Distributed Artificial Neural Network Training With Multi-Agent Technology

UniversitG.E.C/NantlasenaSri Lanka. Electronic Theses & Dissertations 129107B www.lib.mrt.ac.lk

> Faculty of Information Technology University of Moratuwa November 2014

Distributed Artificial Neural Network Training With Multi-Agent Technology

G.E.C Nandasena 129107B

Dissertation submitted to the Faculty of Information Technology, University of Moratuwa, Sri Lanka for the partial fulfilment of the requirements of the Degree of MSc in Artificial Intelligence

November2014

Declaration

I declare that this dissertation does not incorporate, without acknowledgment, any material previously submitted for a Degree or a Diploma in any University and to the best of my knowledge and belief, it does not contain any material previously published or written by another person or myself except where due reference is made in the text. I also hereby give consent for my dissertation, if accepted, to be made available for photocopying and for interlibrary loans, and for the title and summary to be made available to outside organization.

G E C Nandasena Name of Student

Signature of Student Date:

Prof.A S Karunananda Name of Supervisor(s)

Signature of Supervisor(s) Date:

Acknowledgements

First and foremost, I would like to thank my research supervisors, Professor Asoka Karunananda, former Dean Faculty of Information technology for his guidance and encouragement throughout the past two years.

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Abstract

With the growth of e-commerce, the size of available data has grown to an incalculable level. It has been an excellent opportunity for companies to leverage those data to derive intelligent information. However, limiting factor is the inability of traditional learning algorithms to process such a large dataset within a reasonable time. Moreover, the data in the e-commerce domain contains many unstructured and unreliable data sources. As a result, the databases are filled with noisy data. On the other hand, the traditional methods do not perform well on noisy data. In order to overcome this problem, distributed machine-learning techniques are becoming ever more popular within the research communities. In this project, multi-agent based distributed computing environment has used for segmenting consumers using Artificial Neural Network (ANN) on e-commerce dataset. Hopfield NeuralNetwork modelhas used to cluster the customer base in a perspective of marketing segmentation. Data clustering mechanism isimplemented with multi-agent technologies on distributed environment. The data partitioning techniques such as modular base approaches have used to process the ANN on distributed computing nodes. Further multiple outputs are generated by different processing nodes have aggregated by querying with bnearest cellister centroid for the given node. The application tasks such as data partitioning, consumer clustering, result combining and, etc. have implemented as agents. Further, the clustering agents are implemented to utilize the capability of heterogeneous computing environment, which has GPU and CPU. Due to the platform independent nature on multi-agent systems, the application can be deployed on a workstation that has various hardware and software configurations while utilizing either GPU or CPU for data computation.

Contents

Chapt	er 1 Introduction	1
1.1		1
1.2	Market segmentation	2
1.3	Market segmentation through Machine learning	2
1.4		4
Chapt	er 2 Machine Learning For E-commerce	5
2.1	Introduction	5
2.2	Artificial Neural Network	5
	2.1 History	5
	2.2 Biological Inspiration	6
	2.3 Mathematical Modal	8
	ANN for Segmentation	10
	Distributed Artificial Neural Network	12
	4.1 Ensemble Approach	13
	4.2 Modular approaches	14
2.5	Summary	14
-	er 3 Multi-agent System for Machine Learning	15
3.1	Distributed Artificial Intelligence	15
3.2		17
3.3	Distribution Distances	18
3.4	Distribution Distances . DPS system and MAS Comparison	19
3.5	Multiagent Approach for Distributed Computing 211011S	20
3.6	Summary www.lib.mrt.ac.lk	21
Chapt	er 4 Segmentation Using ANN On Heterogeneous Computing	
Enviro	onment	22
4.1	Introduction	22
4.2	Hypothesis	23
4.3	Input	23
4.4	Output	23
4.5	Process	24
4.6	Features	25
4.7	Users	25
Chapt	er 5 Design	26
5.1	Introduction	26
5.2	Agent platform	28
	2.1 Agent Management System	28
	2.2 Directory Facilitator	29
5.3	Message-space agent	29
5.4	Data partition Agent	29
5.5	Clustering agent	30
	5.1 Algorithm Design	31
	5.2 Energy function	32
5.6	Result combining agent	34
5.7	Summary	34

Chapter 6 Implementation	35
6.1 Introduction	35
6.2 Implementation of agents	36
6.2.1 Initiation and registering	36
6.2.2 Agent behaviours	36
6.2.3 Agent Communication	37
6.3 Network Installation	38
6.4 Message-space agent	38
6.5 Data partition Agent	40
6.6 Clustering agent	41
6.6.1 Algorithm Implementation6.6.2 Parallel implementation	42 44
6.7 Result combining agent	44
6.8 Summary	48
-	
Chapter 7 Evaluation	49
7.1 Introduction	49
7.2 Artificial Data Set	49
7.3 Analysis of Result merging	50
7.4 Real-world Dataset	54
7.5 GPU and CPU algorithms Performance Comparison	55
7.6 Summary	56
Chapter 8 Conclusion	57
8.1 Introduction	57
8.2 Condusion University of Moratuwa, Sri Lanka.	58
8.3 Future WorkElectronic Theses & Dissertations	60
Second Sec	61
Reference www.lib.mrt.ac.lk	01
Appendix A SPADE Agent Development Environment	63
A.1 Simple Agent	63
A.2 Agent Behaviour	63
A.3 ACL Messages	64
Appendix B Clustering Algorithm	65
B.1 Calculation of segment centroid	65
B.2 Parallel algorithm and the kernel launch	66
B.3 Centroid Kernel Function	66
B.4 Host Centroid Kernel Launch Function	67
Appendix C Artificial Data Generation	68
Appendix D Scatter Diagram of Artificial Data Merging results	
Appendix E Descriptive Statistics of Real-world Data Clustering	
Appendix F GPU and GPU Execution Time	

List of Figures

Figure 2.1: Schematic Drawing of two Biological Neurons Connection	7
Figure 2.2: Mathematical Model of an artificial neuron	8
Figure 2.3: Activation Functions	9
Figure 2.4: Hopfield Neural Networks	10
Figure 5.1: Design Diagram	27
Figure 6.1 CSV Data Format	40
Figure 6.2 Parallel reduction	48
Figure 7.1 Scatter diagram of Artificial Data Set	50
Figure 7.2 Clustered results on One Node	51
Figure 7.3 CPU and GPU execution time	56

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

List of Figures

Table 1 Segment and Consumer matrix	32
Table 2 Known information and Clustering results	
Table 3 Clustering Algorithm summary on five nodes	
Table 4 Cluster mapping	53
Table 5 Merged result summary	
Table 6 Descriptive statistics for real-world data set $(N=11,2102)$	
Table 7 Cluster summary of real-world data set	
•	

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk