Multi-Agent based Approach to Ontology Alignment

Faculty of Information Technology

University of Moratuwa

October 2012

Multi-Agent based Approach to Ontology Alignment

Dissertation submitted to the Faculty of Information Technology, University of Moratuwa, Sri Lanka for the partial fulfillment of the requirement of the Degree of MSc in Artificial Intelligence

October 2012

Declaration

I declare that this dissertation does not incorporate, without acknowledgment, any material previously submitted for a Degree or a Diploma in any University and to the best of my knowledge and belief, it does not contain any material previously published or written by another person or myself except where due reference is made in the text. I also hereby give consent for my dissertation, if accepted, to be made available for photocopying and for interlibrary loans, and for the title and summary to be made available to outside organization.

G. M. Rajakaruna

Name of Student

Signature of Student Date:

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Supervised by

Prof. Asoka S. Karunananda

Name of Supervisor

Signature of Supervisor Date:

Dr. Shantha Jayalal

Name of Supervisor

Signature of Supervisor Date:

Dedication

To my Wife and Parents

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Acknowledgement

My sincere thanks are due to my supervisor Prof. Asoka S. Karunananda for his guidance throughout the project. His experience and knowledge on the subject and the research process inspired me to focus on my work.

I also express my sincere thanks to my supervisor Dr. Shantha Jayalal for his assistance and fruitful feedback during the project. The way he taught the semantic web course created an interest on the subject and caused me to use it in the project.

A very special thanks goes to anonymous reviewers and the attendees of the ICIIS-2012, SLAAI-2011, and JNCITA-2011 conferences for their invaluable feedback and comments. Those suggestions were helpful to improve the quality of this work.

I would like to thank all my batch mates and every other person who supported me during the project.

Finally, I real project. University of Moratuwa, Sri Lanka.

parents during the past two years. It was a very difficult time period, but, they realized the importance of my work and assisted me in numerous ways.

Abstract

Modern information systems extensively use ontologies to model domain knowledge. Nowadays, with the large amount of already available ontologies, there is a high demand for sharing and reusing the knowledge in existing ontologies. Since ontologies are complex structures, sharing of knowledge coming from various ontologies has become a tedious task. This has resulted in the birth of research area called ontology alignment. There are numerous techniques for the alignment of ontologies, and the field still faces many challenges. For instance, these techniques are rather domain dependent and expect considerable amount of human interaction.

Due to the inherent nature of multiple relationships among the ontologies, it postulates that the Multi-Agent System technology is a better technology to automate the ontology alignment with little human intervention. Multi-agent system technology has shown promising results in modeling domains with interconnected and distributed entities.

University of Moratuwa, Sri Lanka.

This thesis presents multi-agent based approach for ontology alignment. The proposed solution simulates how different processes interactively operate inside the human mind to perform certain activities, intelligently. In fact, none of these individual entities are supposed to be intelligent, nevertheless, through their interactions, intelligence is emerged. Based on this idea, a novel solution for ontology alignment is proposed. Indeed, the proposed solution uses agent communication, negotiation, and coordination as the primary method of exploring the semantic relationships between the ontologies. The system accepts ontologies maintained in any major form of ontology representation languages as its inputs and generates ontology with new semantic relationships as its output. The generated ontology could be used as a shared understanding between information systems that are running on input ontologies. The system is designed based on Request-Resource-Message Space-Ontology architecture. The solution is developed as a plugin for the popular ontological modeling environment known as Protégé. The system initiates an agent to represent each concept in input ontologies, and these agents execute on behalf of their respective concept. Further, the system also uses string, linguistic, and structural similarity matching agents together with upper ontology matching agent to

determine the similarity between the concepts. The linguistic matching agent accesses the WordNet database to fetch synonyms information whereas the upper ontology matching agent uses the DOLCE upper ontology to fetch domain independent information. In general, operational knowledge and the rules required for above agents to operate are maintained in agent system's ontology. The user could explicitly provide domain knowledge at the beginning of the alignment process. In fact, this step is optional. However, the accuracy of the alignment results are heavily depends on the amount of the domain knowledge agents could access during the alignment process. Because of its flexible design, user could easily expand the system's ontology to suit any domain, and thus, the solution could be used over ontologies of any domain. For example, if there is an upper ontology that suits more for the current ontological domain, user could link that ontology with the system. The success of the proposed approach was evaluated by using ontologies of conference organizing and agricultural domains. It was evident that system could discover over 70% accurate semantic relationships, and thus, the author claims that

the proposed approach could resolve the complexity in ontology alignment.

Electronic Theses & Dissertations www.lib.mrt.ac.lk

Contents

Page

Chapter 1	Introductio	on	1
1.1	Introduc	etion	1
1.2	Backgro	Background and Motivation	
1.3	Problem	Problem in Brief	
1.4	Ontolog	Ontology Alignment Definition and the Terminology	
	1.4.1	Ontology	3
	1.4.2	Ontology Alignment	3
1.5	Aim & (Objectives	4
1.6	Resource Requirements		4
1.7	Summar	ry	5
Chanter ?	Existing S	olutions for Ontology Alignment	6
2 .1	Introdue	University of Moratuwa, Sri Lanka.	6
2.1		Driven Ontology Alignment Methods and Techniques	6
2.2	2.2.1	PROMPT	7
	2.2.1	PROMPTDIFF	7
2.2	2.2.3	SAMOA	8
2.3		Dependent Ontology Alignment Methods and Techniques	8
	2.3.1	Ontology Alignment Using Rough Sets	9
	2.3.2	IF-Map Algorithm	9
	2.3.3	Memetic Algorithm	10
	2.3.4	PSO Algorithm	10
	2.3.5	Ontology Alignment Using Reference Ontology	11
2.4	Generic	Ontology Alignment Methods and Techniques	12
	2.4.1	DSSim	12
	2.4.2	RiMOM	13
	2.4.3	Ontology Alignment Using Upper Ontologies	13
2.5	Key Cha	allenge in Ontology Alignment	14

VII

2.6	Summary	16
Chapter 3 T	Technologies Adapted	17
3.1	Introduction	17
3.2	Protégé	17
3.3	Multi-Agent System Technology	18
3.4	Ontology Formats	19
3.5	WordNet	20
3.6	Upper Ontologies	20
3.7	Summary	20
Chapter 4 N	Multi-Agent based Approach	21
4.1	Introduction	21
4.2	Hypothsis	22
4.3	Users	22
4.4	University of Moratuwa, Sri Lanka.	22
4.5	ComputElectronic Theses & Dissertations	22
4.6	Processwww.lib.mrt.ac.lk	22
4.7	Features	24
4.8	Summary	25
Chapter 5 N	Multi-Agent System Design	26
5.1	Introduction	26
5.2	Analysis and Design	26
5.3	Agent Module	26
	5.3.1 Alignment System Agent	28
	5.3.2 Concept Resource Agent	28
	5.3.3 String Matching Resource Agent	29
	5.3.4 Linguistic Matching Resource Agent	29
	5.3.5 Structure Matching Resource Agent	30
	5.3.6 Upper Ontology Matching Resource Agent	31
5.4	Knowledge Module	31

		5.4.1	Rules for Agents to Operate	32
		5.4.2	Input Ontologies	32
		5.4.3	Linguistic Information	33
		5.4.4	Upper Ontologies	33
		5.4.5	Generated Ontology	33
	5.5	Summ	ary	33
Chapte	er 6 Or	ntoMAS	S System Development	34
	6.1	Introdu	uction	34
	6.2	Agent	System Development Using JADE	34
		6.2.1	Agent Development	34
		6.2.2	Agent Initialization	35
		6.2.3	Agent Communication	36
		6.2.4	Agent Business Logic	37
	6.3	Know	ledge Module Development	38
	1 5	6.3.1	Agent Rules of Moratuwa, Sri Lanka.	38
	200	6.3.2	Electronic Theses & Dissertations WordNet Linguistic Database www.lib.mrt.ac.lk	38
		6.3.3	Input Ontologies	40
		6.3.4	DOLCE Upper Ontology	40
	6.4	Plugin	Development for Protégé Environment	41
	6.5	Summ	ary	42
Chapte	er 7 Ev	aluatio	on of OntoMAS	43
	7.1	Introdu	uction	43
	7.2	Evalua	ation Strategy	43
		7.2.1	Definition of Precision	44
		7.2.2	Definition of Recall	45
		7.2.3	Definition of Accuracy	45
	7.3	OntoN	IAS on Conference Organizing Domain	45
	7.4	OntoN	IAS on Agriculture Domain	49
	7.5	Summ	ary	52

Chapter 8 Conclusion		53	
	8.1	Introduction	53
	8.2	Overall Conclusion	53
	8.3	Analysis of the Evaluation Results	54
	8.4	Limitations Identified	55
	8.5	Future Work	55
	8.6	Summary	55
Refe	erences		57
Арр	endix A	A: Sample Agent Code	61
	A.1	Sample Code for Alignment Request Agent	61
Арр	endix B	: How OntoMAS System Works	63
	B.1	Introduction	63
	B .2	Execution Flow of OntoMAS University of Moratuwa, Sri Lanka.	63
Арр	endix 💧	Electronic Theses & Dissertations	70
	C .1	The Content of the WikiGoviya Ontology	70
	C.2	The Content of the HARTI Ontology	71

List of Figures

	Page
Figure 1.1: Difference between Merging and Alignment	4
Figure 5.1: Top Level Diagram of the Proposed Multi-Agent System Architecture	e 27
Figure 6.1: Pseudo Code for Initializing and Executing an Agent	36
Figure 6.2: Communication Protocols between the Agents	37
Figure 6.3: Method to Query Linguistic Information from WordNet Database	39
Figure 6.4: Code to Query Domain Information from Upper Ontology	40
Figure 6.5: Protégé Plugin Code to Execute the JADE Framework	42
Figure 7.1: Relationship between the Measurement Parameters	44
Figure 7.2: Graphical Representation of EDAS Ontology	47
Figure 7.3: Graphical Representation of ACM-SIGKDD Ontology	47
Figure 7.4: Graphical Representation of WikiGoviya Ontology	50
Figure 7.5: Graphical Representation of HARTI Ontology	50
Figure B.1: Confirmation Message When Loading the Second Ontology	63
Figure B.2: Menu Item to Execute OntoMAS	64
Figure B.3: Selecting Two Input Ontologies for OntoMAS	65
Figure B.4: Selecting the Base Ontology	65
Figure B.5: Assigning an IRI for Generated Ontology	66
Figure B.6: Choosing the Path to Save the Generated Ontology	66
Figure B.7: Selecting the Format for Generated Ontology	67
Figure B.8: JADE Agent Management GUI	68
Figure B.9: The Agent Message Space	68
Figure B.10: OntoMAS Tab of Protégé	69

List of Tables

	Page
Table 2.1: Comparison of Ontology Alignment Techniques	15
Table 7.1: Details of Conference Organizing Domain Ontologies	46
Table 7.2: Analyzed Result on Conference Organizing Domain	48
Table 7.3: Analyzed Result on Agricultural Domain	51
Table C.1: The Contents of the WikiGoviya Ontology	70
Table C.2: The Contents of the HARTI Ontology	71

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk