Resource Management in Wireless Systems Using Multiagent Technology

Eranga Harshana Tennakoon

Faculty of Information Technology University of Moratuwa

October 2012

Resource Management in Wireless Systems Using Multiagent Technology

Eranga Harshana Tennakoon

Dissertation submitted to the Faculty of Information Technology, University of Moratuwa, Sri Lanka for the partial fulfillment of the requirements of the Degree of MSc in Artificial Intelligence

October 2012

Declaration

I declare that this dissertation does not incorporate, without acknowledgment, any material previously submitted for a Degree or a Diploma in any University and to the best of my knowledge and belief, it does not contain any material previously published or written by another person or myself except where due reference is made in the text. I also hereby give consent for my dissertation, if accepted, to be made available for photocopying and for interlibrary loans, and for the title and summary to be made available to outside organization.

E. H. Tennakoon

Name of Student

Signature of Student Date:

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Prof. Asoka S. Karunananda

Name of Supervisor

Signature of Supervisor Date:

Dedication

To my Wife and Parents

Acknowledgment

The realization of this work was only possible due to several people's collaboration, to which desire to express my gratefulness.

To Professor Asoka S. Karunananda, like the Dean of the Faculty of Information Technology, University of Moratuwa, Sri Lanka and my supervisor, I am grateful for the trust deposited in my work and for the motivation demonstrated along this arduous course. His support was without a doubt crucial in my dedication this investigation.

The all my colleagues and researchers of the Faculty of Information Technology, University of Moratuwa, Sri Lanka wants for the encouragement, advices and suggestions of the work, wants for the friendship that always demonstrated along these months of realization of the work.

Abstract

Increasing uses of portable devices and the development of wireless systems require a further special attention on performance of the access points. The performances of these access points are mainly determined by various parameters such as end to end delay, bandwidth, packet loss or throughput, which occur mainly due to the topology changes of the network.

According to the multi-agent system definition, agents attend to solve the problem through proper coordination through the messages passing. Each access point of the wireless system is attached with an agent prior to initiate the routing tasks. Through the cooperation, collaboration and negotiation capabilities of all the agents in the system the best performance availabilities on each access point is measured, later the agents are allowed to initiate relevant routing tasks based on the result. In view of the above, the proposed message oriented middleware solution will increase the overall efficiency of wireless systems.

University of Moratuwa, Sri Lanka.

Taking the availage of existing wildless combined ion protocols, an agent of the access point operates in between the physical layer and the link layer. Agent in access point handles the incoming requests from the physical layer and validates against the performance parameters, such as end to end delay, bandwidth that and the packet lost. Once the agent identifies that the available resources of the attached access point is capable of maintaining proper information routing tasks against all the other access points, the connection request is handed over to the link layer, and then disappear. Link layer is not aware about the agents' interference and it simply handed over the response to the application layer which follows the standard communication model.

The proposed system is evaluated with the comparing of conventional wireless system and with exactly the same instrumentation. Each system gone through the two evaluation phases, namely the device connectivity and the file management over the network. Results in each step recorded and evaluated at the end. It shows that the proposed solution draws 43% of average bandwidth usage over the conventional wireless systems. Hence the data transfer also reduces by 35% comparing to the conventional wireless systems. That is mainly due to the fact that the proposed solution not required all the information of the network at the time of initiating, but the conventional wireless system does. In file management, simultaneous upload, it shows 17% of average bandwidth usage over the conventional wireless system. However, more importantly the noise of the bandwidth is quite lower than the conventional system. The results of the proposed solution are discussed later in this dissertation.

The presented solution, message oriented middleware is independent of a particular choice of a wireless technology or a specific protocol implementations. So it is possible to integrate with a bridge device based wireless communication system as well as Bluetooth wireless system. However, in situations as in terms of throughput and delays, the choice of performance parameter measuring algorithms will have an impact on the system performance.

Contents

Chapter 1 In	itroduction	1
1.1	Introduction	1
1.2	Aim and Objectives	2
	1.2.1 The Aim	2
	1.2.2 The Objectives	2
1.3	Proposed Solution	2
1.4	Summary	3
Chapter 2 C	urrent Issues in Conventional Wireless Instrumentations	5
2.1	Introduction	5
2.2	Related Work	5
	2.2.1 Ustatistical Analysis on Communication Rata	5
	2.2.2 Eneighborhood Abaractio Dissertations	6
	2.2.3 VEnergy Prade Offs Ik Header Transformation	10
	2.2.4 A Language for Describing Coordination in Multi Agen	ıt
	Systems	11
2.3	Problem Identified	13
2.4	Summary	14
Chapter 3 M	Iulti Agent Systems and Message Passing	15
3.1	Introduction	15
3.2	Multi Agent Systems	15
	3.2.1 Determinism and Dynamics of an Agent	17
	3.2.2 FIPA Standard	18
3.3	Summary	18
Chapter 4 M	IAS Based Approach to Resource Management	19
4.1	Introduction	19
4.2	Hypothesis	19

4.3	Building Blocks of Approach		20
	4.3.1	Inputs and Outputs	20
	4.3.2	Process	21
	4.3.3	Users	22
	4.3.4	Features	22
4.4	Summ	ary	23

Chapter 5 M	AS Based Wireless System Design	25
5.1	Introduction	25
5.2	States of Communication	25
5.3	Design of Proposed Solution	26
	5.3.1 Role of Agent in Wireless Network Protocol	27
	5.3.2 Multi Agent Layered	28
5.4	Summary	31
Chapter 6 In	Electronic Theses & Dissertations	32
6.1	Introduction WWW.lib.mrt.ac.lk	32
6.2	MAS Based Wireless System	32
	6.2.1 Connector Module of Host Agent	33
	6.2.2 Utilizer Module of Host Agent	34
	6.2.3 Linker Module of Host Agent	36
6.3	Single Point of Failure	37
	6.3.1 Prevention of SPOFs in MAS Based Resource Manag	ement
	System	38
6.4	Performance Evaluation Algorithms	39
	6.4.1 Common Algorithms in Use	39
6.5	Summary	40
Chapter 7 Ev	aluation	41
7.1	Introduction	41
7.2	Solution Evaluation Strategy	41
	7.2.1 Factors Affecting Performance	41

42

7.2.2 Performance Evaluation Tools

7.3	Evaluation Setup	42
7.4	Results of Evaluation	43
	7.4.1 Wireless Device Connectivity	43
	7.4.2 File Management through the System	45
7.5	Summary	50
Chapter 8 Co	onclusion and Further Work	51
8.1	Introduction	51
8.2	Conclusion	51
8.3	Further Work	52
8.4	Summary	54
References		55
Appendix A:	Generic Architecture of an Access Point	59
Appendix B:	Activity Diagrams	60 63
Appendix Q	Sample Ontology of a Host Agent Electronic Theses & Dissertations	
Appendix D	Sereenshots WWW.lib.mrt.ac.lk	65
Appendix E:	Test Results for Wireless Device Connectivity	67
Appendix F:	Test Results for Data Management of the System	69
Appendix G:	Abbreviation	77

List of Figures

Figure 3.1 – The Architecture of Common MAS	16
Figure 4.1 – Input, Process and Output of the MAS based Resource Manager	20
Figure 4.2 – Wireless Interface Architecture	21
Figure 5.1 – Simple Wireless Network Instrumentation	26
Figure 5.2 – Agent Communication Architecture in Wireless Network Protocol	27
Figure 5.3 – Multi Layered Architecture of Host Agent	29
Figure 5.4 – The Message Oriented Middleware Agent Solution Architecture	30
Figure 7.1 – Bandwidth Allocation on Connection Request (Conventional Wirele	ess
System)	44
Figure 7.2 – Bandwidth Allocation on Connection Request (MAS Based Wireles	S
System)	45
Figure 7.3 - Comparison of Bandwidth Allocation on Connection Request	46
Figure 7.4 Bandwidth Allocation The File UBload (Conventional Wireless Syste	ms)
www.lib.mrt.ac.lk	48
Figure 7.4 - Bandwidth Allocation on File Upload (MAS Based Wireless System	1)
	49
Figure A.1 – Common Architecture of Access Point	59
Figure B.1 – Activity Diagram of the Connector Module	60
Figure B.2 – Activity Diagram of the Utilizer Module	61
Figure B.3 – Activity Diagram of the Linker Module	62
Figure D.1 – IPERF Running as a Server	65
Figure D.2 – IPERF Running as a Client	65
Figure D.3 – System Results Console	66

List of Tables

	Page
Table 2.1 – Limitations and Issues with Various Approaches	13
Table 6.1 – Comparison of Common Routing Algorithms	40
Table 8.1 – Comparison of Device Connectivity	51
Table 8.2 – Comparison of File Management	52
Table E.1 – Wireless Device Connectivity (Conventional Wireless System)	67
Table E.2 – Wireless Device Connectivity (Proposed Wireless System)	68
Table F.1 – Transfer Data on File Upload (Conventional Wireless System)	69
Table F.2 – Bandwidth Allocation on File Upload (Conventional Wireless Syste	em)
	71
Table F.3 – Transfer Data on File Upload (Proposed Wireless System)	73
Table F.4 – Bandwidth Allocation on File Upload (Proposed Wireless System)	75

