
I <=>& 

uTJTVERSITV OF MORATUWA. SRI 1AM IB> /^O^, 

I M P R O V I N G P E R F O R M A N C E O F G E N E T I C 

A L G O R I T H M S U S I N G D I V E R S E O F F S P R I N G 

A N D D Y N A M I C M U T A T I O N R A T E 

A d i s s e r t a t i on s u b m i t t e d to t h e 
D e p a r t m e n t o f E lec t r i ca l E n g i n e e r i n g , U n i v e r s i t y o f M o r a t u w a 

in par t i a l fu l f i l lment o f t h e r e q u i r e m e n t s for t h e 
d e g r e e o f M a s t e r o f S c i e n c e 

by 

R A J A P A K S A G A M A G E S A N J A Y A A N U R A D H A 

P E R E R A 

S u p e r v i s e d b y : P r o f . L a n k a U d a w a t t a 

D e p a r t m e n t o f E l e c t r i c a l E n g i n e e r i n g 

U n i v e r s i t y o f M o r a t u w a , S r i L a n k a 

F e b r u a r y 2 0 1 1 

'niversity of Moratuwa 

96810 

p p n i f\ 
u U J 1 J 



D E C L A R A T I O N 

T h e w o r k s u b m i t t e d in th i s d i s se r t a t i on is t h e resu l t o f m y o w n 
inves t i ga t i on , e x c e p t w h e r e o t h e r w i s e s ta ted . 

I t h a s n o t a l r e a d y b e e n a c c e p t e d for a n y d e g r e e , a n d is a l so n o t b e i n g 
c o n c u r r e n t l y s u b m i t t e d for any o t h e r d e g r e e . 

0 7 F e b r u a r y 2 0 1 1 

e/I e n d o r s e t h e d e c l a r a t i o n b y t h e c a n d i d a t e . 

Prof. L a n k a U d a w a t t a 

i 



C O N T E N T S 

Declaration 

Abstract 

Acknowledgement 

List of Figures 

List of Tables 

1. Introduct ion 

1.1 Background 

1.2 Motivation 

1.3 Scope of the Research 

2. Genetic Algorithms and Performance Dependency 

2.1 Genetic Algorithms 

2.1.1 Features of Genetic Algorithms 

2.1.2 Major steps of a Genetic Algorithm 

2.1.3 Initial Population 

2.1.4 Evaluation and Ranking 

2.1.5 Selection 

2.1.6 Crossover 

2.1.7 Mutation 

2.1.8 Termination 

2.2 Performances Dependence 

3. Solution and Theoretical Development 

3.1 Proposed Solution 

3.1.1 Solution 

3.1.2 Methods and Techniques 

3.2 Mathematical Derivations 

3.2.1 Generation of Initial Population 

3.2.2 Selection and Ranking 

3.2.3 Crossover 

3.2.4 Mutation 

3.2.5 Insertion of Diverse Offspring 

3.2.7 Fitness of the Result 



4. Per formance Testing of Genetic Algorithms 29 

4.1 Performance of Genetic Algorithms 29 

4.2 Implementation with Multivariate Systems 29 

4.3 General Multivariate Systems 30 

4.4 Performance Tests 31 

5. Results and Analysis 36 

5.1 Results 36 

5.1.1 Sine Function 36 

5.1.2 Step Function 39 

5.1.3 Sphere Function 42 

5.2 Comparison of Results 45 

5.2.1 Step Function 45 

5.2.2 Sphere Function 48 

5.2.3 Rastrigin's Function 50 

6. Conclusions 54 

6.1 Conclusions, Remarks and Discussion 54 

6.2 Recommendations for Future Research 54 

References 56 

Appendix - A: Programs 58 

A. 1 Program Output (For first generation of Step function) 58 

A.2 Program Code for Genetic Algorithm 59 

A.3 Program Code for Genetic Algorithm Library 63 

Appendix - B: Statistical Analysis 71 

< 
v 

iii 



A b s t r a c t 

In this work a Genetic Algorithm coding and a required genetic operation library has 

been developed with some modifications by introducing dynamic mutation rates and 

fraction of diverse offspring to increase the searching probability. The improvement 

was done to the algorithm to automatically select the dynamic mutation rate and 

fraction of diverse offspring depending on the optimization problem. 

The modified genetic algorithm with dynamic mutation and diverse offspring was 

tested with Sin, Step, Sphere and Rastrigin's benchmark functions. Same benchmark 

test was done with simple random search and conventional genetic algorithm to 

compare the performance. Also these results were compared with other researchers' 

results. 

The results show that the genetic algorithm with Dynamic Mutation rates and diverse 

offspring has better searching performance than the conventional Genetic algorithm 

and the simple random work especially with high dimensional benchmark functions. 

It also shows that the risk of convergence to a false local optimum can be reduced by 

the introduction of diverse offspring to the population of next generation. It shows 

that the searching performance of a Genetic Algorithm can be significantly improved 

by increasing the diversity of the population using dynamic mutation rates and 

appropriate fraction of diverse offspring while conserving the convergence 

characteristics. Result shows the effectiveness of the proposed algorithm. 
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