelling technique. 

Modification for the fold line arrangement of spiral folding pattern to account for effects 
caused by membrane thickness; modelling the crease behaviour with the use of rotational 
springs; and robustness of the analysis indicated by energy histories were three main aspects 
considered when developing the modelling technique. 

Spiral folding pattern was modified by finding the arrangement of nodes in the folded state of 
the model by providing sufficient offset between planes and checking the ability of the 
structure to deploy into a plane sheet. This modification was proposed for modules with 
regular polygonal shaped hubs. Proposed modification was verified with the use of a 
paperboard model which had a square shaped hub of 10 mm × 10 mm, 15 nodes in a single 
spiral, and a thickness of 0.28 mm. 

Crease stiffness of Kapton Polyimide film was determined comparing data available from an 
experiment carried out at the Space Structures Laboratory of California Institute of 
Technology and results of finite element models developed to simulate the experiment. 

Finally two finite element models were made from the proposed technique and results of these 
analysis were discussed on importance of incorporating crease behaviour in finite element 
models, important aspects of their deployment behaviour, and robustness of analysis. 

This research has successfully developed an approach to modify the fold line arrangement of 
the spiral folding pattern with regular polygonal shaped hubs to account for the geometric 
effects caused by membrane thickness and a robust technique to model the deployment 
behaviour of membrane type deployable structures. Crease stiffness of Kapton Polyimide films 
was modelled as a rotational spring, where the resisting moment is considered to be 
proportional to the opening angle near the crease. Comparing results of two finite element 
models, with and without crease stiffness, showed that crease behaviour affects the 
deployment performance of these structures significantly, and hence it is important to be 
included in simulations. 

Key Words: deployable structure, finite element analysis, spiral folding pattern, membrane 

thickness, crease stiffness 
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