

CONTENT-BASED IMAGE RETRIEVAL USING LARGE CENTRE REGIONS

Rajinda Suresh Senaratne

A Thesis submitted to the Department of Electronic and Telecommunication Engineering at the University of Moratuwa in partial fulfilment of the requirements

for the Degree of Master of Engineering.

University of Moratuwa

82721

02/21

82721

February 2004

Thesis

621.38 64" 621.38(043)

82721

CONTENT-BASED IMAGE RETRIEVAL USING LARGE CENTRE REGIONS

Submitted by

Rajinda Suresh Senaratne

Examining Committee

Dr. G.D.S.P. Wimalaratne (Chairperson)
Dr. A.A. Pasqual
Dr. R.M.A.P. Rajatheva

This Research Project was carried out at the Department of Electronic and Telecommunication

Engineering of the University of Moratuwa during the period from

August 2002 to December 2003.

DECLARATION

The work presented in this dissertation has not been submitted for the fulfilment of any other degree.

UOM Verified Signature

R.S. Senaratne Candidate

Dr. A.A. Pasqual Supervisor

ACKNOWLEDGEMENTS

I take this opportunity to convey my deep and sincere thanks to those who gave me tremendous assistance and co-operation to complete the Research Project and Thesis successfully.

First I would like to express my deep and sinc ere thanks to my Project Supervisor, Dr. Ajith A. Pasqual, for providing continuous guidance, advice, constructive suggestions and invaluable support throughout the project. He allowed me to choose this topic freely without setting any restrictions and consistently helped me and directed me in organizing and carrying out the work. I wish to express my gratitude and appreciation towards him for spending his valuable time in assisting me to make this project a success.

I would also like to thank the Chairman of my examining committee, Dr. Prasad Wimalaratne, for his kind advice and invaluable suggestions given.

I am grateful to Dr. Dileeka Dias for advising me and providing me the opportunity to enrol for this course.

My gratitude goes to Dr. R. P. Thilakumara, the Course Co-ordinator of PG Dip/MEng, for his kind advice and assistance given.

I thank all the academic and non-academic staff members for their assistance and support given.

Finally I would like to thank my parents, friends and colleagues for their encouragement, support and co-operation given, and all others who helped me to make this project a success.

Rajinda Senaratne

University of Moratuwa
February 2004

ABSTRACT

Among all the visual features used for content-based image retrieval, colour is perhaps the most dominant and distinguishing one in many applications. Therefore in this research project, the concentration was focused on the colour property of images. In this work, a new histogram refinement technique, Large Centre Regions (LCR) Refinement, and a new region representation technique, LCR Sets, based on colour regions are presented. These methods extract a selected number of largest regions around the centre of the image and match other images emphasizing this property.

Two assumptions are made. First is, that it can be assumed that the significant objects or items of an image are often located at the centre. These objects can often be characterized by their colour. Hence an image retrieval technique which extracts the colours of large centre regions of an image would improve the retrieval performance for images with significant objects at the centre. The second is, that the techniques were tested on an image database predominantly consisting of red images, but they perform similarly for other colours as well.

The presented histogram refinement descriptor, Large-Centre-Regions Vector, effectively represents large centre regions of an image. In addition to this, LCR Sets represent basic information about the shape of a region.

In the prototype, firstly, all the regions in an image were extracted depending on the similarity of the colour of the pixels. A centre zone was defined on the image and a selected number of largest regions which overlap with this centre zone at least by 50% of the region area were selected as the Large-Centre-Regions for histogram refinement basis. In addition to large centre regions, LCR Sets represent the areas of a selected umber of largest regions lying outside the centre zone and the width to height ratio of the minimum bounding rectangle of each region. Since the largest regions at the centre are given the emphasis for matching, effect of the background can be minimized as well because most part of the background often lies outside the centre zone. Extra distinguishing capability among different images can be achieved with LCR Sets.

Experimental results of LCR Refinement show much improved retrieval performance, especially for images with significant regions at the centre. Results show 20% average improvement in ranks with LCR Refinement compared to Histogram. By combining LCR Sets with either Histogram or LCR Refinement, this can be further improved upto 26% or 22%, respectively.

TABLE OF CONTENTS

Title Page	i		
Declaration	ii		
Acknowledgements			
Abstract	iv		
Table of Contents	v		
List of Figures			
List of Tables	ix		
1.0 INTRODUCTION	1		
1.1 Motivation	1		
1.2 Deficiencies of Existing Methods	2		
1.3 Contributions	3		
1.4 The Structure of the Thesis	4		
2.0 BACKGROUND AND RELATED WORK	5		
2.1 Introduction to CBIR	5		
2.1.1 Feature Extraction	6		
2.1.2 Feature Integration and Indexing	7		
2.1.3 Interactive CBIR www.lib.mrt.ac.lk	8		
2.2 Colour Histogram	8		
2.2.1 Similarity Measurements	8		
2.2.2 The Capacity of Colour Histogram Indexing	9		
2.2.3 Illumination Invariant Descriptors	9		
2.3 Colour Moments	9		
2.4 Partially Overlapping Fuzzy Regions	10		
2.5 Colour Sets	12		
2.6 Histogram Refinement	14		
2.6.1 Colour Coherence Vector	14		
2.6.2 Centering Refinement	15		
2.6.3 Successive Refinement	15		
2.7 Colour Correlograms	16		
2.8 Summary	16		
3.0 LARGE CENTRE REGIONS REFINEMENT	. 18		
3.1 Image Database	20		
3.2 Conversion to HSV Space	20		
3.3 Quantization	21		

	3.4	Region Extraction	22
	3.5	Classification of Large Centre Regions	22
	3.6	Comparison of LCR-vectors	24
	3.7	Performance Analysis	24
	3.8	Summary	25
4.0	LA	RGE CENTRE REGIONS SETS	26
	4.1	Classification of Regions	26
	4.2	Comparison of LCR Sets	27
		4.2.1 Matching by Area Only	27
		4.2.2 Matching by WHR Only	28
		4.2.3 Matching by Combination of Both Area and WHR	28
	4.3	Combining LCR Sets with Histogram	29
		4.3.1 Matching by Area Only	29
		4.3.2 Matching by WHR Only	29
		4.3.3 Matching by Combination of Both Area and WHR	29
	4.4	Combining LCR Sets with LCR Refinement	29
		4.4.1 Matching by Area Only	30
		4.4.2 Matching by WHR Only	30
		4.4.3 Matching by Combination of Both Area and WHR	30
	4.5	Summary www.lib.mrt.ac.lk	30
5.0	OT	HER DESCRIPTORS USED FOR COMPARISON	31
	5.1	Colour Histogram	31
	5.2	Colour Coherence Vector	31
	5.3	Histogram Centering Refinement	32
	5.4	Successive Refinement	32
		Summary	33
6.0	EX	PERIMENTAL RESULTS OF LCR REFINEMENT	34
		Maximum Precision for 100% Recall	34
	6.2	Recall vs. Precision Plots	36
	6.3	Comparison by Rank	44
	6.4	Analysis of Results	48
	6.5	Summary	50
7.0	EX	PERIMENTAL RESULTS OF LCR SETS	51
		Comparison by Rank	51
		Recall vs. Precision Plots	57
	7.3	Analysis of Results	60
	7.4	Summary	61

8.0 CONCLUSIONS	62		
8.1 Conclusions	62		
8.2 Recommendations and Future Work	63		
Bibliography			
Appendix A			
Appendix B			
Appendix C			

LIST OF FIGURES

- 2.1 An Image Retrieval System Architecture
- 2.2 Fuzzy Regions
- 3.1 Transformation from RGB to HSV space
- 3.2 Centre Zone of an Image
- 6.1 Maximum Precision vs. Query Image No. for 100% recall.
- 6.2 Images Retrieved by LCR-Refinement with Weight Ratio 70:25:5
- 6.3 Recall vs. Precision for query image no. 80
- 6.4 Recall vs. Precision for query image no. 99
- 6.5 Recall vs. Precision for query image no. 285
- 6.6 Recall vs. Precision for query image no. 290
- 6.7 Recall vs. Precision for query image no. 344
- 6.8 Recall vs. Precision for query image no. 1
- 6.9 Recall vs. Precision for query image no. 27
- 6.10 Recall vs. Precision for query image no. 36
- 6.11 Recall vs. Precision for query image no. 258
- 6.12 Recall vs. Precision for query image no. 263
- 6.13 Recall vs. Precision for query image no. 280 Still and a
- 6.14 Recall vs. Precision for query image no. 309
- 6.15 Recall vs. Precision for query image no. 334
- 6.16 Pixels Contributing to Descriptors for Images 80, 99, 285, 290 & 344
- 6.17 Portions of Background Contributing to Descriptors
- 6.18 Images that can be avoided by LCR Refinement
- 6.19 An Irrelevant Image for query image no. 290
- 7.1 Recall vs. Precision for query image no. 80
- 7.2 Recall vs. Precision for query image no. 99
- 7.3 Recall vs. Precision for query image no. 285
- 7.4 Recall vs. Precision for query image no. 290
- 7.5 Recall vs. Precision for query image no. 344
- 7.6 Images 99, 108 & 304 and their Large Centre Regions
- B.1 Similar Image Sets (Image number is shown on top.)
- C.1 GUI for Entering Queries
- C.2 GUI for Entering Weights and Thresholds

LIST OF TABLES

- 6.1 Ranks of Relevant Images of Query Image no. 80
- 6.2 Ranks of Relevant Images of Query Image no. 99
- 6.3 Ranks of Relevant Images of Query Image no. 285
- 6.4 Ranks of Relevant Images of Query Image no. 290
- 6.5 Ranks of Relevant Images of Query Image no. 344
- 6.6 Maximum Ranks of Relevant Images of Image Sets 1-5
- 6.7 Maximum Ranks of Relevant Images of Image Sets 6-13
- 7.1 Ranks of Relevant Images of Query Image no. 80
- 7.2 Ranks of Relevant Images of Query Image no. 99
- 7.3 Ranks of Relevant Images of Query Image no. 285
- 7.4 Ranks of Relevant Images of Query Image no. 290
- 7.5 Ranks of Relevant Images of Query Image no. 344
- 7.6 Ranks of Relevant Images of Query Image no. 80
- 7.7 Ranks of Relevant Images of Query Image no. 99
- 7.8 Ranks of Relevant Images of Query Image no. 285
- 7.9 Ranks of Relevant Images of Query Image no. 290
- 7.10 Ranks of Relevant Images of Query Image no. 344
- 7.11 Maximum Ranks of Relevant Images